Exam I

Choose (only) 4 questions:

- 1. Give an example of three functions f, g, h such that $f \circ (g + h) \neq f \circ g + f \circ h$
- 2. Find the largest natural number m such that $n^3 n$ is divisible by m for all $n \in \mathbb{N}$. Prove your assertion.
- 3. Let $n \in \mathbb{N}$. Show that there is no $m \in \mathbb{N}$ such that n < m < n + 1.
- 4. Prove the induction principle assuming the principle of well-ordering.
- 5. Show that the set $P = \{ n \in \mathbb{N} ; n \text{ is prime} \}$ is infinite.
- 6. Let Y be countable and $f: X \to Y$ such that $f^{-1}(y)$ is countable for each $y \in Y$. Show that X is countable.
- 7. Given an example of $X_1 \supseteq X_2 \supseteq X_3 \supseteq \ldots$, an infinite sequence of nested **infinite** subsets such that ∞

$$\bigcap_{i=1}^{\infty} X_i = \emptyset$$

8. Show that the set of all finite subsets of \mathbb{N} is countable.