Exam III

1. Show that $(X^{\circ})^{\circ} = X^{\circ}$, where X° is the set of all interior points of X. Conclude that X° is an open set.

Solution. We obviously have $(X^{\circ})^{\circ} \subseteq X^{\circ}$. Conversely, take $a \in X^{\circ}$, then there exists $\delta > 0$ such that $(a - \delta, a + \delta) \subseteq X$. By definition, every point in $(a - \delta, a + \delta)$ is itself an interior point, hence $(a - \delta, a + \delta) \subseteq X^{\circ}$ and it follows that $a \in (X^{\circ})^{\circ}$. \Box

2. Given a point $a \in X \subseteq \mathbb{R}$. We call a a boundary point of X if for every open interval I containing a, we have $I \cap X \neq \emptyset$ and $I \cap (\mathbb{R} - X) \neq \emptyset$. The set of all boundary points, ∂X , is called the *boundary* of X. Show that a set A is open if and ony if $A \cap \partial A = \emptyset$.

Solution. Notice that if a point is an interior point then it's not a boundary point. Hence, if A contains only interior points, it doesn't contain boundary points. Conversely, if $A \cap \partial A = \emptyset$. Then given a point $a \in A$, we have $a \notin \partial A$, so there should be a neighborhood of a entire contained in A , thus a is an interior point. \Box

3. Let $X \subseteq \mathbb{R}$. Show that $\overline{X} = X \cup \partial X$. Conclude that X is closed if and only if $\partial X \subseteq X$.

Solution. It follows directly from the definitions that $X \cup \partial X \subseteq \overline{X}$. Conversely, take $a \in \overline{X}$ and suppose that $a \notin \partial X$, that is to say, there is a neighborhood of a containing only points inside X or only points outside X, but since $a \in \overline{X}$, it must be points inside X, i.e. a is an interior point, in particular, it's in X, hence $\overline{X} \subseteq X \cup \partial X$. \Box

4. Show that finite union of compact sets is compact, and also arbitrary intersection of compact sets is compact as well.

Solution. By Lebesgue Theorem, a compact set is closed and bounded, hence a finite union of compact sets is still closed and bounded, hence compact. Same argument is valid for arbitrary intersections. \Box

5. Show that every compact set X, satisfying $X' = \emptyset$, is finite. Where X' is the derived set of X , i.e. the collection of all accumulation points.

Solution. By hypothesis, X has only isolated points. Cover each isolated point by a open set containing only that point, since X is compact, it has a finite subcover, hence the number of isolated points are finite, so X is finite since all of its points are isolated. \Box

Extra (2 pts). Show that the sum of the lengths of removed intervals in the construction of the Cantor set is one. Where by length of (a, b) , I mean $b - a$. [Hint: The formula for the sum of terms of a geometric progression a, ar, ar^2, \ldots with $|r| < 1$ is $\frac{a}{1-r}$

Solution.
$$
\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} + \ldots = \frac{1/3}{1-2/3} = 1
$$