9.57. Let $S = \mathbb{Z}$ and $T = \{4k : k \in \mathbb{Z}\}\$. Thus, *T* is a nonempty subset of *S*.

- (a) Prove that *T* is closed under addition and multiplication.
- (b) If $a \in S T$ and $b \in T$, is $ab \in T$?
- (c) If $a \in S T$ and $b \in T$, is $a + b \in T$?
- (d) If $a, b \in S T$, is it possible that $ab \in T$?
- (e) If $a, b \in S T$, is it possible that $a + b \in T$?
- 9.58. Prove that the multiplication in \mathbb{Z}_n , $n \geq 2$, defined by $[a][b] = [ab]$ is well-defined. (See Result 4.11.)
- 9.59. (a) Let $[a]$, $[b] \in \mathbb{Z}_8$. If $[a] \cdot [b] = [0]$, does it follow that $[a] = [0]$ or $[b] = [0]$?
	- (b) How is the question in (a) answered if \mathbb{Z}_8 is replaced by \mathbb{Z}_9 ? by \mathbb{Z}_{10} ? by \mathbb{Z}_{11} ?
	- (c) For which integers $n \geq 2$ is the following statement true? (You are only asked to make a conjecture, not to provide a proof.) Let [*a*], [*b*] $\in \mathbb{Z}_n$, $n \ge 2$. If [*a*] \cdot [*b*] = [0], then [*a*] = [0] or [*b*] = [0].
- 9.60. For integers $m, n \ge 2$ consider \mathbb{Z}_m and \mathbb{Z}_n . Let $[a] \in \mathbb{Z}_m$ where $0 \le a \le m 1$. Then $a, a + m \in [a]$ in \mathbb{Z}_m . If $a, a + m \in [b]$ for some $[b] \in \mathbb{Z}_n$, then what can be said of *m* and *n*?
- 9.61. (a) For integers $m, n \ge 2$ consider \mathbb{Z}_m and \mathbb{Z}_n . If some element of \mathbb{Z}_m also belongs to \mathbb{Z}_n , then what can be said of \mathbf{Z}_m and \mathbf{Z}_n ?
	- (b) Are there examples of integers *m*, $n \geq 2$ for which $\mathbb{Z}_m \cap \mathbb{Z}_n = \emptyset$?

Chapter 9 Supplemental Exercises

 $\overline{}$

- on *R* is defined on **Z** by *a R b* if $a \equiv b \pmod{2}$ or $a \equiv b \pmod{3}$. Prove or disprove: *R* is an equivalence relation on **Z**.
- 9.70. Determine each of the following. (a) $[4]^3 = [4][4][4]$ in \mathbb{Z}_5 (b) $[7]^5$ in \mathbb{Z}_{10}
- 9.71. Let $S = \{(a, b): a, b \in \mathbb{R}, a \neq 0\}.$
	- (a) Show that the relation *R* defined on *S* by (a, b) *R* (c, d) if $ad = bc$ is an equivalence relation.
- (b) Describe geometrically the elements of the equivalence classes $[(1, 2)]$ and $[(3, 0)].$
- 9.72. In Exercise 9.19, a relation *R* was defined on **Z** by *x R y* if $x \cdot y \ge 0$, and we were asked to determine which of the properties reflexive, symmetric and transitive are satisfied.
	- (a) How would our answers have changed if $x \cdot y > 0$ was replaced by: (i) $x \cdot y < 0$, (ii) $x \cdot y > 0$, (iii) $x \cdot y \neq 0$, (iv) $x \cdot y \geq 1$, (v) $x \cdot y$ is odd, (vi) $x \cdot y$ is even, $(vii) xy \not\equiv 2 \pmod{3}$?
	- (b) What are some additional questions you could ask?
- 9.73. For the following statement *S* and proposed proof, either (1) *S* is true and the proof is correct, (2) *S* is true and the proof is incorrect or (3) *S* is false (and the proof is incorrect). Explain which of these occurs.

S: Every symmetric and transitive relation on a nonempty set is an equivalence relation.

Proof Let *R* be a symmetric and transitive relation defined on a nonempty set *A*. We need only show that *R* is reflexive. Let $x \in A$. We show that $x R x$. Let $y \in A$ such that *x R y*. Since *R* is symmetric, *y R x*. Now *x R y* and *y R x*. Since *R* is transitive, *xRx*. Thus, *R* is reflexive.

9.74. Evaluate the proposed proof of the following result.

Result A relation *R* is defined on **Z** by *a R b* if 3 \mid (*a* + 2*b*). Then *R* is an equivalence relation.

Proof Assume that *a R a*. Then 3 | $(a + 2a)$. Since $a + 2a = 3a$ and $a \in \mathbb{Z}$, it follows that $3 \mid 3a$ or $3 \mid (a + 2a)$. Therefore, *a R a* and *R* is reflexive.

Next, we show that *R* is symmetric. Assume that *a R b*. Then 3 \mid (*a* + 2*b*). So, $a + 2b = 3x$, where $x \in \mathbb{Z}$. Hence, $a = 3x - 2b$. Therefore,

 $b + 2a = b + 2(3x - 2b) = b + 6x - 4b = 6x - 3b = 3(2x - b).$

Since $2x - b$ is an integer, $3 \mid (b + 2a)$. So, *b R a* and *R* is symmetric.

Finally, we show that *R* is transitive. Assume that *a R b* and *b R c*. Then 3 \mid (*a* + 2*b*) and 3 | $(b+2c)$. So, $a+2b=3x$ and $b+2c=3y$, where $x, y \in \mathbb{Z}$. Adding, we have $(a + 2b) + (b + 2c) = 3x + 3y$. So,

$$
a + 2c = 3x + 3y - 3b = 3(x + y - b).
$$

Since $x + y - b$ is an integer, 3 | $(a + 2c)$. Hence, *a R c* and *R* is transitive.

- 9.75. (a) Show that the relation *R* defined on $\mathbf{R} \times \mathbf{R}$ by (a, b) *R* (c, d) if $|a| + |b| = |c| + |d|$ is an equivalence relation.
	- (b) Describe geometrically the elements of the equivalence classes $[(1, 2)]$ and $[(3, 0)].$
- 9.76. Let $x \in \mathbb{Z}_m$ and $y \in \mathbb{Z}_n$, where $m, n \ge 2$. If $x \subseteq y$, then what can be said of m and n ?
- 9.77. Let *A* be a nonempty set and let *B* be a fixed subset of *A*. A relation *R* is defined on $P(A)$ by *X R Y* if $X \cap B = Y \cap B$.
	- (a) Prove that *R* is an equivalence relation.
	- (b) Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 3, 4\}$. For $X = \{2, 3, 4\}$, determine [X].
- 9.78. Let R_1 and R_2 be equivalence relations on a nonempty set A. Prove or disprove each of the following.
	- (a) If $R_1 \cap R_2$ is reflexive, then so are R_1 and R_2 .
	- (b) If $R_1 \cap R_2$ is symmetric, then so are R_1 and R_2 .
	- (c) If $R_1 \cap R_2$ is transitive, then so are R_1 and R_2 .
- 9.79. Prove that if *R* is an equivalence relation on a set *A*, then the inverse relation *R*[−]¹ is an equivalence relation on *A*.
- 9.80. Let R_1 and R_2 be equivalence relations on a nonempty set A. A relation $R = R_1 R_2$ is defined on *A* as follows: For *a*, $b \in A$, *a R b* if there exists $c \in A$ such that *a R*₁ *c* and $c R_2 b$. Prove or disprove: *R* is an equivalence relation on *A*.
- 9.81. A relation *R* on a nonempty set *S* is called **sequential** if for every sequence *x*, *y*, *z* of elements of *S* (distinct or not), at least one of the ordered pairs (x, y) and (y, z) belongs to *R*. Prove or disprove: Every symmetric, sequential relation on a nonempty set is an equivalence relation.
- 9.82. Consider the subset $H = \{ [3k] : k \in \mathbb{Z} \}$ of \mathbb{Z}_{12} .
	- (a) Determine the distinct elements of *H* and construct an addition table for *H*.
	- (b) A relation *R* on \mathbb{Z}_{12} is defined by [*a*] *R* [*b*] if $[a b] \in H$. Show that *R* is an equivalence relation and determine the distinct equivalence classes.
- 9.83. For elements $a, b \in \mathbb{Z}_n$, $n \geq 2$, $a = [c]$ and $b = [d]$ for some integers *c* and *d*. Define $a - b = [c] - [d]$ as the equivalence class $[c - d]$. Let $H = \{x_1, x_2, \ldots, x_d\}$ be a subset of \mathbb{Z}_n , $n \geq 2$, such that a relation *R* defined on \mathbb{Z}_n by *a R b* if $a - b \in H$ is an equivalence relation.
	- (a) For each $a \in \mathbb{Z}_n$, determine the equivalence class [*a*] and show that [*a*] consists of *d* elements.
	- (b) Prove that $d \mid n$.