
Exercises

17. Show that for every n ∈ N, 0 < e −
(
1 + 1

1!
+ 1

2!
+ . . .+ 1

n!

)
< 1

n!n
. Conclude that

e /∈ Q.

Solution. Recall that e =
∞∑
n=0

1
n!

is a sum of positive terms. In particular, the partial

sum sn =
n∑

k=0

1
k!

is increasing, so sn < e ⇒ e − sn > 0. On the other hand, e − sn =

∞∑
k=n+1

1
k!
= 1

(n+1)!
+ 1

(n+2)!
+ 1

(n+3)!
+ . . . < 1

(n+1)!
+ 1

(n+1)(n+1)!
+ 1

(n+1)2(n+1)!
+ . . .. The last

series is the geometric series 1
(n+1)!

∞∑
k=0

1
(n+1)k

= 1
(n+1)!

(n+1)
n

= 1
n!n

.

21. Let p(x) ∈ R[x] be a polynomial of degree 2 or more. Show that the series
∑

1
p(n)

converges.

Solution. Let p(x) = akx
k+ . . .+a1x+a0, with k ≥ 2. For n sufficiently large we have

|aknk| > n2, hence ∣∣∣∣ 1

p(n)

∣∣∣∣ < 1

n2
.

By comparison,
∑

1
p(n)

converges.

23. Let a ∈ R. Show that the series
∞∑
n=0

a2

(1+a2)n
converges and find its sum.

Solution. Apply the root test: lim n

√
a2

(1+a2)n
= 1

1+a2
< 1, hence the series absolutely

converges. It is a geometric series, so
∞∑
n=0

a2

(1+a2)n
= a2

∞∑
n=0

1
(1+a2)n

= 1 + a2.

29. Show that the set of accumulation points of the sequence xn = cosn is the closed
interval [−1, 1].

Solution. Notice that cos(n) is not periodic if n ∈ N, since the period of cos(x) is 2π,
if there was n,m such that cos(n) = cos(m) then n − m = 2kπ, and 2π would be a
natural number, a contradiction. Hence, cos(n) takes different values in [−1, 1].

The difficulty here is to show that all numbers of [−1, 1] are close to this countable
subset. That is to say, given x ∈ [−1, 1] and ϵ > 0 we can find infinitely many n ∈ N
such that |x− cos(n)| < ϵ. Equivalently, given x ∈ [0, 2π] we can find y ∈ R such that
n = y + 2kπ and |x− y| < ϵ. Instead of that, we prove that stronger fact that the set
{n+ 2kπ;n ∈ N, k ∈ Z} is dense in R. Indeed, given x ∈ R, suppose x > 0, and write
x as the sum x = ⌊x⌋ + {x}, its integral and fractional part. The result follows then
if we can prove that {2kπ} is dense in [0, 1]. Given any ϵ > 0, divide [0, 1] in intervals
of length ϵ, then necessarily two numbers of the form {2pπ} and {2qπ} will be in the
same interval. Suppose p > q, then 2(p− q)π will be in the first or last interval, hence
multiples of 2(p− q)π will be in all intervals.
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30. Let a1 ≥ a2 ≥ . . . ≥ 0 and sn = a1 − a2 + . . . + (−1)n−1an. Show that sn is bounded
and

lim sup sn − lim inf sn = lim an

.

Solution. Notice that an is bounded and monotone, hence converges and any subse-
quence of it will also converge. Also, s2n = (a1 − a2) + (a3 − a4) + . . .+ (a2n−1 − a2n),
and since an is nonincreasing, it follows that s2n is nondecreasing and bounded by a1.
Similarly, s2n−1 is nonincreasing and bounded by a1. Both subsequences are mono-
tone and bounded hence converge and s2n−1 > s2n, so one converges to the greatest
accumulation point and the other necessarily converges to the smallest one. Moreover
s2n−1 − s2n = a2n, taking the limit we obtain

lim(s2n−1 − s2n) = lim sup sn − lim inf sn = lim a2n = lim an
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