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Abstract

We discuss the existence and regularity of solutions to an elliptic system, whose
basic example is: 

−∆u = f(x)vθ

uθ in Ω,

−∆v = g(x)(1 + u)γ in Ω,

u > 0, v > 0 in Ω,

u = 0, v = 0 on ∂Ω,

(1)

where 0 ≤ f(x) ≤ g(x) ∈ Lm(Ω) are not identically zero, and θ, γ > 0 are
fixed constants.
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1 Introduction

This short note analyzes existence and regularity of solutions to the following system
of elliptic equations in bounded domain Ω ⊆ RN :

−div(M(x)Du) = f(x)vθ

uθ in Ω,

−div(M(x)Dv) = g(x)(1 + u)γ in Ω,

u > 0, v > 0 in Ω,

u = 0, v = 0 on ∂Ω,

(S)
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where θ > 0 and f(x), g(x) are nonnegative functions not identically zero, such that

f(x) ≤ g(x) ∈ Lm(Ω), with m ≥ 2,

M(x) is a matrix valued function satisfying

α|ξ|2 < M(x)ξ · ξ and |M(x)| ≤ β,

for every ξ ∈ RN and x ∈ Ω a.e.
The literature on semilinear elliptic equations is extensive, for a summary of results

see for example Gilbarg and Trudinger (2001); Boccardo and Croce (2013) and the
references therein.

In Boccardo and Orsina (2010), the authors discuss existence and regularity of
solutions to the equation:

−∆u =
f(x)

uγ
in Ω, (2)

where γ > 0 is a fixed constant and f ∈ Lm(Ω), for m ≥ 1. Existence and regularity
are proved under different assumptions on m, using mainly the Maximum Principle
and truncation methods as methods of proof. They prove, among other things, that if
m > N

2 then there exists a bounded solution u ∈ L∞(Ω) to (2). As we shall see below,
this result generalizes to the system considered in this note.

In Boccardo and Orsina (2020), existence and regularity is studied for the system{
−div(A(x)Du) + u = −div(uM(x)Dv) + f(x) in Ω,

−div(M(x)Dv) = uθ in Ω,
(3)

where f ∈ Lm(Ω), A,M are uniformly elliptic matrices and θ < 2
N is fixed. The authors

prove, using truncation methods, a general existence theorem and various regularity
results depending on m. In particular, they proved that if m > N

2 , then there exists a
bounded solution pair (u, v) ∈ [L∞(Ω)]2 to (3).

In this note, using the Maximum Principle and truncation methods, we analyze
existence and regularity of solutions to System S. More precisely, we show that if
m > N

2 , and γ satisfies

0 < γ <
2

m

(
2m−N

N − 2

)
, (4)

then:
(1) If θ ≤ 1, then system (S) has a solution (u, v) ∈ [H1

0(Ω) ∩ L∞(Ω)]2.
(2) If θ > 1, then system (S) has a solution (u, v) ∈ (H1

loc(Ω) ∩ L∞(Ω))× (H1
0(Ω) ∩

L∞(Ω)), moreover u
θ+1
2 ∈ H1

0(Ω).

Notation & Assumptions

- Ω ⊂ RN is a bounded domain and N ≥ 3.
- The space H1

0(Ω) denotes the usual Sobolev space which is the closure of
C∞
0 (Ω), smooth functions with compact support using the Sobolev norm.
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- For q > 1, q′ denotes the Holder conjugate, i.e. 1
q + 1

q′ = 1, and q∗ denotes

the Sobolev conjugate, defined by q∗ = qN
N−q > q.

- The letter C will always denote a positive constant which may vary from
place to place.

- The Lebesgue measure of a set A ⊆ Rn is denoted by |A|.
- The symbol ⇀ denotes weak convergence.

2 Proofs

A distributional solution to system (S) is a pair of functions (u, v) ∈
[W1,1

0 (Ω)]2 such that both fvθ and g(1 + u)γ are in L1(Ω),

∀U ⊂⊂ Ω ∃CU : u ≥ CU > 0 in U (5)

and ∫
Ω

M(x)DuDφ =

∫
Ω

f(x)vθ

uθ
φ ∀φ ∈ C∞

0 (Ω)∫
Ω

M(x)DvDϕ =

∫
Ω

g(x)(1 + u)γϕ ∀ϕ ∈ C∞
0 (Ω).

(6)

We start by truncating system (S). Namely, given n ∈ N, we set fn(x) :=
max{f(x), 0} and gn(x) := max{g(x), 0} and consider the system

−div(M(x)Dun) =
fn(x)(Tn(vn))

θ

(un+
1
n )θ

in Ω,

−div(M(x)Dvn) = gn(x)(1 + Tn(un))
γ in Ω,

un = 0, vn = 0 on ∂Ω,

(T)

Proposition 1. System (T) has a solution (un, vn) ∈ [H1
0(Ω) ∩ L∞(Ω)]2.

Moreover, both un and vn are positive.
Proof. The proof is topological, using Schauder Fixed point theorem. Fix n ∈ N,
and define an operator S : L2(Ω) → L2(Ω) given by S(un) = wn, where wn ∈
H1

0(Ω) is the unique solution of

−div(M(x)Dwn) =
fn(x)(Tn(vn))

θ

(|un|+ 1
n )

θ
(7)

and vn is the unique solution of

−div(M(x)Dvn) = gn(x)(1 + Tn(un))
γ . (8)
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Here, uniqueness is guaranteed by Lax-Milgram theorem. Taking wn as a test
function in (7), we obtain:

α

∫
Ω

|Dwn|2 ≤ n2θ+1

∫
Ω

|wn| (9)

By Poincare’s inequality: ∫
Ω

|wn|2 ≤ C

∫
Ω

|wn|

We conclude that
∥wn∥

2
≤ C,

Hence, if we denote the ball centered at the origin of radius C by BC(0), then
BC(0) is invariant under the operator S(un).

By the compactness of the embedding H1
0(Ω) in L2(Ω), S is also compact.

Finally, S as defined is clearly continuous, so Schauder Fixed point theorem
confirms that there is un ∈ H1

0(Ω) such that

S(un) = un.

Moreover, since the right hand side of both equations are in L∞(Ω), classical
elliptic regularity theory guarantees that (un, vn) ∈ L∞(Ω)×L∞(Ω). Also, since
both un and vn are superharmonic, by the strong maximum principle, they have
to be positive in Ω.
We conclude that the pair (un, vn) is a solution to system (T).

Theorem 2. If m > N
2 , and γ satisfies:

0 < γ <
2

m

(
2m−N

N − 2

)
, (10)

then the sequence vn is bounded in H1
0(Ω) and also in L∞(Ω). Moreover,

un ≤ vn,

hence un is also bounded in L∞(Ω).
Proof. Taking the difference of the two equations of system (T), we have:∫

Ω

M(x)(Dun −Dvn)Dφ =

∫
Ω

(
fnv

θ
n

(un + 1
n )

θ
− gn(1 + un)

γ

)
φ (11)

for φ ∈ H1
0(Ω). Choosing φ = (un − vn)

+ and using the ellipticity of M(x) we
obtain:

α

∫
Ω

|D(un − vn)
+|2 ≤

∫
Ω

gn (1− (1 + un)
γ) (un − vn)

+. (12)
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On the other hand, notice that the right hand side of (12) is always nonpositive,
hence:

α

∫
Ω

|D(un − vn)
+|2 ≤ 0 ⇒ (un − vn)

+ ≡ 0.

We conclude that un ≤ vn for every n ∈ N.
Take vn as a test function in the second equation of (T). Using Young’s and

Poincare’s inequality (with constant P > 0), we obtain:

α

∫
Ω

|Dvn|2 ≤
∫
Ω

g(vn + vγ+1
n )

=

∫
Ω

gvn +

∫
Ω

gvγ+1
n

≤ C

∫
Ω

g2 +
α

4P

∫
Ω

|vn|2 + C

∫
Ω

g(
2

γ+1 )
′
+

α

4P

∫
Ω

|vn|2

∴
∫
Ω

|Dvn|2 ≤C.

(13)

Now, the condition 0 < γ < 2m−N
mN together with vn ∈ L2∗(Ω) implies

gn(1 + Tn(un))
γ ∈ Ls(Ω),

with s > N
2 . By Stampacchia’s regularity theory, ∥vn∥∞ ≤ C, and since un ≤ vn,

we automatically obtain un ≤ C.
Corollary 3. If m > N

2 , and γ satisfies:

0 < γ <
2

m

(
2m−N

N − 2

)
, (14)

both sequences un and vn satisfy condition (5).
Proof. By the theorem above, ∥un∥∞ ≤ ∥vn∥∞ ≤ C∞ for a constant C∞
independent of n.

Notice that for every n ∈ N and φ ∈ C∞
0 (Ω), vn satisfies:∫

Ω

M(x)Dvnφ+

∫
Ω

vnφ ≥
∫
Ω

g1φ,

so by the maximum principle, vn satisfies condition (5) and also vn ≥ Cg1 in Ω,
for a constant Cg1 > 0 independent of n.
Similarly, for every n ∈ N, un satisfies:∫

Ω

M(x)Dunφ+

∫
Ω

unφ ≥
∫
Ω

fn(x)(Tn(vn))
β

(C∞ + 1)θ
φ ≥

∫
Ω

f1(x)C
β
g1

(C∞ + 1)θ
φ. (15)

Therefore, by the maximum principle again, un satisfies condition (5).
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The case θ ≤ 1

This is simplest case, and existence of solutions can be obtained very easily:
Lemma 4. Let un be the solution obtained in Proposition 1. If θ ≤ 1, the sequence
un is bounded in H1

0(Ω).
Proof. Take un as a test function in the first equation of (T) and using the fact
that un ≤ vn ≤ C a.e. , we obtain:

α

∫
Ω

|Dun|2 ≤
∫
Ω

fn(x)Tn(vn)

(un + 1
n )

θ
un ≤

∫
Ω

fvnu
1−θ
n ≤ C∥f∥

1
(16)

Theorem 5. If θ ≤ 1, m > N
2 , and γ satisfies:

0 < γ <
2

m

(
2m−N

N − 2

)
, (17)

then system (S) has a solution (u, v) ∈ [H1
0(Ω) ∩ L∞(Ω)]2.

Proof. Since both un and vn are bounded in H1
0(Ω), we can assume that up to a

subsequence un ⇀ u and vn ⇀ v in H1
0(Ω). We can easily take the limit in the

terms to the left hand side of (S). The only non trivial part is whether or not we
can pass the limit on the terms to the right. Notice that for every φ ∈ C∞

0 (Ω):∣∣∣∣ fn(x)vθnφ(un + 1
n )

θ

∣∣∣∣ ≤ Cf(x)

|gn(x)(1 + un)
γφ| ≤ Cg(x)

(18)

By Lebesgue’s dominated convergence theorem, we can pass the limit on the right
hand side of (S).

The case θ > 1

If θ > 1, the problem becomes more interesting, since just taking un as testing
function in the first equation of (T) wouldn’t suffice for obtaining estimates.
Despite this, we can still obtain estimates in a larger Sobolev space, as the lemma
below demonstrates.
Lemma 6. Let un be the solution obtained in Proposition 1. If θ > 1, the sequence

un is bounded in H1
loc(Ω), moreover u

θ+1
2

n is bounded in H1
0(Ω).

Proof. We now take uθ
n as a testing function in the first equation of (T) to obtain:

αθ

∫
Ω

|Dun|2uθ−1
n ≤

∫
Ω

fn(x)v
θ
n

(un + 1
n )

θ
uθ
n ≤

∫
Ω

fvθn ≤ C∥f∥
1

(19)
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We can simplify the above to∫
Ω

|Du
θ+1
2

n |2 ≤ C∥f∥
1
, (20)

which confirms that u
θ+1
2

n is bounded in H1
0(Ω). Now, take unφ

2 as testing
function, where φ ∈ C∞

0 (Ω) and K = supp(φ), we have:

α

∫
Ω

|Dun|2φ2+2

∫
Ω

M(x)DunDφunφ ≤
∫
Ω

fn(x)v
θ
n

(un + 1
n )

θ
unv

2
n ≤

∫
Ω

fvθ+2
n

Cθ
k

≤ C∥f∥
1

(21)
Notice that:

α

∫
Ω

|Dun|2φ2−2

∫
Ω

|M(x)DunDφunφ| ≤ α

∫
Ω

|Dun|2φ2+2

∫
Ω

M(x)DunDφunφ

(22)
Simplifying, we obtain:

α

∫
Ω

|Dun|2φ2 ≤ C∥f∥
1
+ 2β

∫
Ω

|DunDφunφ| (23)

By Young’s inequality:

2β

∫
Ω

|DunDφunφ| ≤
α

2

∫
Ω

|Dun|2φ2 +
2β2

α

∫
Ω

|Dvn|2u2
n (24)

Combining equations (23) and (24), we have:

α

2

∫
Ω

|Dun|2φ2 ≤ C∥f∥
1
+

2β2

α

∫
Ω

|Dvn|2u2
n ≤ C(∥f∥

1
+ 1). (25)

It follows that un is bounded in H1
loc(Ω).

We conclude with the following result, whose proof is identical to the one we
gave in theorem 5, hence it will be ommitted.
Theorem 7. If θ > 1, m > N

2 , and γ satisfies:

0 < γ <
2

m

(
2m−N

N − 2

)
, (26)

then system (S) has a solution (u, v) ∈ (H1
loc(Ω) ∩ L∞(Ω)) × (H1

0(Ω) ∩ L∞(Ω)),

moreover u
θ+1
2 ∈ H1

0(Ω).
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3 Concluding remarks and open questions

The techniques used in this manuscript fail if N = 2, because some estimates
cease to be true. It would be interesting to see if the arguments presented here
can be adapted to include similar results in the plane as well:

Does system (S) have bounded solutions in 2 dimensions?

We could easily increase the sophistication of system (S), if we substitute the

second equation by −∆v = g(x)uα

vα , in other words, consider the system:


−∆u = f(x)vθ

uθ in Ω,

−∆v = g(x)uα

vα in Ω,

u > 0, v > 0 in Ω,

u = 0, v = 0 on ∂Ω,

(Q)

Does system (Q) have (unique) solutions? Are they bounded?

The main feature of system (Q) is that it is not clear that the condition un ≤ vn
still holds in this scenario, even if it does, it’s not obvious that un, vn would still
be bounded, hence proving that they satisfy (5) could be challenging.
Another interesting related problem that could be approached using the

techniques presented here is the system:
−∆u = f(x)vθ

uθ in Ω,

− ∆v
(1+v)γ = g(x)uα in Ω,

u > 0, v > 0 in Ω,

u = 0, v = 0 on ∂Ω,

(W)

The degenerate coercivity could potentially interact with the singularity and
influence the existence of bounded solutions, hence the following question seems
reasonable:

Does system (W) have bounded solutions?
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