On an elliptic system with singular nonlinearity

Genival da Silva[∗]

Department of Mathematics, Texas A&M University - San Antonio.

Abstract

We discuss the existence and regularity of solutions to an elliptic system, whose basic example is:

$$
\begin{cases}\n-\Delta u = \frac{f(x)v^{\theta}}{u^{\theta}} & \text{in } \Omega, \\
-\Delta v = g(x)(1+u)^{\gamma} & \text{in } \Omega, \\
u > 0, v > 0 & \text{in } \Omega, \\
u = 0, v = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(1)

where $0 \leq f(x) \leq g(x) \in L^m(\Omega)$ are not identically zero, and $\theta, \gamma > 0$ are fixed constants.

Keywords: elliptic system, regularity, existence

MSC Classification: 35J47 , 35J61 , 35J75

1 Introduction

This short note analyzes existence and regularity of solutions to the following system of elliptic equations in bounded domain $\Omega \subseteq \mathbb{R}^N$:

$$
\begin{cases}\n-\text{div}(M(x)Du) = \frac{f(x)v^{\theta}}{u^{\theta}} & \text{in } \Omega, \\
-\text{div}(M(x)Dv) = g(x)(1+u)^{\gamma} & \text{in } \Omega, \\
u > 0, v > 0 & \text{in } \Omega, \\
u = 0, v = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(S)

∗ email: gdasilva@tamusa.edu, website: <www.gdasilvajr.com>

$$
1 \\
$$

where $\theta > 0$ and $f(x)$, $g(x)$ are nonnegative functions not identically zero, such that

$$
f(x) \le g(x) \in L^m(\Omega), \text{ with } m \ge 2,
$$

 $M(x)$ is a matrix valued function satisfying

$$
\alpha |\xi|^2 < M(x)\xi \cdot \xi
$$
 and $|M(x)| \leq \beta$,

for every $\xi \in \mathbb{R}^N$ and $x \in \Omega$ a.e.

The literature on semilinear elliptic equations is extensive, for a summary of results see for example [Gilbarg and Trudinger](#page-8-0) [\(2001\)](#page-8-0); [Boccardo and Croce](#page-7-0) [\(2013\)](#page-7-0) and the references therein.

In [Boccardo and Orsina](#page-7-1) [\(2010\)](#page-7-1), the authors discuss existence and regularity of solutions to the equation:

$$
-\Delta u = \frac{f(x)}{u^{\gamma}} \quad \text{in } \Omega,
$$
\n(2)

where $\gamma > 0$ is a fixed constant and $f \in L^m(\Omega)$, for $m \geq 1$. Existence and regularity are proved under different assumptions on m , using mainly the Maximum Principle and truncation methods as methods of proof. They prove, among other things, that if $m > \frac{N}{2}$ then there exists a bounded solution $u \in L^{\infty}(\Omega)$ to [\(2\)](#page-0-0). As we shall see below, this result generalizes to the system considered in this note.

In [Boccardo and Orsina](#page-8-1) [\(2020\)](#page-8-1), existence and regularity is studied for the system

$$
\begin{cases}\n-\text{div}(A(x)Du) + u = -\text{div}(uM(x)Dv) + f(x) & \text{in } \Omega, \\
-\text{div}(M(x)Dv) = u^{\theta} & \text{in } \Omega,\n\end{cases}
$$
\n(3)

where $f \in L^m(\Omega)$, A, M are uniformly elliptic matrices and $\theta < \frac{2}{N}$ is fixed. The authors prove, using truncation methods, a general existence theorem and various regularity results depending on m. In particular, they proved that if $m > \frac{N}{2}$, then there exists a bounded solution pair $(u, v) \in [L^{\infty}(\Omega)]^2$ to [\(3\)](#page-1-0).

In this note, using the Maximum Principle and truncation methods, we analyze existence and regularity of solutions to System [S.](#page-0-0) More precisely, we show that if $m > \frac{N}{2}$, and γ satisfies

$$
0 < \gamma < \frac{2}{m} \left(\frac{2m - N}{N - 2} \right),\tag{4}
$$

then:

(1) If $\theta \leq 1$, then system [\(S\)](#page-0-0) has a solution $(u, v) \in [\mathbf{H}_0^1(\Omega) \cap L^{\infty}(\Omega)]^2$.

(2) If $\theta > 1$, then system [\(S\)](#page-0-0) has a solution $(u, v) \in (H^1_{loc}(\Omega) \cap L^{\infty}(\Omega)) \times (\mathbf{H}^1_0(\Omega) \cap$ $L^{\infty}(\Omega)$), moreover $u^{\frac{\theta+1}{2}} \in \mathbf{H}_0^1(\Omega)$.

Notation & Assumptions

- $\Omega \subset \mathbb{R}^N$ is a bounded domain and $N \geq 3$.
- The space $\mathbf{H}_{0}^{1}(\Omega)$ denotes the usual Sobolev space which is the closure of $\mathcal{C}_0^\infty(\Omega),$ smooth functions with compact support using the Sobolev norm.

- For $q > 1$, q' denotes the Holder conjugate, i.e. $\frac{1}{q} + \frac{1}{q'} = 1$, and q^* denotes the Sobolev conjugate, defined by $q^* = \frac{qN}{N-q} > q$.
- The letter C will always denote a positive constant which may vary from place to place.
- The Lebesgue measure of a set $A \subseteq \mathbb{R}^n$ is denoted by |A|.
- The symbol \rightharpoonup denotes weak convergence.

2 Proofs

A distributional solution to system [\(S\)](#page-0-0) is a pair of functions $(u, v) \in$ $[\mathbf{W}_0^{1,1}(\Omega)]^2$ such that both fv^{θ} and $g(1+u)^{\gamma}$ are in $L^1(\Omega)$,

$$
\forall U \subset\subset \Omega \,\exists C_U : u \ge C_U > 0 \text{ in } U \tag{5}
$$

and

$$
\int_{\Omega} M(x)DuD\varphi = \int_{\Omega} \frac{f(x)v^{\theta}}{u^{\theta}} \varphi \quad \forall \varphi \in C_0^{\infty}(\Omega)
$$

$$
\int_{\Omega} M(x)DvD\phi = \int_{\Omega} g(x)(1+u)^{\gamma} \phi \quad \forall \phi \in C_0^{\infty}(\Omega).
$$
 (6)

We start by truncating system [\(S\)](#page-0-0). Namely, given $n \in \mathbb{N}$, we set $f_n(x) :=$ $\max\{f(x), 0\}$ and $g_n(x) := \max\{g(x), 0\}$ and consider the system

$$
\begin{cases}\n-\text{div}(M(x)Du_n) = \frac{f_n(x)(T_n(v_n))^{\theta}}{(u_n + \frac{1}{n})^{\theta}} & \text{in } \Omega, \\
-\text{div}(M(x)Dv_n) = g_n(x)(1 + T_n(u_n))^{\gamma} & \text{in } \Omega, \\
u_n = 0, v_n = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n
$$
(T)
$$

Proposition 1. System [\(T\)](#page-2-0) has a solution $(u_n, v_n) \in [\mathbf{H}_0^1(\Omega) \cap L^{\infty}(\Omega)]^2$. Moreover, both u_n and v_n are positive.

Proof. The proof is topological, using Schauder Fixed point theorem. Fix $n \in \mathbb{N}$, and define an operator $S: L^2(\Omega) \to L^2(\Omega)$ given by $S(u_n) = w_n$, where $w_n \in$ $\mathbf{H}_0^1(\Omega)$ is the unique solution of

$$
-\text{div}(M(x)Dw_n) = \frac{f_n(x)(T_n(v_n))^{\theta}}{(|u_n| + \frac{1}{n})^{\theta}}
$$
(7)

and v_n is the unique solution of

$$
-\text{div}(M(x)Dv_n) = g_n(x)(1 + T_n(u_n))^{\gamma}.
$$
\n(8)

Here, uniqueness is guaranteed by Lax-Milgram theorem. Taking w_n as a test function in (7) , we obtain:

$$
\alpha \int_{\Omega} |Dw_n|^2 \le n^{2\theta + 1} \int_{\Omega} |w_n| \tag{9}
$$

By Poincare's inequality:

$$
\int_{\Omega}|w_n|^2 \leq C \int_{\Omega}|w_n|
$$

We conclude that

$$
||w_n||_2 \leq C,
$$

Hence, if we denote the ball centered at the origin of radius C by $B_C(0)$, then $B_C(0)$ is invariant under the operator $S(u_n)$.

By the compactness of the embedding $\mathbf{H}_0^1(\Omega)$ in $L^2(\Omega)$, S is also compact. Finally, S as defined is clearly continuous, so Schauder Fixed point theorem confirms that there is $u_n \in \mathbf{H}_0^1(\Omega)$ such that

$$
S(u_n)=u_n.
$$

Moreover, since the right hand side of both equations are in $L^{\infty}(\Omega)$, classical elliptic regularity theory guarantees that $(u_n, v_n) \in L^{\infty}(\Omega) \times L^{\infty}(\Omega)$. Also, since both u_n and v_n are superharmonic, by the strong maximum principle, they have to be positive in Ω .

We conclude that the pair (u_n, v_n) is a solution to system (T) . \Box **Theorem 2.** If $m > \frac{N}{2}$, and γ satisfies:

$$
0 < \gamma < \frac{2}{m} \left(\frac{2m - N}{N - 2} \right),\tag{10}
$$

then the sequence v_n is bounded in $\mathbf{H}_0^1(\Omega)$ and also in $L^{\infty}(\Omega)$. Moreover,

$$
u_n \le v_n,
$$

hence u_n is also bounded in $L^{\infty}(\Omega)$.

Proof. Taking the difference of the two equations of system (T) , we have:

$$
\int_{\Omega} M(x)(Du_n - Dv_n)D\varphi = \int_{\Omega} \left(\frac{f_n v_n^{\theta}}{(u_n + \frac{1}{n})^{\theta}} - g_n (1 + u_n)^{\gamma} \right) \varphi \tag{11}
$$

for $\varphi \in \mathbf{H}_0^1(\Omega)$. Choosing $\varphi = (u_n - v_n)^+$ and using the ellipticity of $M(x)$ we obtain:

$$
\alpha \int_{\Omega} |D(u_n - v_n)^{+}|^2 \le \int_{\Omega} g_n (1 - (1 + u_n)^{\gamma}) (u_n - v_n)^{+}.
$$
 (12)

On the other hand, notice that the right hand side of [\(12\)](#page-3-0) is always nonpositive, hence:

$$
\alpha \int_{\Omega} |D(u_n - v_n)^{+}|^2 \leq 0 \Rightarrow (u_n - v_n)^{+} \equiv 0.
$$

We conclude that $u_n \leq v_n$ for every $n \in \mathbb{N}$.

Take v_n as a test function in the second equation of [\(T\)](#page-2-0). Using Young's and Poincare's inequality (with constant $P > 0$), we obtain:

$$
\alpha \int_{\Omega} |Dv_n|^2 \le \int_{\Omega} g(v_n + v_n^{\gamma+1})
$$

=
$$
\int_{\Omega} g v_n + \int_{\Omega} g v_n^{\gamma+1}
$$

$$
\le C \int_{\Omega} g^2 + \frac{\alpha}{4\mathcal{P}} \int_{\Omega} |v_n|^2 + C \int_{\Omega} g^{(\frac{2}{\gamma+1})'} + \frac{\alpha}{4\mathcal{P}} \int_{\Omega} |v_n|^2
$$

$$
\therefore \int_{\Omega} |Dv_n|^2 \le C.
$$
 (13)

Now, the condition $0 < \gamma < \frac{2m-N}{mN}$ together with $v_n \in L^{2^*}(\Omega)$ implies

$$
g_n(1+T_n(u_n))^\gamma\in L^s(\Omega),
$$

with $s > \frac{N}{2}$. By Stampacchia's regularity theory, $||v_n||_{\infty} \leq C$, and since $u_n \leq v_n$, we automatically obtain $u_n \leq C$. \Box

Corollary 3. If $m > \frac{N}{2}$, and γ satisfies:

$$
0 < \gamma < \frac{2}{m} \left(\frac{2m - N}{N - 2} \right),\tag{14}
$$

both sequences u_n and v_n satisfy condition [\(5\)](#page-2-1).

Proof. By the theorem above, $||u_n||_{\infty} \le ||v_n||_{\infty} \le C_{\infty}$ for a constant C_{∞} independent of n.

Notice that for every $n \in \mathbb{N}$ and $\varphi \in C_0^{\infty}(\Omega)$, v_n satisfies:

$$
\int_{\Omega} M(x) D v_n \varphi + \int_{\Omega} v_n \varphi \ge \int_{\Omega} g_1 \varphi,
$$

so by the maximum principle, v_n satisfies condition [\(5\)](#page-2-1) and also $v_n \geq C_{g_1}$ in Ω , for a constant $C_{g_1} > 0$ independent of n.

Similarly, for every $n \in \mathbb{N}$, u_n satisfies:

$$
\int_{\Omega} M(x) D u_n \varphi + \int_{\Omega} u_n \varphi \ge \int_{\Omega} \frac{f_n(x) (T_n(v_n))^{\beta}}{(C_{\infty} + 1)^{\theta}} \varphi \ge \int_{\Omega} \frac{f_1(x) C_{g_1}^{\beta}}{(C_{\infty} + 1)^{\theta}} \varphi.
$$
 (15)

Therefore, by the maximum principle again, u_n satisfies condition [\(5\)](#page-2-1). \Box

The case $\theta \leq 1$

This is simplest case, and existence of solutions can be obtained very easily: **Lemma 4.** Let u_n be the solution obtained in Proposition [1.](#page-2-2) If $\theta \leq 1$, the sequence u_n is bounded in $\mathbf{H}_0^1(\Omega)$.

Proof. Take u_n as a test function in the first equation of (T) and using the fact that $u_n \le v_n \le C$ a.e., we obtain:

$$
\alpha \int_{\Omega} |Du_n|^2 \le \int_{\Omega} \frac{f_n(x)T_n(v_n)}{(u_n + \frac{1}{n})^{\theta}} u_n \le \int_{\Omega} fv_n u_n^{1-\theta} \le C||f||_1 \tag{16}
$$

 \Box

Theorem 5. If $\theta \leq 1$, $m > \frac{N}{2}$, and γ satisfies:

$$
0 < \gamma < \frac{2}{m} \left(\frac{2m - N}{N - 2} \right),\tag{17}
$$

then system [\(S\)](#page-0-0) has a solution $(u, v) \in [\mathbf{H}_0^1(\Omega) \cap L^{\infty}(\Omega)]^2$.

Proof. Since both u_n and v_n are bounded in $\mathbf{H}_0^1(\Omega)$, we can assume that up to a subsequence $u_n \rightharpoonup u$ and $v_n \rightharpoonup v$ in $\mathbf{H}_0^1(\Omega)$. We can easily take the limit in the terms to the left hand side of [\(S\)](#page-0-0). The only non trivial part is whether or not we can pass the limit on the terms to the right. Notice that for every $\varphi \in C_0^{\infty}(\Omega)$:

$$
\left| \frac{f_n(x)v_n^{\theta} \varphi}{(u_n + \frac{1}{n})^{\theta}} \right| \le Cf(x)
$$

\n
$$
|g_n(x)(1 + u_n)^{\gamma} \varphi| \le Cg(x)
$$
\n(18)

By Lebesgue's dominated convergence theorem, we can pass the limit on the right hand side of (S) . П

The case $\theta > 1$

If $\theta > 1$, the problem becomes more interesting, since just taking u_n as testing function in the first equation of [\(T\)](#page-2-0) wouldn't suffice for obtaining estimates. Despite this, we can still obtain estimates in a larger Sobolev space, as the lemma below demonstrates.

Lemma 6. Let u_n be the solution obtained in Proposition [1.](#page-2-2) If $\theta > 1$, the sequence u_n is bounded in $H^1_{loc}(\Omega)$, moreover $u_n^{\frac{\theta+1}{2}}$ is bounded in $\mathbf{H}^1_0(\Omega)$.

Proof. We now take u_n^{θ} as a testing function in the first equation of [\(T\)](#page-2-0) to obtain:

$$
\alpha \theta \int_{\Omega} |Du_n|^2 u_n^{\theta - 1} \le \int_{\Omega} \frac{f_n(x)v_n^{\theta}}{(u_n + \frac{1}{n})^{\theta}} u_n^{\theta} \le \int_{\Omega} fv_n^{\theta} \le C||f||_1 \tag{19}
$$

We can simplify the above to

$$
\int_{\Omega} |Du_n^{\frac{\theta+1}{2}}|^2 \le C ||f||_1,
$$
\n(20)

which confirms that $u_n^{\frac{\theta+1}{2}}$ is bounded in $\mathbf{H}_0^1(\Omega)$. Now, take $u_n\varphi^2$ as testing function, where $\varphi \in C_0^{\infty}(\Omega)$ and $K = \text{supp}(\varphi)$, we have:

$$
\alpha \int_{\Omega} |Du_n|^2 \varphi^2 + 2 \int_{\Omega} M(x) Du_n D\varphi u_n \varphi \le \int_{\Omega} \frac{f_n(x) v_n^{\theta}}{(u_n + \frac{1}{n})^{\theta}} u_n v_n^2 \le \int_{\Omega} \frac{f v_n^{\theta + 2}}{C_k^{\theta}} \le C ||f||_1
$$
\n(21)

Notice that:

$$
\alpha \int_{\Omega} |Du_n|^2 \varphi^2 - 2 \int_{\Omega} |M(x)Du_n D\varphi u_n \varphi| \leq \alpha \int_{\Omega} |Du_n|^2 \varphi^2 + 2 \int_{\Omega} M(x)Du_n D\varphi u_n \varphi
$$
\n(22)

Simplifying, we obtain:

$$
\alpha \int_{\Omega} |Du_n|^2 \varphi^2 \le C ||f||_1 + 2\beta \int_{\Omega} |Du_n D\varphi u_n \varphi| \tag{23}
$$

By Young's inequality:

$$
2\beta \int_{\Omega} |Du_n D\varphi u_n \varphi| \leq \frac{\alpha}{2} \int_{\Omega} |Du_n|^2 \varphi^2 + \frac{2\beta^2}{\alpha} \int_{\Omega} |Dv_n|^2 u_n^2 \tag{24}
$$

Combining equations (23) and (24) , we have:

$$
\frac{\alpha}{2} \int_{\Omega} |Du_n|^2 \varphi^2 \le C \|f\|_1 + \frac{2\beta^2}{\alpha} \int_{\Omega} |Dv_n|^2 u_n^2 \le C(\|f\|_1 + 1). \tag{25}
$$

It follows that u_n is bounded in $H^1_{loc}(\Omega)$.

It follows that
$$
u_n
$$
 is bounded in $H^1_{loc}(\Omega)$.
We conclude with the following result, whose proof is identical to the one we
gave in theorem 5, hence it will be committed.
Theorem 7. If 0, 1, m, N, and a setifies

Theorem 7. If $\theta > 1$, $m > \frac{N}{2}$, and γ satisfies:

$$
0 < \gamma < \frac{2}{m} \left(\frac{2m - N}{N - 2} \right),\tag{26}
$$

then system [\(S\)](#page-0-0) has a solution $(u, v) \in (H^1_{loc}(\Omega) \cap L^{\infty}(\Omega)) \times (\mathbf{H}^1_0(\Omega) \cap L^{\infty}(\Omega)),$ moreover $u^{\frac{\theta+1}{2}} \in \mathbf{H}_0^1(\Omega)$.

3 Concluding remarks and open questions

The techniques used in this manuscript fail if $N = 2$, because some estimates cease to be true. It would be interesting to see if the arguments presented here can be adapted to include similar results in the plane as well:

Does system [\(S\)](#page-0-0) have bounded solutions in 2 dimensions?

We could easily increase the sophistication of system [\(S\)](#page-0-0), if we substitute the second equation by $-\Delta v = \frac{g(x)u^{\alpha}}{v^{\alpha}}$, in other words, consider the system:

$$
\begin{cases}\n-\Delta u = \frac{f(x)v^{\theta}}{u^{\theta}} & \text{in } \Omega, \\
-\Delta v = \frac{g(x)u^{\alpha}}{v^{\alpha}} & \text{in } \Omega, \\
u > 0, v > 0 & \text{in } \Omega, \\
u = 0, v = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(Q)

Does system [\(Q\)](#page-7-2) have (unique) solutions? Are they bounded?

The main feature of system [\(Q\)](#page-7-2) is that it is not clear that the condition $u_n \leq v_n$ still holds in this scenario, even if it does, it's not obvious that u_n, v_n would still be bounded, hence proving that they satisfy [\(5\)](#page-2-1) could be challenging.

Another interesting related problem that could be approached using the techniques presented here is the system:

$$
\begin{cases}\n-\Delta u = \frac{f(x)v^{\theta}}{u^{\theta}} & \text{in } \Omega, \\
-\frac{\Delta v}{(1+v)^{\gamma}} = g(x)u^{\alpha} & \text{in } \Omega, \\
u > 0, v > 0 & \text{in } \Omega, \\
u = 0, v = 0 & \text{on } \partial\Omega,\n\end{cases}
$$
\n(W)

The degenerate coercivity could potentially interact with the singularity and influence the existence of bounded solutions, hence the following question seems reasonable:

Does system [\(W\)](#page-7-2) have bounded solutions?

References

- Boccardo, L., Croce, G.: Elliptic Partial Differential Equations Existence and Regularity of Distributional Solutions. De Gruyter, Berlin, Boston (2013). <https://doi.org/10.1515/9783110315424>
- Boccardo, L., Orsina, L.: Semilinear elliptic equations with singular nonlinearities. Calculus of Variations and Partial Differential Equations 37(3), 363–380 (2010) <https://doi.org/10.1007/s00526-009-0266-x>

- Boccardo, L., Orsina, L.: Sublinear elliptic systems with a convection term. Communications in Partial Differential Equations $45(7)$, 690–713 (2020) [https:](https://doi.org/10.1080/03605302.2020.1712417) [//doi.org/10.1080/03605302.2020.1712417](https://doi.org/10.1080/03605302.2020.1712417)
- Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 3rd edn. Classics in mathematics, p. 518. Springer, ??? (2001). [https:](https://doi.org/10.1007/978-3-642-61798-0) [//doi.org/10.1007/978-3-642-61798-0](https://doi.org/10.1007/978-3-642-61798-0)