Exam I

Choose (only) 5 questions:

1. Assume that n is a positive integer. Prove that if one selects any n + 1 numbers from the $\{1, 2, \ldots, 2n\}$, then two of the selected numbers will sum to 2n + 1.

Proof. To each number k we associate a unique ball. Label n boxes with labels $\{1, 2n\}$, $\{2, 2n - 1\}, ..., \{n, n + 1\}$, and put ball k in the box $\{k, 2n + 1 - k\}$. By the pigeonhole principle, at least one box will contain 2 balls.

2. Find your own real-world example of the pigeonhole principle.

Proof. In a group of 13 people, two of them share the same birthday month. \Box

3. Give an example of 100 numbers from $\{1, 2, ..., 200\}$ where not one of your numbers divides another.

Proof. 200, 199, 198, ..., 101.

4. Prove that any set of seven integers contains a pair whose sum or difference is divisible by 10.

Proof. For each number $0, 1, \ldots, 9$ we associate a unique ball. Label 6 boxes with labels $\{0\}, \{5\}, \{1,9\}, \{2,8\}, \{3,7\}, \{4,6\}$. For each number of the given seven, we look at the last digit, and put a ball in the box containing that digit. Since we have only 6 boxes, the pigeonhole principle implies that at least one box will contain 2 balls.

5. If m and n are integers with same parity, then 7m - 3n is even.

Proof. If m = 2p, n = 2q, then 7m - 3n = 14p - 6q = 2k is even. Similarly, if m = 2p + 1, n = 2q + 1, then 7m - 3n = 14p + 7 - 6q - 3 = 2k is also even.

6. Prove that for every integer n, either $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Proof. If $\overline{n} = \overline{2p}$, then $\overline{n^2} = \overline{4p^2} = \overline{0}$. If $\overline{n} = \overline{2p+1}$, then $\overline{n^2} = \overline{4p^2+4p+1} = \overline{0} + \overline{0} + \overline{1} = \overline{1}$.

7. Prove that n is even if and only if n^2 is even. (You'll have to prove two things: if n is even then n^2 is even; and conversely, if n^2 is even then n is even.)

Proof. Suppose n = 2k then $n^2 = 4k^2 = 2l$ is obviously even. Conversely, suppose n^2 is even. Since 2 divides n^2 then 2 divides n, hence n is even.

8. Show that the following conjecture is false by finding a counter-example: Let $f(n) = n^2 - n + 5$. For any natural number $n \in \mathbb{N}$, f(n) is prime.

Proof. f(5) = 25 - 5 + 5 = 25 is not prime.