9.57. Let $S = \mathbb{Z}$ and $T = \{4k : k \in \mathbb{Z}\}$. Thus, T is a nonempty subset of S.

- (a) Prove that T is closed under addition and multiplication.
- (b) If $a \in S T$ and $b \in T$, is $ab \in T$?
- (c) If $a \in S T$ and $b \in T$, is $a + b \in T$?
- (d) If $a, b \in S T$, is it possible that $ab \in T$?
- (e) If $a, b \in S T$, is it possible that $a + b \in T$?
- 9.58. Prove that the multiplication in \mathbb{Z}_n , $n \ge 2$, defined by [a][b] = [ab] is well-defined. (See Result 4.11.)
- 9.59. (a) Let $[a], [b] \in \mathbb{Z}_8$. If $[a] \cdot [b] = [0]$, does it follow that [a] = [0] or [b] = [0]?
 - (b) How is the question in (a) answered if \mathbb{Z}_8 is replaced by \mathbb{Z}_9 ? by \mathbb{Z}_{10} ? by \mathbb{Z}_{11} ?
 - (c) For which integers $n \ge 2$ is the following statement true? (You are only asked to make a conjecture, not to provide a proof.) Let $[a], [b] \in \mathbb{Z}_n, n \ge 2$. If $[a] \cdot [b] = [0]$, then [a] = [0] or [b] = [0].
- 9.60. For integers $m, n \ge 2$ consider \mathbb{Z}_m and \mathbb{Z}_n . Let $[a] \in \mathbb{Z}_m$ where $0 \le a \le m 1$. Then $a, a + m \in [a]$ in \mathbb{Z}_m . If $a, a + m \in [b]$ for some $[b] \in \mathbb{Z}_n$, then what can be said of m and n?
- 9.61. (a) For integers $m, n \ge 2$ consider \mathbb{Z}_m and \mathbb{Z}_n . If some element of \mathbb{Z}_m also belongs to \mathbb{Z}_n , then what can be said of \mathbb{Z}_m and \mathbb{Z}_n ?
 - (b) Are there examples of integers $m, n \ge 2$ for which $\mathbf{Z}_m \cap \mathbf{Z}_n = \emptyset$?

Chapter 9 Supplemental Exercises

The Chapter Presentation for Chapter 9 can be found at goo.gl/Tch7Cf	9.62.	Prove or disprove:
		 (a) There exists an integer <i>a</i> such that <i>ab</i> ≡ 0 (mod 3) for every integer <i>b</i>. (b) If <i>a</i> ∈ Z, then <i>ab</i> ≡ 0 (mod 3) for every <i>b</i> ∈ Z. (c) For every integer <i>a</i>, there exists an integer <i>b</i> such that <i>ab</i> ≡ 0 (mod 3).
	9.63.	A relation <i>R</i> is defined on R by <i>a R b</i> if $a - b \in \mathbb{Z}$. Prove that <i>R</i> is an equivalence relation and determine the equivalence classes [1/2] and $[\sqrt{2}]$.
	9.64.	A relation <i>R</i> is defined on Z by $a R b$ if $ a - 2 = b - 2 $. Prove that <i>R</i> is an equivalence relation and determine the distinct equivalence classes.
	9.65.	Let <i>k</i> and ℓ be integers such that $k + \ell \equiv 0 \pmod{3}$ and let $a, b \in \mathbb{Z}$. Prove that if $a \equiv b \pmod{3}$, then $ka + \ell b \equiv 0 \pmod{3}$.
	9.66.	State and prove a generalization of Exercise 9.65.
	9.67.	A relation <i>R</i> is defined on Z by $a R b$ if $3 (a^3 - b)$. Prove or disprove the following: (a) <i>R</i> is reflexive. (b) <i>R</i> is transitive.
	9.68.	A relation <i>R</i> is defined on Z by $a R b$ if $a \equiv b \pmod{2}$ and $a \equiv b \pmod{3}$. Prove or disprove: <i>R</i> is an equivalence relation on Z .
	9.69.	A relation <i>R</i> is defined on Z by $a R b$ if $a \equiv b \pmod{2}$ or $a \equiv b \pmod{3}$. Prove or disprove: <i>R</i> is an equivalence relation on Z .
	9.70.	Determine each of the following. (a) $\begin{bmatrix} 41^3 \\ -\end{bmatrix} \begin{bmatrix} 41 \end{bmatrix} \begin{bmatrix} 41 \end{bmatrix} \begin{bmatrix} 1 \\ -\end{bmatrix} \begin{bmatrix} 7 \\ -\end{bmatrix}$ (b) $\begin{bmatrix} 71^5 \\ -\end{bmatrix} \begin{bmatrix} 7 \\ -\end{bmatrix}$

- (a) $[4]^3 = [4][4][4]$ in \mathbb{Z}_5 (b) $[7]^5$ in \mathbb{Z}_{10}
- 9.71. Let $S = \{(a, b) : a, b \in \mathbf{R}, a \neq 0\}.$
 - (a) Show that the relation R defined on S by (a, b) R (c, d) if ad = bc is an equivalence relation.

- (b) Describe geometrically the elements of the equivalence classes [(1, 2)] and [(3, 0)].
- 9.72. In Exercise 9.19, a relation *R* was defined on **Z** by x R y if $x \cdot y \ge 0$, and we were asked to determine which of the properties reflexive, symmetric and transitive are satisfied.
 - (a) How would our answers have changed if x ⋅ y ≥ 0 was replaced by: (i) x ⋅ y ≤ 0,
 (ii) x ⋅ y > 0, (iii) x ⋅ y ≠ 0, (iv) x ⋅ y ≥ 1, (v) x ⋅ y is odd, (vi) x ⋅ y is even,
 (vii) xy ≠ 2 (mod 3)?
 - (b) What are some additional questions you could ask?
- 9.73. For the following statement *S* and proposed proof, either (1) *S* is true and the proof is correct, (2) *S* is true and the proof is incorrect or (3) *S* is false (and the proof is incorrect). Explain which of these occurs.

S: Every symmetric and transitive relation on a nonempty set is an equivalence relation.

Proof Let *R* be a symmetric and transitive relation defined on a nonempty set *A*. We need only show that *R* is reflexive. Let $x \in A$. We show that x R x. Let $y \in A$ such that x R y. Since *R* is symmetric, y R x. Now x R y and y R x. Since *R* is transitive, x R x. Thus, *R* is reflexive.

9.74. Evaluate the proposed proof of the following result.

Result A relation *R* is defined on **Z** by a R b if 3 | (a + 2b). Then *R* is an equivalence relation.

Proof Assume that a R a. Then $3 \mid (a + 2a)$. Since a + 2a = 3a and $a \in \mathbb{Z}$, it follows that $3 \mid 3a$ or $3 \mid (a + 2a)$. Therefore, a R a and R is reflexive.

Next, we show that *R* is symmetric. Assume that *a R b*. Then $3 \mid (a + 2b)$. So, a + 2b = 3x, where $x \in \mathbb{Z}$. Hence, a = 3x - 2b. Therefore,

b + 2a = b + 2(3x - 2b) = b + 6x - 4b = 6x - 3b = 3(2x - b).

Since 2x - b is an integer, $3 \mid (b + 2a)$. So, b R a and R is symmetric.

Finally, we show that *R* is transitive. Assume that *a R b* and *b R c*. Then 3 | (a + 2b) and 3 | (b + 2c). So, a + 2b = 3x and b + 2c = 3y, where $x, y \in \mathbb{Z}$. Adding, we have (a + 2b) + (b + 2c) = 3x + 3y. So,

$$a + 2c = 3x + 3y - 3b = 3(x + y - b).$$

Since x + y - b is an integer, $3 \mid (a + 2c)$. Hence, $a \mid R \mid c$ and R is transitive.

- 9.75. (a) Show that the relation *R* defined on $\mathbf{R} \times \mathbf{R}$ by (a, b) R(c, d) if |a| + |b| = |c| + |d| is an equivalence relation.
 - (b) Describe geometrically the elements of the equivalence classes [(1, 2)] and [(3, 0)].
- 9.76. Let $x \in \mathbb{Z}_m$ and $y \in \mathbb{Z}_n$, where $m, n \ge 2$. If $x \subseteq y$, then what can be said of m and n?
- 9.77. Let *A* be a nonempty set and let *B* be a fixed subset of *A*. A relation *R* is defined on $\mathcal{P}(A)$ by *X R Y* if $X \cap B = Y \cap B$.
 - (a) Prove that *R* is an equivalence relation.
 - (b) Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 3, 4\}$. For $X = \{2, 3, 4\}$, determine [X].

- 9.78. Let R_1 and R_2 be equivalence relations on a nonempty set A. Prove or disprove each of the following.
 - (a) If $R_1 \cap R_2$ is reflexive, then so are R_1 and R_2 .
 - (b) If $R_1 \cap R_2$ is symmetric, then so are R_1 and R_2 .
 - (c) If $R_1 \cap R_2$ is transitive, then so are R_1 and R_2 .
- 9.79. Prove that if *R* is an equivalence relation on a set *A*, then the inverse relation R^{-1} is an equivalence relation on *A*.
- 9.80. Let R_1 and R_2 be equivalence relations on a nonempty set A. A relation $R = R_1R_2$ is defined on A as follows: For $a, b \in A$, a R b if there exists $c \in A$ such that $a R_1 c$ and $c R_2 b$. Prove or disprove: R is an equivalence relation on A.
- 9.81. A relation *R* on a nonempty set *S* is called **sequential** if for every sequence *x*, *y*, *z* of elements of *S* (distinct or not), at least one of the ordered pairs (x, y) and (y, z) belongs to *R*. Prove or disprove: Every symmetric, sequential relation on a nonempty set is an equivalence relation.
- 9.82. Consider the subset $H = \{[3k] : k \in \mathbb{Z}\}$ of \mathbb{Z}_{12} .
 - (a) Determine the distinct elements of H and construct an addition table for H.
 - (b) A relation *R* on \mathbb{Z}_{12} is defined by [*a*] *R* [*b*] if $[a b] \in H$. Show that *R* is an equivalence relation and determine the distinct equivalence classes.
- 9.83. For elements $a, b \in \mathbb{Z}_n$, $n \ge 2$, a = [c] and b = [d] for some integers c and d. Define a b = [c] [d] as the equivalence class [c d]. Let $H = \{x_1, x_2, \dots, x_d\}$ be a subset of \mathbb{Z}_n , $n \ge 2$, such that a relation R defined on \mathbb{Z}_n by a R b if $a b \in H$ is an equivalence relation.
 - (a) For each $a \in \mathbb{Z}_n$, determine the equivalence class [a] and show that [a] consists of d elements.
 - (b) Prove that $d \mid n$.