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Abstract

We discuss the existence and regularity of solutions to the following Dirichlet
problem:{

−div
(

Du
(1+|u|)θ

)
= −div (uγE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(1)

where θ, γ > 0. An interesting feature of this problem is the interplay between
the two nonlinearities, the degeneracy and the power nonlinearity.
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1 Introduction

In these notes we study existence and regularity of solutions to a class of elliptic
problems whose basic model is{

−div
(

Du
(1+|u|)θ

)
= −div (uγE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(2)

where θ > 0, E(x) is a vector field and f(x) a function in Lm(Ω) with m ≥ 1.
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More generally, we will focus on the following problem:{
−div(a(x, u)Du) = −div (uγE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(D)

where γ is a fixed number, a(x, s) is a Caratheodory function which satisfies, for a.e.
x ∈ Ω, any s ∈ R:

α

(1 + |s|)θ
≤ a(x, s) ≤ β, (C)

where α, β are positive constants.
The summability of E(x) and f(x) will vary and will be specified below.

Remark 1. Condition (C) implies that the operator in problem (D) is not coercive,
hence the usual H1

0(Ω)-existence theory cannot be applied directly. Moreover, since
E(x) is not necessarily a potential, i.e. E = Dv, the equation is not always variational.

Most of our results will assume θ+γ small, the case where γ is large and θ = 0 has
been recently described in Boccardo et al. (2024). If θ > 1, some nonexistence results
exist, see Alvino et al. (2003). The rationale behind all these results is that when the
summability of E(x) and f(x) is high enough, bounded weak solutions tend to exist,
whereas in low summability cases we can only get distributional solution lying in some
Sobolev space W1,q

0 (Ω), for some 1 < q < 2, and in some cases, a smallness condition
on the source f(x) is also required.

We will look for two types of solutions:
A weak solution, sometimes also called a finite energy solution, is a function

u ∈ H1
0(Ω) such that for f ∈ L2∗(Ω), uγE ∈ [L2(Ω)]n and we have:∫

Ω

a(x, u)DuDφ =

∫
Ω

uγE(x)Dφ+

∫
Ω

fφ ∀φ ∈ H1
0(Ω). (3)

A distributional solution is a function u ∈ W1,1
0 (Ω) such that f ∈ L1(Ω), uγE ∈

[L1
loc(Ω)]

n and we have:∫
Ω

a(x, u)DuDφ =

∫
Ω

uγE(x)Dφ+

∫
Ω

fφ ∀φ ∈ C∞
0 (Ω). (4)

Remark 2. Notice that every weak solution u ∈ H1
0(Ω), if there is one, is a

distributional solution by definition.

As mentioned above, nonexistence can occur when θ > 1. As a counterweight, in
the last section of this paper we add a lower order term to problem (D) and are able
to recover existence and regularity of solutions in this scenario as well.

Existence and regularity of solutions to quasilinear elliptic equations is an old
and interesting problem. The literature is vast, specially for semilinear equations,
see for example Ding and Ni (1986); Brezis and Kamin (1992); Dı́az and Letelier
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(1993); de Figueiredo et al. (1995); Berestycki and Lions (1983); Ambrosetti and Rabi-
nowitz (1973); Boccardo (2009); Boccardo et al. (2024), and for more comprehensive
treatment see Gilbarg and Trudinger (2001); Boccardo and Croce (2013).

1.1 Summary of results

For the convenience of the reader we present a brief summary of what will be proved
in this paper. We start with problem (D) and assume 0 < θ, γ < 1, f ∈ Lm(Ω),
E ∈ [L2r(Ω)]n. The following will be proved:

• If θ+γ < 2∗

2 and m, r are sufficiently large then there is a bounded weak solution
u ∈ H1

0(Ω) ∩ L∞(Ω).
• If θ + 2γ < 1, we drop the high summability of E(x), we get a distributional
solution u ∈ W1,q

0 , where 1 < q < 2.
• if θ+γ < 1

2 and we consider f ∈ L1(Ω) only, we still have a distributional solution

u ∈ W1,q
0 , with 1 < q < 2.

In the last section, we study the problem (L) with θ > 0 but still maintaining γ small.
We prove:

• If θ + 2γ < 2, m and r sufficiently large then there is a bounded weak solution
u ∈ H1

0(Ω) ∩ L∞(Ω).
• If θ + 2γ < 2, m ≥ θ + 2 and r sufficiently large then there is a distributional
solution u ∈ H1

0(Ω) ∩ Lm(Ω).
• If θ+2γ < 2, 2 ≤ m < θ+2 and r sufficiently large then there is has distributional
solution u ∈ H1

0(Ω) ∩ Lm(Ω).

1.2 Notation & Assumptions

- Ω ⊂ RN is a bounded domain and N ≥ 3.
- The space H1

0(Ω) denotes the usual Sobolev space which is the closure of C∞
0 (Ω),

smooth functions with compact support using the Sobolev norm.
- For q > 1, q′ denotes the Holder conjugate, i.e. 1

q + 1
q′ = 1, and q∗ denotes the

Sobolev conjugate, defined by q∗ = qN
N−q > q.

- For p > 1, p∗ denotes (p∗)′, in particular, 2∗ = 2N
N+2 .

- We will use the somewhat standard notation for Stampacchia’s truncation
functions (see Boccardo and Croce (2013)):

Tk(s) = max{−k,min{s, k}}, Gk(s) = s− Tk(s), for k > 0.

- The letter C will always denote a positive constant which may vary from place
to place.

- The Lebesgue measure of a set A ⊆ Rn is denoted by |A|.
- The symbol ⇀ denotes weak convergence.

2 Proof of the results

Fix n > 0, let fn(x) = Tn(f(x)) and En(x) = Tn(E(x)), the latter is the vector
field obtained from E(x) by truncating its components by n. Consider the truncated
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equation:
−div(a(x, Tn(un))Dun) = −div (Tn(u

γ
n)En) + fn(x)

A simple application of Schauder’s fixed point theorem guarantee the existence of
weak solution, i.e. a function un ∈ H1

0(Ω) satisfying∫
Ω

a(x, Tn(un))DunDφ =

∫
Ω

(Tn(u
γ
n)En)Dφ+

∫
Ω

fnφ ∀φ ∈ H1
0(Ω). (5)

Moreover, since the right hand side is bounded, classical regularity results imply that
un ∈ L∞(Ω) as well.

The following lemma will be needed below.

Lemma A. (Boccardo and Croce, 2013, Lem 6.2) Let f ∈ Lm, m > N
2 , g(k) =∫

Ω
|Gk(f)| and Ak = {|f | > k}. Suppose

g(k) ≤ β|Ak|α

for some α > 1 and β > 0. Then f ∈ L∞(Ω) and

∥f∥
∞

≤ Cβ

for some C = C(α,Ω).

2.1 When m, r are sufficiently large

In our first result below, we seek finite energy solutions, that is, bounded weak solutions
u ∈ H1

0(Ω). As mentioned in the introduction, the majority of results of this type
require high summability on the source. The theorem below confirms that claim and
also requires an additional summability of the vector field E(x) as well.

Theorem 1. Suppose (C) holds with 0 < θ < 2∗ − 2 and 0 < γ < 1 satisfying

θ + γ <
2∗

2
,

E ∈ [L2r(Ω)]N , f ∈ Lm(Ω) satisfying

r >
(γ + 2)

(γ + 1)

N

2
,

m >
N

2
,

(6)

Then the Dirichlet problem (D) has a weak bounded solution u ∈ H1
0(Ω) ∩ L∞(Ω).

Proof. Consider φ = [(1 + |un|)θ+1 − 1]sgn(un) as a test function in (5). We have

α(θ + 1)

∫
Ω

|Dun|2 ≤
∫
Ω

(1 + |un|)θ+γ |E||Dun|+
∫
Ω

|f |(1 + |un|)θ+1.
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Applying Young’s inequality to the above:

α(θ + 1)

2

∫
Ω

|Dun|2 ≤ 1

2α(θ + 1)

∫
Ω

(1 + |un|)2(θ+γ)|E|2 +
∫
Ω

|f |(1 + |un|)θ+1, (7)

using Sobolev’s and Holder’s inequalities:

α(θ + 1)

2

(∫
Ω

(1 + |un|)2
∗
) 2

2∗

≤ 1

2α(θ + 1)

(∫
Ω

|E|2r
) 1

r
(∫

Ω

(1 + |un|)
2r(θ+γ)

r−1

) r−1
r

+

(∫
Ω

|f |m
) 1

m
(∫

Ω

(1 + |un|)
m(θ+1)
m−1

)m−1
m

(8)

Choosing r,m such that 2∗ = 2r(θ+γ)
r−1 = m(θ+1)

m−1 , which is to say:

r =
2∗

2∗ − 2(θ + γ)
and m =

1

2∗ − θ − 1

Simplifying we have:

(∫
Ω

|un|2
∗
) 2

2∗ − 1
m′

≤ C(∥E∥2
2r

+ ∥f∥
m
)

Which implies by (7) that:
∥Dun∥

2
≤ C.

Now we prove that un is bounded in L∞(Ω). Define

H(s) =

∫ s

0

1

(1 + |s|)θ
.

Set Ak = {x ∈ Ω |H(un) > k}, taking φ = Gk(H(un)) as a test function in (5) we
obtain

α

∫
Ak

|DH(un)|2 ≤
∫
Ak

|un|γ |E||DH(un)|+
∫
Ak

|f |Gk(H(un))

Simplifying using Holder’s inequality:

α

∫
Ak

|DH(un)|2 ≤
(∫

Ak

|un|2γ |E|2
) 1

2
(∫

Ak

|DH(un)|2
) 1

2

+

(∫
Ak

|f |2∗
) 1

2∗
(∫

Ak

|DH(un)|2
) 1

2

We conclude that

α

(∫
Ak

|DH(un)|2
) 1

2

≤
(∫

Ak

|un|2γ |E|2
) 1

2

+

(∫
Ak

|f |2∗
) 1

2∗
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Using Holder’s inequality again:

α

(∫
Ak

|DH(un)|2
) 1

2

≤
(∫

Ak

|un|2
∗
) γ

2∗
(∫

Ak

|E|
22∗

2∗−2γ

) 2∗−2γ
22∗

+ ∥f∥
m
|Ak|

m−2∗
2∗m ,

Now, by Sobolev’s inequality:

(∫
Ak

|Gk(H(un))|2
∗
) 1

2∗

≤ C

(
∥E∥

r
|Ak|

r− 22∗
2∗−2γ
r

2∗−2γ
22∗ + ∥f∥

m
|Ak|

m−2∗
2∗m

)
,

Finally, recall that:

∫
Ak

|Gk(H(un))| ≤
(∫

Ak

|Gk(H(un))|2
∗
) 1

2∗

|Ak|
1
2∗

Combing this with the condition (6), we conclude that by Lemma A, ∥H(un)∥∞ ≤ C,

but since lims→±∞ H(s) = ±∞, we deduce

∥un∥∞ ≤ C.

Choose n > C with Tn(un) = un, then un is a weak solution.

Remark 3. This theorem reinforces what happens in the case E = 0. Since in that
case it’s possible to obtain nonexistence results if θ > 1 and existence only if the source
is small.

For example, if we take N = 3, θ = 2, E = 0 and a constant A > 0 large enough
then the problem {

−div
(

Du
(1+|u|)θ

)
= A in B1(0),

u(x) = 0 on ∂B1(0),
(9)

doesn’t have a weak solution u ∈ H1
0(Ω), see (Boccardo and Croce, 2013, Sec. 14.3).

Whereas using the theorem above and noting that θ < 1, we have bounded weak
solutions without smallness condition on the source f(x).

2.2 Low summability of E(x), i.e. E ∈ [L2(Ω)]N

In our next result, we drop the summability assumption on E(x) and as a result,
finite energy solutions are not guaranteed to exist anymore and we can only hope for
distributional solutions as the theorem below shows.

Theorem 2. Suppose (C) holds with 0 < θ < 1 and 0 < γ < 1 satisfying

θ + 2γ < 1,
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E ∈ [L2(Ω)]N , f ∈ Lm(Ω) with m > q∗

q∗−1+θ+2γ , where q = 2N(1−θ−γ)
N−2(θ+γ) . Then the

Dirichlet problem (D) has a distributional solution u ∈ W1,q
0 .

Proof. Set φ = [(1 + |un|)λ − 1]sgn(un) as a test function in (5), where λ < 1 will be
specified later. We have

αλ

∫
Ω

(1 + |un|)λ−1−θ|Dun|2 ≤
∫
Ω

(1 + |un|)γ+λ−1|E||Dun|+
∫
Ω

|f ||un|λ

Using Young’s inequality we obtain:

αλ

∫
Ω

(1+|un|)λ−1−θ|Dun|2 ≤ 1

2αλ

∫
Ω

|E|2+αλ

2

∫
Ω

(1+|un|)2(γ+λ−1)|Dun|2+
∫
Ω

|f ||un|λ

Now choose λ = 1− θ − 2γ, simplifying we have:

α(1− θ − 2γ)

2

∫
Ω

|Dun|2

(1 + |un|)2(θ+γ)
≤ 1

2αλ

∫
Ω

|E|2 +
∫
Ω

|f ||un|λ. (10)

For any q < 2, by Holder’s inequality using 2
q and ( 2q )

′:

C

(∫
Ω

|un|q
∗
) q

q∗

≤
∫
Ω

|Dun|q ≤
∫
Ω

(1 + |un|)q(θ+γ)|Dun|q

(1 + |un|)q(θ+γ)

≤
(∫

Ω

|Dun|2

(1 + |un|)2(θ+γ)

) q
2
(∫

Ω

(1 + |un|)
2q(θ+γ)

2−q

) 2−q
2

(11)

Combining this with (10):

(∫
Ω

|un|q
∗
) 2

q∗

≤ C

(∫
Ω

(1 + |un|)
2q(θ+γ)

2−q

) 2−q
q
[

1

2αλ

∫
Ω

|E|2 +
∫
Ω

|f ||un|λ
]

Set q = 2N(1−θ−γ)
N−2(θ+γ) , then q∗ = 2q(θ+γ)

2−q and 2
q∗ > 2−q

q . We have:

(∫
Ω

|un|q
∗
) 2

q∗ − 2−q
q

≤ C

[∫
Ω

|E|2 +
∫
Ω

|f |m +

∫
Ω

|un|λm
′
]

Since m satisfies q∗ = λm′ we obtain

∥un∥
q∗

≤ C,

Notice that by (11) we also have:

∥Dun∥
q
≤ C.
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It follows that un is bounded in W1,q
0 and up to subsequence un ⇀ u.

By the dominated convergence theorem, we can easily pass the limit in the first
integral in (5) if we assume φ ∈ C∞

0 (Ω). Similarly, we can pass the limit in the third
integral, the only part not so obvious is the second integral.

Notice that given M ⊂ Ω measurable set:

∫
M

(Tn(un)
γEn)Dφ ≤ C∥Dφ∥

∞
∥un∥γ

q∗

(∫
M

|E|
q∗

q∗−γ

) q∗−γ
q∗

Therefore, the integral above is equi-integrable and the result follows from Vitali’s
convergence theorem.

2.3 f(x) has low summability

Now we assume that f is integrable only and study the effect of this condition on
the existence of solutions. As we should expect, low integrability of f(x) implies that
finite energy solutions don’t exist, in fact, they are not even well defined. The theorem
below is similar to the one before it, the major difference is the summability of f(x),
which in this case is kept to a minimum.

Theorem 3. Suppose (C) holds with θ, γ > 0 satisfying

θ + γ <
1

2
.

Let q = 2N(1−(θ+γ))
N−2(θ+γ) , E ∈ [Lr(Ω)]N , where r > q∗

γ , f ∈ L1(Ω). Then the Dirichlet

problem (D) has a distributional solution u ∈ W1,q
0 .

Proof. The proof is similar to the one above. We begin by fixing k > 0 and setting
φ = T1(Gk(un)) as a test function in (5). We have

α

∫
Bk

|Dun|2 ≤ (2 + k)θ+γ

∫
Bk

|E||Dun|+ (2 + k)θ
∫
Ak

|f |,

where Bk = {x ∈ Ω | k ≤ |un| < k + 1} and Ak = {x ∈ Ω | |un| ≥ k} . Using Young’s
inequality we obtain:

α

∫
Bk

|Dun|2 ≤ (2 + k)2(θ+γ)

2α

∫
Bk

|E|2+α

2

∫
Bk

|Dun|2+(2+k)θ
(∫

Bk

|f |+ |{|un| ≥ k + 1}|
)

Simplifying we have:

α

2

∫
Bk

|Dun|2 ≤ (2 + k)2(θ+γ)

2α

∫
Bk

|E|2 + (2 + k)θ
(∫

Bk

|f |+ C

)
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Hence:
α

2

∫
Bk

|Dun|2

(2 + |un|)2(θ+γ)
≤ 1

2α

∫
Bk

|E|2 +
∫
Bk

|f |+ C,

Taking the sum from k = 0 to k = ∞:∫
Ω

|Dun|2

(2 + |un|)2(θ+γ)
≤ C

(∫
Ω

|E|2 +
∫
Ω

|f |+ 1

)
,

For any q < 2, by Holder’s inequality using 2
q and ( 2q )

′:

∫
Ω

|D(2 + |un|)|q =

∫
Ω

(2 + |un|)q(θ+γ)

(2 + |un|)q(θ+γ)
|Dun|q ≤ C

(∫
Ω

(2 + |un|)
2q(θ+γ)

2−q

) 2−q
2

We choose q such that 2q(θ+γ)
2−q = q∗ , which is to say

q =
2N(1− (θ + γ))

N − 2(θ + γ)

As before, un is bounded in W1,q
0 and up to subsequence un ⇀ u. Using exactly

the same arguments of the proof of theorem 1, we conclude that u ∈ W1,q
0 is a

distributional solution.

Remark 4. The condition r > q∗

γ is needed for Holder’s inequality when proving that∫
|un|γ |E| is equi-integrable.

3 The presence of lower order term

In this last section we consider the effects on the existence and regularity of the
presence of a lower order term in problem (D). More precisely, we consider{

−div(a(x, u)Du) + u = −div (uγE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(L)

where γ > 0 and a(x, s) satisfies (C).
Similar to the previous case, for a fixed n > 0, Schauder’s fixed point theorem can

be used to guarantee the existence of weak solution un ∈ H1
0(Ω) ∩ L∞(Ω), satisfying∫

Ω

a(x, Tn(un))DunDφ+

∫
Ω

unφ =

∫
Ω

(Tn(un)
γEn)Dφ+

∫
Ω

fnφ ∀φ ∈ H1
0(Ω). (12)

We need the following lemma first:
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Lemma B. Suppose θ + 2γ < 2, E ∈ [L2r(Ω)]N with r ≥ m
2−2γ−θ , f ∈ Lm(Ω), with

m ≥ 2. Then: ∫
Ω

|un|m ≤ C

(∫
Ω

|E|
2m

2−2γ−θ +

∫
Ω

|E|2 +
∫
Ω

|f |m
)
.

If m = 1, for any θ > 0, γ > 1 and r ≥ 1 we have:∫
Ω

|un| ≤
∫
Ω

|f |.

Proof. If m = 1, fix k > 0 and take φ = Tk(un)
k as a test function. We have, ignoring

the first positive term:∫
Ω

un
Tk(un)

k
≤ kγ−1

∫
Ω

|E||Dun|+
∫
Ω

|f |

Taking the limit k → 0 and using Fatou’s lemma:∫
Ω

|un| ≤
∫
Ω

|f |

Fix λ > 1, take φ = |1 + |un||λ−2(1 + |un|)sgn(un) as a test function to obtain:

α(λ−1)

∫
Ω

(1+|un|)λ−2−θ|Dun|2+
∫
Ω

|un|λ ≤ C

∫
Ω

(1+|un|)λ−2+γ |E||Dun|+
∫
Ω

|f ||un|λ−1

After using Young’s inequality, that becomes:∫
Ω

|un|λ ≤ C

∫
Ω

(1 + |un|)2[(λ−2+γ)−λ−2−θ
2 ]|E|2 +

∫
Ω

|f ||un|λ−1

Simplifying:∫
Ω

|un|λ ≤ 1

4

∫
Ω

|un|2r
′[(λ−2+γ)−λ−2−θ

2 ]+C

(∫
Ω

|E|2r +
∫
Ω

|E|2 +
∫
Ω

|f |m
)
+
1

4

∫
Ω

|un|m
′(λ−1)

Choosing λ = m and r′ = m
m−2+2γ+θ we obtain:

1

2

∫
Ω

|un|m ≤ C

(∫
Ω

|E|
2m

2−2γ−θ +

∫
Ω

|E|2 +
∫
Ω

|f |m
)

(13)
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3.1 m, r sufficiently large

As we shall see in the next theorem, the presence of a low order term increase the
regularity of solutions. This fact was already noticed in some cases when θ = 0, γ > 1,
see Boccardo et al. (2024). Here we extend this analysis to the case θ > 1.

Theorem 4. Suppose θ > 1 and θ+2γ < 2, f ∈ Lm(Ω) with m > θN
2 , E ∈ [Lp(Ω)]N

such that p > Nm
m−2(γ+θ−1) . Then the Dirichlet problem (L) has bounded weak solution

u ∈ H1
0(Ω) ∩ L∞(Ω).

Proof. Set Ak = {(1 + |un|)θ−1 > (1 + k)θ−1} = {|un| > k} and take

φ =
1

θ − 1
G(1+k)θ−1((1 + |un|)θ−1)sgn(un) =: Gk,nsgn(un)

as a test function in (12). We have:

α

∫
Ak

|Dun|2

(1 + |un|)2
+

∫
Ak

|un|Gk,n ≤ C

∫
Ak

(1 + |un|)γ+θ−2|E||Dun|+
∫
Ak

|f ||Gk,n|

Notice that by Young’s inequality:∫
Ak

|f |Gk,n ≤ Cϵ

∫
Ak

|f |θ + ϵ

θ − 1

∫
Ak

[(1 + |un|)θ−1 − (1 + k)θ−1][(1 + |un|)θ−1 − (1 + k)θ−1]
1

θ−1

≤ Cϵ

∫
Ak

|f |θ + ϵCθ

∫
Ak

Gk,n|un|

Taking ϵ = 1
Cθ

and combining with the equations above we get:

α

∫
Ak

|Dun|2

(1 + |un|)2
≤ C

∫
Ak

(1 + |un|)γ+θ−2|E||Dun|+ Cϵ

∫
Ak

|f |θ.

Using Young’s inequality again:

α

2

∫
Ak

|Dun|2

(1 + |un|)2
≤ 1

2α

∫
Ak

(1 + |un|)2(γ+θ−1)|E|2 + Cϵ

∫
Ak

|f |θ,

Choosing r such that 2r′(γ + θ − 1) = m, i.e. r = m
m−2(γ+θ−1) , using lemma B and

Holder’s inequality we obtain:

∫
Ak

∣∣∣∣D log

(
1 + |un|
1 + k

)∣∣∣∣2 ≤ C

(∫
Ak

|E|2r
) 1

r

+ C∥f∥θ
m
|Ak|

m−θ
m

≤ C

(
∥E∥2

p
|Ak|

p−2r
p + ∥f∥θ

m
|Ak|

m−θ
m

)

11



Finally, Sobolev’s inequality give us:

(∫
Ak

| log(1 + |un|)− log(1 + k)|2
∗
) 2

2∗

≤ C

(
∥E∥2

p
|Ak|

p−2r
p + ∥f∥θ

m
|Ak|

m−θ
m

)
We conclude that:∫

Ak

| log(1 + |un|)− log(1 + k)|2
∗
≤ C

(
∥E∥2

p
|Ak|

2∗(p−2r)
2p + ∥f∥θ

m
|Ak|

2∗(m−θ)
2m

)

Since m > θN
2 , p > rN implies 2∗(m−θ)

2m , 2∗(p−2r)
2p > 1, lemma A gives ∥ log(1 +

|un|)∥∞ ≤ C and consequently:

∥un∥∞ ≤ C

It suffices now to choose any n > C such that Tn(un) = un, for this particular n, un

is a bounded weak solution of problem (L).

3.2 m ≥ θ + 2

In the next case we slightly weaken the summability of the source f(x), the cost of this
is the existence of a distributional solution only, instead of a bounded weak solution.

Theorem 5. Suppose θ + 2γ < 2, f ∈ Lm(Ω) with m ≥ θ + 2, and E ∈ [L2r(Ω)]N

with r ≥ max
(

m
m−2(γ+θ) ,

2∗

2∗−γ

)
. Then the Dirichlet problem (L) has distributional

solution u ∈ H1
0(Ω) ∩ Lm(Ω).

Proof. Take φ = [(1 + |un|)θ+1 − 1]sgn(un) as a test function to obtain:

α

∫
Ω

|Dun|2 ≤ C

∫
Ω

(1 + |un|)θ+γ |E||Dun|+ C

∫
Ω

|f ||un|θ+1.

Using Young’s inequality and simplifying we have:∫
Ω

|Dun|2 ≤ C

∫
Ω

(1 + |un|)2(θ+γ)|E|2 + C∥f∥
m
∥|un|θ+1∥

m′

Since θ + 2 ≤ m and r ≥ m
m−2(γ+θ) we can use lemma B, which gives:∫

Ω

|Dun|2 ≤ C

Hence, un ⇀ u up to a subsequence, using the same reasoning as the proof of theorem
2 we can easily see that u is a distributional solution.
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3.3 2 ≤ m < θ + 2

In our last result we weaken even more the summability of the source term, yet we
are still able to obtain distributional solutions.

Theorem 6. Suppose θ+2γ < 2, f ∈ Lm(Ω) with 2 ≤ m < θ+2, and E ∈ [L2r(Ω)]N

with r ≥ max
(

m
2−2γ−θ ,

m
6+θ−2m−2γ

)
. Then the Dirichlet problem (L) has distributional

solution u ∈ W
1, 2m

θ+2

0 ∩ Lm(Ω).

Proof. Consider φ = [(1 + |un|)m−1 − 1]sgn(un) as a test function. We have∫
Ω

|Dun|2

(1 + |un|)θ−m+2
≤ C

(∫
Ω

(1 + |un|)γ+m−2|E||Dun|+
∫
Ω

|f ||un|m−1

)
Using Young’s inequality, the fact that m < θ + 2, and lemma B again, we have:∫

Ω

|Dun|2

(1 + |un|)θ−m+2
≤ C

(∫
Ω

(1 + |un|)2[γ+m−2+ θ−m+2
2 ]|E|2 +

∫
Ω

|f ||un|m−1

)
≤ C

(
∥E∥2

2r
+ ∥f∥m

m

)
We conclude that: ∫

Ω

|Dun|2

(1 + |un|)θ−m+2
≤ C

For any q < 2, by Holder’s inequality using 2
q and ( 2q )

′:

∫
Ω

|Dun|q =

∫
Ω

(1 + |un|)
q(θ−m+2)

2

(1 + |un|)
q(θ−m+2)

2

|Dun|q ≤ C

(∫
Ω

(1 + |un|)
q(θ−m+2)

2−q

) 2−q
2

Set q = 2m
θ+2 then q(θ−m+2)

2−q = m and we conclude that∫
Ω

|Dun|
2m
θ+2 ≤ C.

Therefore, un ⇀ u up to a subsequence and as before, u is a distributional solution.

4 Concluding remarks and open questions

Notice that we have assumed N ≥ 3 in this manuscript due to some estimates failing
when N = 2. It would be interesting to see if the arguments presented here can be
adapted to include similar results in the plane as well. Hence it’s reasonable to ask
the following question:

What are the equivalent results of the ones presented here in 2 dimensions?

In this work the assumption γ > 0 was heavily used, so it would be interesting to
see the equivalent results, if any, in the case γ < 0. Notice in this case the nonlinearity

13



would compete with the degeneracy but this time also being a singularity so it’s pos-
sible that no bounded solutions exists and if they do it’s possible that some smallness
condition will be required contrary to the case described here in theorem 1. We ask
the following:

Is it still possible to obtain finite energy solutions if γ < 0 without smallness
condition on the source or vector field E?

We can increase the level of difficulty of the Dirichlet problem (L) if instead of
adding u(x), we add g(u) for some real valued function g(s) with reasonable growth.
It would be interesting to see if one can obtain Ambrosetti–Prodi type results in this
case. More precisely, consider the problem:{

−div(a(x, u)Du) + g(u) = −div (uγE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(14)

Is it possible to find a function g(s) Lipschitz with g(0) = 0 such that for any given

source f(x) only one of the following three options are possible: the above system has
no solution, one solution, or two solutions.
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