Exercises

17. Show that for every $n \in \mathbb{N}$, $0 < e - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}\right) < \frac{1}{n!n}$. Conclude that $e \notin \mathbb{Q}$.

Solution. Recall that $e = \sum_{n=0}^{\infty} \frac{1}{n!}$ is a sum of positive terms. In particular, the partial sum $s_n = \sum_{k=0}^{n} \frac{1}{k!}$ is increasing, so $s_n < e \Rightarrow e - s_n > 0$. On the other hand, $e - s_n = \sum_{k=n+1}^{\infty} \frac{1}{k!} = \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \frac{1}{(n+3)!} + \dots < \frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} + \frac{1}{(n+1)^2(n+1)!} + \dots$ The last series is the geometric series $\frac{1}{(n+1)!} \sum_{k=0}^{\infty} \frac{1}{(n+1)^k} = \frac{1}{(n+1)!} \frac{(n+1)}{n} = \frac{1}{n!n}$.

21. Let $p(x) \in \mathbb{R}[x]$ be a polynomial of degree 2 or more. Show that the series $\sum \frac{1}{p(n)}$ converges.

Solution. Let $p(x) = a_k x^k + \ldots + a_1 x + a_0$, with $k \ge 2$. For n sufficiently large we have $|a_k n^k| > n^2$, hence

$$\left|\frac{1}{p(n)}\right| < \frac{1}{n^2}$$

By comparison, $\sum \frac{1}{p(n)}$ converges.

23. Let $a \in \mathbb{R}$. Show that the series $\sum_{n=0}^{\infty} \frac{a^2}{(1+a^2)^n}$ converges and find its sum.

Solution. Apply the root test: $\lim \sqrt[n]{\frac{a^2}{(1+a^2)^n}} = \frac{1}{1+a^2} < 1$, hence the series absolutely converges. It is a geometric series, so $\sum_{n=0}^{\infty} \frac{a^2}{(1+a^2)^n} = a^2 \sum_{n=0}^{\infty} \frac{1}{(1+a^2)^n} = 1 + a^2$.

29. Show that the set of accumulation points of the sequence $x_n = \cos n$ is the closed interval [-1, 1].

Solution. Notice that $\cos(n)$ is not periodic if $n \in \mathbb{N}$, since the period of $\cos(x)$ is 2π , if there was n, m such that $\cos(n) = \cos(m)$ then $n - m = 2k\pi$, and 2π would be a natural number, a contradiction. Hence, $\cos(n)$ takes different values in [-1, 1].

The difficulty here is to show that all numbers of [-1, 1] are close to this countable subset. That is to say, given $x \in [-1, 1]$ and $\epsilon > 0$ we can find infinitely many $n \in \mathbb{N}$ such that $|x - \cos(n)| < \epsilon$. Equivalently, given $x \in [0, 2\pi]$ we can find $y \in \mathbb{R}$ such that $n = y + 2k\pi$ and $|x - y| < \epsilon$. Instead of that, we prove that stronger fact that the set $\{n + 2k\pi; n \in \mathbb{N}, k \in \mathbb{Z}\}$ is dense in \mathbb{R} . Indeed, given $x \in \mathbb{R}$, suppose x > 0, and write x as the sum $x = \lfloor x \rfloor + \{x\}$, its integral and fractional part. The result follows then if we can prove that $\{2k\pi\}$ is dense in [0, 1]. Given any $\epsilon > 0$, divide [0, 1] in intervals of length ϵ , then necessarily two numbers of the form $\{2p\pi\}$ and $\{2q\pi\}$ will be in the same interval. Suppose p > q, then $2(p - q)\pi$ will be in the first or last interval, hence multiples of $2(p - q)\pi$ will be in all intervals.

30. Let $a_1 \ge a_2 \ge \ldots \ge 0$ and $s_n = a_1 - a_2 + \ldots + (-1)^{n-1}a_n$. Show that s_n is bounded and

•

 $\limsup s_n - \liminf s_n = \lim a_n$

Solution. Notice that a_n is bounded and monotone, hence converges and any subsequence of it will also converge. Also, $s_{2n} = (a_1 - a_2) + (a_3 - a_4) + \ldots + (a_{2n-1} - a_{2n})$, and since a_n is nonincreasing, it follows that s_{2n} is nondecreasing and bounded by a_1 . Similarly, s_{2n-1} is nonincreasing and bounded by a_1 . Both subsequences are monotone and bounded hence converge and $s_{2n-1} > s_{2n}$, so one converges to the greatest accumulation point and the other necessarily converges to the smallest one. Moreover $s_{2n-1} - s_{2n} = a_{2n}$, taking the limit we obtain

$$\lim(s_{2n-1} - s_{2n}) = \limsup s_n - \liminf s_n = \lim a_{2n} = \lim a_n$$