Exercises

• Given two natural numbers $a, b \in \mathbb{N}$, prove that there is a natural number $m \in \mathbb{N}$ such that $m \cdot a > b$.

Solution. Suppose not, then the set $X = \{m \cdot a : m \in \mathbb{N}\}\)$ would be bounded, hence finite; a contradiction. \Box

• Let $a \in \mathbb{N}$. If the set X has the following property: $a \in X$ and $n \in X \Rightarrow n+1 \in X$. Then X contains all natural numbers greater than or equal to a.

Solution. The claim is that $a + n \in X$ for every $n \in \mathbb{N}$. If $n = 1, a \in X$ by hypothesis. Suppose $a + n \in X$, then $(a + n) + 1 \in X$ and the result follows by induction. \Box

• A number $a \in \mathbb{N}$ is called **predecessor** of $b \in \mathbb{N}$ if $a < b$ and there is no $c \in \mathbb{N}$ such that $a < c < b$. Prove that every number, except 1, has a predecessor.

Solution. Notice that if a is the predecessor of b then $b = a + 1$. The result follows then follows from the fact that the sucessor function is surjective. \Box

• Give an example of a surjective function $f : \mathbb{N} \to \mathbb{N}$ such that for all $n \in \mathbb{N}$, the set $f^{-1}(n)$ is infinite.

Solution. We proved in class that $\mathbb{N} \times \mathbb{N}$ is countable, so there is a bijection $f : \mathbb{N} \to$ $\mathbb{N} \times \mathbb{N}$. Consider the projection $\pi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by $\pi(x, y) = x$. Then $\pi \circ f$ is an example. \Box

• Show that if A is countably infinite then $\mathcal{P}(A)$ is uncountable. (This question was typed wrong! This is the version that makes sense.)

Solution. Notice that $\mathcal{P}(A) = \mathcal{F}(A; \{0, 1\})$. Cantor's theorem gives that $\mathcal{P}(A)$ is uncountable. \Box

• (Cantor-Bernstein-Schroder theorem) Given sets A and B, let $f : A \rightarrow B$ and $g : B \rightarrow$ A be injective functions. Show that there is a bijection $h : A \to B$.

Solution. Notice that given $x \in A$, after successive applications of f and g we produce a path that either lands back at x, or doesn't. In the former case, set $h(x) = f(x)$. If we don't land back at x, we have an infinite path starting at x or containing x. If the path starts in A, set $h(x) = f(x)$, whereas if the path starts in B, set $h(x) = g^{-1}(x)$. If the path if infinite, contains x but is not cyclic, set $h(x) = f(x)$. The functions h is a bijection by construction. \Box