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Abstract

We discuss the existence and regularity of solutions to a quasi-linear elliptic
equation involving a Leray-Lions operator and a convection term with superlinear
growth. In particular, equations involving the p-Laplacian are covered. This paper
generalizes some of the results in Boccardo et al. (2024).
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1 Introduction and main results

In this work we consider a nonlinear problem whose basic model is:{
−∆pu = −div(h(u)E(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(1)

for p ≥ 2 a given positive number and h with superlinear growth.
More precisely, in this paper we analyze the existence and regularity of solutions

to the more general problem:{
−div(a(x, u,Du)) = −div(h(u)E(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(2)
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where a(x, s, ξ) is a Leray-Lions operator defined in W1,p
0 (Ω) with p ≥ 2. Namely, the

function a : Ω × Ω × Rn → Rn is Caratheodory, which satisfies, for a.e. x ∈ Ω, any
s ∈ R, any ξ, ξ

′
, with ξ ̸= ξ

′
:

(a(x, s, ξ)− a(x, s, ξ
′
))(ξ − ξ

′
) > 0,

a(x, s, ξ)ξ ≥ α|ξ|p for some α > 0,

|a(x, s, ξ)| ≤ β(b(x) + |s|p−1 + |ξ|p−1).

(3)

The function f(x) and the vector field E(x) belong to suitable Lebesgue spaces, and
the function h(x) is locally Lipschitz with super-linear growth, more precisely:

h ∈ W1,∞
loc (R), h(0) = 0, and lim

|s|→∞

|h(s)|
|s|

= +∞. (4)

Remark 1. Notice that if a(x, s, ξ) = |ξ|p−2ξ we recover (1). It may seem easier
to use variational methods in this case but notice that E does not necessarily have a
potential function, i.e. E(x) = Dg(x).

Remark 2. The fact that h(s) has superlinear growth makes the problem interesting
since in this case the operator A(u) = −div(a(x, u,Du) − h(u)E(x)) is not coercive,
and the Leray-Lions existence theorem can not be applied directly.

Define

R(k) =

∫ k

0

ds

(|h(s)|+ 1)p′ , S(t) =

∫ t

0

ds

(|h(s)|+ 1)
p′
p

.

Due to the superlinear growth of h(s), the function R(k) is bounded and R(un) ∈
W1,p

0 (Ω). Similar to the linear case, existence and regularity of solutions is connected
to the growth of S(t) at infinity.

Depending on h(s), the function S(t) may have a horizontal asymptote, e.g. h(s) =
|s|sθ, or go to infinity, e.g. h(s) = s log(1 + |s|).

This work is motivated by and generalizes Boccardo et al. (2024), where the authors
analyzed existence and regularity in the linear case

a(x, s, ξ) = M(x)ξ

of the above Dirichlet problem for many values of h(s) and summability assumptions
on the source f . What inspired me to write this text was the question:

Is the quasi-linear case similar to the linear case?

Despite most of the arguments to continue being valid, some modifications and/or
new ideas are needed in the quasi-linear case, specially if we don’t assume strong
monotonicity, uniqueness can fail.

The case p = 1 is not treated here, and it would be interesting to see the equivalent
results in this setting and its geometric significance, specially its connection with
equations of mean curvature type, see section 3.
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We will also be interested in the same problem with added low order term. More
precisely for a fixed µ > 0:{

−div(a(x, u,Du)) + µu = −div(h(u)E(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(5)

Similar to the linear case, the presence of µu increases the regularity of the solution
even if a(x, s, ξ) is not linear, e.g. p > 2 in (1). In the case we describe, the added term
makes possible to omit the smallness condition usually needed in these cases.

By a weak solution of (2) or (5) with µ ≥ 0, we mean a function u ∈ W1,p
0 (Ω) such

that for f ∈ L(p∗)′(Ω), h(u)E(x) ∈ [Lp′
(Ω)]n we have∫

Ω

a(x, u,Du)Dφ+ µ

∫
Ω

uφ =

∫
Ω

h(u)E(x)Dφ+

∫
Ω

fφ ∀φ ∈ W1,p
0 (Ω). (6)

1.1 Existing literature and background

When a(x, s, ξ) = M(x)ξ and h(u) = u, the problem is well understood. The seminal
work of Stampacchia Stampacchia (1965) introduced techniques and ideas to study
this type of problem and its generalizations.

When p = 2, the problem is connected with static solutions of the transport
equation:

∂tu− div(M(x)Du− h(u)E(x)) = f

with a wide variety of applications, ranging from biology Hillen and Painter (2009) to
pedestrian dynamics Iuorio et al. (2022).

In Boccardo (2009), Boccardo studies the linear problem when h(u) = u with f
having low summability s < N

2 , in particular the existence of bounded solutions is not
guaranteed. We prove a generalization of this result in theorem 8.

When f has even lower summability, i.e. s < (2∗)′, the right hand side in (2) is not
in H−1(Ω), which causes a major obstacle to the existence. Despite this, the authors
in Boccardo and Gallouët (1989); Boccardo and Gallouet (1992) are able to prove
existence and regularity results in this setting as well. For a more modern reference,
see Boccardo and Croce (2013).

The book Boccardo and Croce (2013) provides a great introduction to quasi-linear
elliptic equations of divergence type involving operators of Leray-Lions type. Detailing
major techniques and approaches to existence and regularity of classical problems in
nonlinear elliptic theory. For a more comprehensive and classical reference of elliptic
equations of second order we recommend Gilbarg and Trudinger (2001).

1.2 Summary of results

The first theorem concerns the existence of solutions assuming (3) and (4). A major dif-
ference in this scenario compared to the linear case is that uniqueness is not guaranteed
unless we impose a stronger monotonicity. We prove the following:
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Theorem 1. Assuming (3),(4), E ∈ [Lr(Ω)]N with r > N , f ∈ Lm(Ω) with m > N
p ,

and suppose the following condition holds:

lim
|t|→∞

|S(t)| = ∞. (7)

Then the Dirichlet problem (2) has a bounded solution u ∈ W1,p
0 (Ω) ∩ L∞(Ω).

In case we assume a strong monotonicity, uniqueness hold. More precisely we show:
Corollary 2. (Strong monotonicity) Assuming (3),(4), E ∈ [Lr(Ω)]N with r > N ,
f ∈ Lm(Ω) with m > (p∗)′. Suppose

[a(x, s, ξ)− a(x, s′, ξ′)](ξ − ξ′) ≥ α|ξ − ξ′|p (8)

for some α > 0. Then uniqueness holds. Moreover, any weak solution of (2) u ∈
W1,p

0 (Ω) that is not bounded but

|h′(s)| ≤ C(|s|θ + 1) a.e. and |v|θ|E| ∈ Lp′
(Ω) (9)

for some θ > 0, is also unique.
In the linear case a(x, s, ξ) = M(x)ξ with M uniformly elliptic, (8) is just a

consequence of ellipticity.
The next result address the case when (14) holds but m < N

p , which is not strong
enough to obtain bounded solutions.
Theorem 3. Assuming (3), (16) , take E ∈ [Lr(Ω)]N , with r > N , and f ∈ L(p∗)′(Ω).
Then, there exists a unique (possibly unbounded) weak solution u ∈ W1,p

0 (Ω) to{
−div(a(x, u,Du)) = −div(u log(e+ |u|)E(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω.
(10)

In case (14) fails, we can still prove existence of solutions with a smallness
assumption:
Theorem 4. Suppose (3),(16) and consider θ > 0,m ∈ [(p∗)′, N

p ] such that

0 <
θ

s
=

p− 1

N
− 1

r
, f ∈ Lm(Ω), E ∈ [Lr(Ω)]n, (11)

where s = Nm
N−mp = m

p-times︷ ︸︸ ︷
∗ ∗ . . . ∗. If

∥f∥
m
∥E∥ 1

θ

r
≤ θ

S

(
αp∗

Ss(θ + 1)

)1+ 1
θ

, (12)
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then the Dirichlet problem{
−div(a(x, u,Du)) = −div(u|u|θE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(13)

has a unique solution u ∈ W1,p
0 (Ω) ∩ Ls(Ω).

Finally, our last result address (5), where no smallness assumption is needed but
a lower order term “µu” is added.
Theorem 5. Suppose (3),(16) and consider θ < p−1

N , E ∈ [Lr(Ω)]N with r = N
p−1−θN ,

and f ∈ L(p∗)′(Ω). If h(s) = sp−1|s|θ, then (5) has a unique solution u ∈ W1,p
0 (Ω).

1.3 Notation

- Ω ⊂ Rn is a bounded domain.
- The spaceW1,p

0 (Ω) denotes the usual Sobolev space which is the closure of C∞
0 (Ω),

smooth functions with compact support, in the p-norm.
- For 1 < p < ∞, the p-Laplacian ∆p is given by −div(|Du|p−2Du).
- For q > 0, q′ denotes the Holder conjugate, i.e. 1

q + 1
q′ = 1, and q∗ denotes the

Sobolev conjugate, defined by q∗ = qn
n−q > q, where n is the dimension of the

domain Ω ⊂ R.
- Given a function u(x), we denote its positive part by u+(x) = max(0, u(x)).
- We will use the somewhat standard notation for Stampacchia’s truncation
functions (see Boccardo and Croce (2013)):

Tk(s) = max{−k,min{s, k}}, Gk(s) = s− Tk(s), for k > 0.

- The letter C will always denote a positive constant which may vary from line to
line.

- The Lebesgue measure of a set A ⊆ Rn is denoted by |A|.
- The symbol ⇀ denotes weak convergence.

2 Proof of the results

2.1 Existing Lemmata

We will need the following lemmata from the book Boccardo and Croce (2013):

Lemma A. (Boccardo and Croce, 2013, Lem 6.2) Let f ∈ L1, g(k) =
∫
Ω
|Gk(f)| and

Ak = {|f | > k}. Suppose
g(k) ≤ β|Ak|α

for some α > 1 and β > 0. Then f ∈ L∞(Ω) and

∥f∥
∞

≤ Cβ

for some C = C(α,Ω).

5



Lemma B. (Boccardo and Croce, 2013, Lem 5.9) Let un, u ∈ W1,p
0 (Ω) such that

un ⇀ u in W1,p
0 (Ω). If∫

Ω

[a(x, un, Dun)− a(x, u,Du)] · (Dun −Du) → 0

then a(x, un, Dun) ⇀ a(x, u,Du) in Lp′
(Ω).

2.2 General case with high summability of the source

Theorem 6. Assuming (3),(4), E ∈ [Lr(Ω)]N with r > N , f ∈ Lm(Ω) with m > N
p ,

and suppose the following condition holds:

lim
|t|→∞

|S(t)| = ∞. (14)

Then the Dirichlet problem (2) has a bounded solution u ∈ W1,p
0 (Ω) ∩ L∞(Ω).

Proof. Fix n > 0 and let hn(s) = Tn(h(s)), fn(x) = Tn(u(x)) and En(x) = Tn(E(x))
be the vector field E(x) whose components are truncated by n. Classical results by
Leray-Lions (see Boccardo and Croce (2013)) guarantee the existence of a function
un ∈ W1,p

0 (Ω) satisfying∫
Ω

a(x, un, Dun)Dφ =

∫
Ω

hn(un)En(x)Dφ+

∫
Ω

fn(x)φ ∀φ ∈ W1,p
0 (Ω). (15)

Additionally, Stampacchia’s regularity gives us that un ∈ W1,p
0 (Ω) ∩ L∞(Ω), so the

idea is to find estimates for un independent of n.
Now take φ = GR(k)(R(u+

n )) and use Young’s inequality in equation (15) to get:

α

∫
{k<u+

n }

|Du+
n |p

(|h(u+
n )|+ 1)p′ ≤

∫
{k<u+

n }
|h(u+

n )||E| |Du+
n |

(|h(u+
n )|+ 1)p′ +

∫
{k<u+

n }
|f |R(u+

n )

≤C

∫
{k<u+

n }
|E(x)|p

′
+

α

2

∫
{k<u+

n }

|Du+
n |p

(|h(u+
n )|+ 1)p′ + C

∫
{k<u+

n }
|f(x)|,

so
α

2

∫
{k<u+

n }
|DS(u+

n )|p ≤ C

(∫
{k<u+

n }
|E(x)|p

′
+

∫
{k<u+

n }
|f(x)|

)
By Sobolev’s inequality and the fact that {x ∈ Ω | u+

n > k} = {x ∈ Ω | S(u+
n ) > S(k)},

we obtain:

α

2

(∫
{k<u+

n }
|GS(k)(S(u

+
n ))|p

∗

) p
p∗

≤ S α

2

∫
{k<u+

n }
|DS(u+

n )|p
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Combining everything we obtain:(∫
Ω

|GS(k)(S(u
+
n ))|p

∗
) p

p∗

≤ C

(∫
{k<u+

n }
|E(x)|p

′
+

∫
{k<u+

n }
|f(x)|

)

By hypothesis, E+f ∈ Lm(Ω) with m > N
2 , using Holder’s inequality and lemma (A)

we deduce that
∥S(u+

n )∥∞ ≤ C

for some C > 0 independent of n. Now, condition (14) implies:

∥u+
n ∥∞ ≤ C ′

again, for some C ′ > 0 independent of n. By repeating the same argument with u−
n

instead of u+
n we easily reach the conclusion that

∥u−
n ∥∞ ≤ C.

Therefore, we have ∥un∥∞ ≤ C for some C > 0 independent of n.

Now, taking φ = un in (15) we easily obtain

∥Dun∥p
p
≤ C.

We conclude that up to a subsequence, un ⇀ u in W1,p
0 (Ω) and un → u strongly in

Lq(Ω) for q < p∗ and a.e. in Ω.
It follows that we can pass the limit in the last integral of (15) but it’s not obvious

that we can pass the limit in the first and second integral. For the second integral
notice that given any measurable set A ⊂ Ω:

∫
A

|hn(un)En(x)Dv| ≤
(∫

A

|h(un)E|p
′
) 1

p′
(∫

A

|Dv|2
) 1

p

≤ C

(∫
A

|Dv|2
) 1

p

.

where we used the fact that h(un)E ∈ Lp′
(Ω). It follows by Vitali’s convergence

theorem that we can pass the limit in the second integral as well.
To deal with the first integral we plan to use lemma (B). Notice that∫

Ω

[a(x, un, Dun)−a(x, u,Du)]·(Dun−Du) =

∫
Ω

h(un)E(x)D(un−u)+

∫
f(un−u)−

∫
Ω

a(x, u,Du)D(un−u)

which goes to 0 as n → ∞. The result then follows.

Corollary 7. (Strong monotonicity) Assuming (3),(4), E ∈ [Lr(Ω)]N with r > N ,
f ∈ Lm(Ω) with m > (p∗)′. Suppose

[a(x, s, ξ)− a(x, s′, ξ′)](ξ − ξ′) ≥ α|ξ − ξ′|p (16)
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for some α > 0. Then uniqueness holds. Moreover, any weak solution of (2) u ∈
W1,p

0 (Ω) that is not bounded but

|h′(s)| ≤ C(|s|θ + 1) a.e. and |v|θ|E| ∈ Lp′
(Ω) (17)

for some θ > 0, is also unique.

Proof. Suppose u, v ∈ W1,p
0 (Ω) ∩ L∞(Ω) are two solutions. We have ∀φ ∈ W1,p

0 (Ω):∫
Ω

a(x, u,Du)Dφ =

∫
Ω

h(u)E(x)Dφ+

∫
Ω

f(x)φ∫
Ω

a(x, v,Dv)Dφ =

∫
Ω

h(v)E(x)Dφ+

∫
Ω

f(x)φ

Take φ = Tϵ(u− v) and subtract both equations to obtain:∫
Ω

(a(x, u,Du)− a(x, v,Dv))DTϵ(u− v) =

∫
{|u−v|<ϵ}

[h(u)− h(v)]E(x)DTϵ(u− v)

Using Young’s inequality we have:

α

∫
Ω

|DTϵ(u− v)|p ≤ 2

αpp′

∫
{|u−v|<ϵ}

|[h(u)− h(v)]E(x)|p
′
+

α

2

∫
Ω

|DTϵ(u− v)|p

Poincare inequality gives:

C

∫
Ω

|Tϵ(u− v)|p ≤ 2

αpp′

∫
{|u−v|<ϵ}

|[h(u)− h(v)]E(x)|p
′
, (18)

and since u, v ∈ L∞(Ω), we can use the fact that |h(u) − h(v)| ≤ C|u − v|, hence for
any k ≥ ϵ:

ϵp|{|u− v| > k}| ≤ C

∫
{|u−v|<ϵ}

ϵp
′
|E(x)|p

′
≤ C

∫
{|u−v|<ϵ}

ϵp|E(x)|p
′

Dividing by ϵp and letting ϵ → 0 we conclude that |{|u− v| > k}| = 0 for any k > 0,
hence u = v a.e.

Now suppose, u, v unbounded, in this case we can’t use the Lipschitz condition
directly, but (17) give us

|h(v)− h(w)|
|v − w|

≤ C

∫ 1

0

(
|w + t(v − w)|θ + 1

)
dt ≤ C(|v|θ + |w|θ + 1),

If we use this in (18), we reach the same conclusion as before, namely, u = v a.e.
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Remark 3. In particular, if a(x, s, ξ) = M(x)ξ or a(x, s, ξ) = |ξ|p−2ξ, then a(x, ξ)
satisfies the strong monotonicity condition (16).

Remark 4. If p < 2, a(x, s, ξ) is not necessarily strong monotone, in fact for 1 <
p < 2 we have:

(|Du|p−2Du− |Dv|p−2Dv) · (Du−Dv) ≥ C
|Du−Dv|2

(|Du|+ |Dv|)2−p
.

2.3 Lower summability of f(x) and unbounded solutions

Theorem 8. Assuming (3), (16) , take E ∈ [Lr(Ω)]N , with r > N , and f ∈ L(p∗)′(Ω).
Then, there exists a unique (possibly unbounded) weak solution u ∈ W1,p

0 (Ω) to{
−div(a(x, u,Du)) = −div(u log(e+ |u|)E(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω.
(19)

Proof. We proceed in a similar way we did in the previous theorem. Consider the
truncated equation:∫

Ω

a(x, un, Dun)Dφ =

∫
Ω

Tn(un log(e+ |un|))En(x)Dφ+

∫
Ω

fn(x)φ (20)

Take φ = un as a test function in (20):

α∥Dun∥p
p
≤
∫
Ω

|un log(e+ |un|))||En(x)||Dun|+ ∥f∥
(p∗)′

∥un∥
p∗

≤ C

∫
Ω

(|un log(e+ |un|)||En(x)|)p
′
+

α

2
∥Dun∥p

p
+ S∥f∥

(p∗)′
∥Dun∥

p

Fix k > 0 and consider the first integral on the right:∫
Ω

(|un log(e+ |un|)||En(x)|)p
′
≤
∫
{|un|>k}

|un|p
′
| log(e+|un|)|p

′
|En(x)|p

′
+kp

′
log(e+|k|)p

′
∥E∥

p′

Let d = 1
N − 1

r + p−2
p , we take a closer look at the following integral:

∫
{|un|>k}

|un|p
′
| log(e+ |un|)|p

′
|E(x)|p

′
≤ ∥un∥p

′

p∗
∥ log(e+ |un|)∥p

′

d

(∫
{|un|>k}

|E|r
) p′

r

(21)
The only thing remaining is then estimate the middle norm on the right, namely
∥ log(e+ |un|)∥p

′

d
.
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In order to accomplish that, we need to take a test function such that the coercivity
(and possibly Sobolev inequality) of a(x, s, p) will lead to a bound of the norm. More
precisely, we will find a bound to the expression ∥ logj(e+ |un|)∥

p∗ , for any j > 1. This

can be done by choosing φ =
∫ un

0
logp(j−1)(e+|s|)

(e+|s|)p ds as a test function in (20) (notice

that |φ| ≤ C in this case):

α

jp

∫
|D logj(e+ |un|)|p = α

∫
|Dun|p

logp(j−1)(e+ |un|)
(e+ |un|)p

≤
∫

|E(x)||Dun|
logp(j−1)+1(e+ |un|)

(e+ |un|)(p−1)
+ C∥f∥

1

≤C

∫
logp

′[(p−1)(j−1)+1](e+ |un|)
(e+ |un|)p′(p−2)

|E(x)|p
′
+

α

2

∫
|Dun|p

logp(j−1)(e+ |un|)
(e+ |un|)p

+ C∥f∥
1
,

≤C

∫
logp

′[(p−1)(j−1)+1](e+ |un|)|E(x)|p
′
+

α

2

∫
|Dun|p

logp(j−1)(e+ |un|)
(e+ |un|)p

+ C∥f∥
1

Rearranging, we have:

α

S2jp
∥ logj(e+ |un|)∥p

p∗
≤ α

2jp

∫
|D logj(e+ |un|)|p ≤ C

(∫
logp

′[(p−1)(j−1)+1](e+ |un|)|E(x)|p
′
+ ∥f∥

1

)
≤C

(∫
{|un|>k}

logp
′[(p−1)(j−1)+1](e+ |un|)|E(x)|p

′

)

+ C

(
logp

′[(p−1)(j−1)+1](e+ k)∥E∥p
′

p′
+ ∥f∥

1

)

≤C

(∫
{|un|>k}

logjp(e+ |un|)|E(x)|p
′

)

+ C

(
logp

′[(p−1)(j−1)+1](e+ k)∥E∥p
′

p′
+ ∥f∥

1

)
Using Holder inequality, this becomes:

α

S2jp
∥ logj(e+|un|)∥p

p∗
≤ C(∥ logj(e+|un|)∥p

p∗

(∫
{|un|≥k}

|E(x)|
N

p−1

)p′

+∥E∥p
′

p′
+∥f∥

1
)

By Chebyshev’s inequality and uniform continuity of the integral, we can make the
last integral as small as we want, so we conclude that

∥ logj(e+ |un|)∥p
p∗

≤ C

(
∥E∥p

′

p′
+ ∥f∥

1

)
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Putting this back into (21) and combining everything we get:

α∥Dun∥p
p
≤ C

(
∥E∥p

′

p′
+ ∥f∥

1

)
Hence, un ⇀ u in W1,p

0 (Ω). Using Corollary 7 and proceeding in the same way we did
in the proof of theorem 6 the proof is complete.

2.4 Lower summability without (14)

Theorem 9. Suppose (3),(16) and consider θ > 0,m ∈ [(p∗)′, N
p ] such that

0 <
θ

s
=

p− 1

N
− 1

r
, f ∈ Lm(Ω), E ∈ [Lr(Ω)]n, (22)

where s = Nm
N−mp = m

p-times︷ ︸︸ ︷
∗ ∗ . . . ∗. If

∥f∥
m
∥E∥ 1

θ

r
≤ θ

S

(
αp∗

Ss(θ + 1)

)1+ 1
θ

, (23)

then the Dirichlet problem{
−div(a(x, u,Du)) = −div(u|u|θE(x)) + f(x) in Ω,

u(x) = 0 on ∂Ω,
(24)

has a unique solution u ∈ W1,p
0 (Ω) ∩ Ls(Ω).

Proof. The proof is topological, using Schauder fixed-point theorem. Given any v ∈
Ls(Ω), let u ∈ W1,p

0 (Ω) ∩ Ls(Ω) be the unique weak solution to

−div(a(x, u,Du)) = −div(v|v|θE(x)) + f(x). (25)

The correspondence v → T (v) := u defines an operator T : Ls(Ω) → Ls(Ω), we claim
T (v) has a fixed point. By Schauder fixed-point theorem it’s enough to prove that T
is continuous, compact and has a convex invariant subspace.

Claim: T is continuous.

We need some estimates first in order to prove continuity. Set γ = s
p∗ and let

ukl = Tk(Gl(u)). Take φ = 1
p(γ−1)+1 |ukl|p(γ−1)ukl as a test function in (24). Using the

given hypotheses we have:

α

∫
|Dukl|p|ukl|p(γ−1) ≤

∫
|E(x)||v|1+θ|Dukl||ukl|p(γ−1)+

1

p(γ − 1) + 1

∫
|f(x)||ukl|p(γ−1)+1.

11



Using (22) and Holder inequality on the first integral on the right we deduce:∫
|E(x)||v|1+θ|Dukl||ukl|p(γ−1)

≤ CE∥v∥1+θ

s
∥|Dukl||ukl|γ−1∥

p
∥ukl∥(p−1)(γ−1)

s
.

where CE =
(∫

{|u|>l} |E|r
) 1

r

. Using the fact that m ∈ [(p∗)′, N
p ] and Sobolev’s

inequality, the second integral becomes:

∫
|f(x)||ukl|p(γ−1)+1 ≤ Cf∥ukl∥(p−1)(γ−1)

s

(∫
|ukl|p

∗γ

) 1
p∗

≤ SγCf∥ukl∥(p−1)(γ−1)

s

(∫
|Dukl|p|ukl|p(γ−1)

) 1
p

= SγCf∥ukl∥(p−1)(γ−1)

s
∥|Dukl||ukl|γ−1∥

p

where Cf =
(∫

{|u|>l} |f |
m
) 1

m

. Combining everything together we have:

α∥D|ukl|γ∥p
p
≤ ∥ukl∥(p−1)(γ−1)

s
∥|Dukl||ukl|γ−1∥

p

(
Sγ

p(γ − 1) + 1
Cf + CE∥v∥1+θ

s

)
Using Sobolev inequality again:

α

Sγ
∥ukl∥(p−1)s

s
≤ ∥ukl∥(p−1)(γ−1)

s

(
Sγ

p(γ − 1) + 1
Cf + CE∥v∥1+θ

s

)
Finally, we obtain:

∥ukl∥
s
≤ Sγ

α

(
Sγ

p(γ − 1) + 1
Cf + CE∥v∥1+θ

s

)
, (26)

using the fact that p(γ − 1) + 1 > γ since p > 1, this becomes

∥u∥
s
≤ S2s

αp∗
∥f∥

m
+

Ss
p∗α

∥E∥
r
∥v∥1+θ

s
, (27)

if we let k → ∞ and l → 0.
Suppose vn → v in Ls(Ω), we claim un := T (vn) → u := T (v) in Ls(Ω). Indeed,

by (27) we have:
∥un∥

s
≤ C (28)

Using φ = un−u as a test function it’s easy to see that un → u a.e. By the dominated
convergence theorem, un → u in Ls(Ω), and T (v) is continuous.

12



Claim: T is compact.

Suppose vn ⇀ v in Ls(Ω), the claim is equivalent to say that un = T (vn) → u =
T (v) in Ls(Ω), up to a subsequence

Choose φ = un as a test function in the weak formulation of the equation satisfied
by un to obtain:

α∥Dun∥p
p
≤
∫

|vn|1+θ|E||Dun|+
∫

|f ||un|

≤C(∥vn∥θ+1

s
∥E∥

r
∥Dun∥

p
+ ∥f∥

(p∗)′
∥Dun∥

p
)

So un is bounded in W1,p
0 (Ω), hence up to a subsequence un → ξ in Lq(Ω) for q < p∗.

But since vn ⇀ v, we must have ξ = u = T (v), and up to a subsequence un → u a.e.
Now, take Σ ⊆ Ω a measurable set, we claim

∫
Σ
|un|s is equi-integrable. Indeed,∫

Σ

|un|s ≤
∫
Σ

|Tl(un)|s +
∫
Σ

|Gl(un)|s ≤ ls|Σ|+
∫
Σ

|Gl(un)|s,

Notice that by (26),
∫
Σ
|Gl(un)|s goes to 0 uniformly as l → ∞, hence the right hand

side goes to 0 when |Σ| → 0. The result then follows by Vitali Convergence theorem.

Claim: T has a closed convex invariant subspace.

Set a = S2s
αp∗ ∥f∥

m
, b = Ss

p∗α∥E∥
r
, and define

R =

(
1

b(θ + 1)

) 1
θ

.

Notice that if a ≤ R θ
θ+1 and ∥v∥

s
≤ R then ∥u∥

s
≤ a + b∥v∥1+θ

s
≤ R, and it follows

that the closed ball BR(0) of radius R is invariant. In other words, if

∥f∥
m
∥E∥ 1

θ

r
≤ θ

S

(
αp∗

Ss(θ + 1)

)1+ 1
θ

,

then T has a closed convex invariant subspace.
This concludes the proof of existence, uniqueness follow from the strong mono-

tonicity.

2.5 No smallness condition if µu is added

Theorem 10. Suppose (3),(16) and consider θ < p−1
N , E ∈ [Lr(Ω)]N with r =

N
p−1−θN , and f ∈ L(p∗)′(Ω). If h(s) = sp−1|s|θ, then (5) has a unique solution

u ∈ W1,p
0 (Ω).

13



Proof. As before, we can truncate the equation to the form:

−div(a(x, un, Dun)) + µun = −div(Tn(u
p−1
n |un|θ)En(x)) + fn(x) (29)

Notice that the left hand side is still coercive, since µ > 0, hence there is a unique
solution un ∈ W1,p

0 (Ω) ∩ L∞(Ω) for each n. Take φ = Tk(un) as a test function in
(29), we have:

α

∫
Ω

|DTk(un)|p + µ

∫
Ω

unTk(un) ≤
∫
Ω

kθ+p−1|E(x)||DTk(un)|+ k∥f∥
1
.

We estimate the first integral on the right using Young inequality:

∫
Ω

kθ+p−1|E(x)||DTk(un)|+k∥f∥
1
≤

(
2pk(θ+p−1)p′

αp′
∥E∥

p′ +
α

2
∥DTk(un)∥

p

)
+k∥f∥

1
,

so we get

µ

∫
Ω

unTk(un) ≤
α

2

∫
Ω

|DTk(un)|p+µ

∫
Ω

unTk(un) ≤
(
kθ+p−1

p′
∥E∥

p′

)
+k∥f∥

1
, (30)

dividing everything by k and letting k → 0 we get

µ∥un∥
1
≤ ∥f∥

1
,

and by Chebyshev’s inequality, for any t > 0:

|{x ∈ Ω | |un| ≥ t}| ≤ 1

t

∫
Ω

|un| ≤
µ

t
∥f∥

1
, (31)

Now, take φ = Gk(un) as a test function in (29) to obtain:

α

∫
Ω

|DGk(un)|p ≤2θ+p−1

∫
Ω

|Gk(un)|θ+p−1|E(x)||DGk(un)|

+(2k)θ+p−1

∫
Ω

|E(x)||DGk(un)|+
∫
Ω

|f ||Gk(un)|,

14



Using Holder’s inequality, we can estimate the first integral to the right:

2θ+p−1

∫
|un|≥k

|Gk(un)|p−1|Gk(un)|θ|E(x)||DGk(un)| ≤

≤ 2θ+p−1∥Gk(un)∥p−1

p∗
∥Gk(un)∥θ

1

(∫
|un|≥k

|E(x)|r
) 1

r

∥DGk(un)∥
p

≤ 2θ+p−1Sµ−1∥f∥
1

(∫
|un|≥k

|E(x)|r
) 1

r

∥DGk(un)∥p
p

By (31), we can choose k = k0 such that:

2θ+p−1Sµ−1∥f∥
1

(∫
|un|≥k0

|E(x)|r
) 1

r

≤ α

4

which implies:

2θ+p−1

∫
|un|≥k0

|Gk(un)|p−1|Gk(un)|θ|E(x)||DGk(un)| ≤
α

4
∥DGk(un)∥p

p
.

The remaining terms on the right can be dealt with by applying Sobolev’s and Young’s
inequalities:

(2k)θ+p−1

∫
Ω

|E(x)||DGk(un)|+
∫
Ω

|f ||Gk(un)| ≤ C(∥E∥
p′+∥f∥

(p∗)′
)+

α

4
∥DGk(un)∥p

p

Combining everything together, we conclude that

α

2
∥DGk(un)∥p

p
≤ C(∥E∥

p′ + ∥f∥
(p∗)′

).

Moreover, by (30):
α

2
∥DTk(un)∥p

p
≤ C(∥E∥

p′ + ∥f∥
1
).

Since un = Tk(un) +Gk(un), it follows that ∥Dun∥
p
≤ C for some C independent of

n, and un ⇀ u in W1,p
0 (Ω) for some u ∈ W1,p

0 (Ω). By using the same arguments as
we did in the end of the proof of theorem 6 we can conclude that u is a solution.

For the uniqueness, notice that if r = N
p−1−θN then∫

Ω

|un|(θ+p−1)p′
|E|p

′
≤ ∥un∥(p−1)p′

p∗
∥un∥θp

′

1
∥E∥p

′

r
,

by Corollary 7, the proof is complete.
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3 Concluding remarks and open questions

The natural generalization of the problem treated in this manuscript would be a fully
non-linear equation with superlinear convection, i.e. F (x, u,Du,D2u) = h(u)E + f .
Although the right hand side of (2) can be analyzed in a similar way as we did here,
new ideas would be needed to obtain estimates, namely, methods involving viscosity
solutions.

1. The case p=1 In these notes we have assumed p ≥ 2 because some of the
estimates fail when p < 2. A natural question would be if and under what cir-
cumstances we have existence, and what type of regularity should we expect. The
particular case of p = 1 is very rich and interesting on its own since it is a gen-
eralization of an equation of mean curvature type, unexpected outcomes could
occur in this case and results with a geometric flavor could be obtained.

2. Fully nonlinear generalizations As mentioned above, the following problem
seems to be interesting but can’t be handle with methods shown here. Signifi-
cantly new ideas would be needed, even if E = Dg for some g. Here, F degenerate
elliptic with some type p-growth/p-coercivity.

F (x, u,Du,D2u) = h(u)E + f.

Classical results usually assume F convex and uniformly elliptic. It would be
interesting to see if those results can be generalized for a more singular F .

3. Radially symmetric solutions Is (23) sharp when p > 2? In particular, if
a(x, s, ξ) = |ξ|p−2ξ and u(x) = û(|x|), is it possible to obtain E and f such that
(23) depends only on |x|? Such result would be a generalization of (Boccardo
et al., 2024, Prop. 1.4).

Data Availibility Statement This manuscript has no associated data.
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