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Proof Assume, to the contrary, that none of a + b, a 4+ ¢ and b + ¢ are irrational. Then p = a + b,
q = a+ c and r = b + c are all rational. Therefore, p + g + r = 2a + 2b + 2c is ratio-
nal. Since 2r = 2b 4 2c is rational, (p + g + r) — 2r = 2a is rational, as is 2a/2 = a.
Similarly, b and c are rational and so all of a, b and ¢ are rational. This is a contradiction. m

Proof Evaluation The proposed proof attempts to prove the given statement using a proof by contradiction.

However, there are logical errors here. In a proof by contradiction, it should be assumed,
to the contrary, that at least one of a + b, a + c and b + c is irrational but none of a, b and
c are irrational. This would then imply that all of a, b and ¢ are rational, from which it can
be shown that all of a + b, a + ¢ and b + ¢ are rational. This would be a contradiction. ¢
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We saw in Result 4.8 for integers a and b that 3 | ab if and only if 3 | a or 3 | b. Use this fact to prove that if
m is an integer such that 10 | m and 12 | m, then 60 | m.

Leta, b, m € Z with m > 2 such that a = b (mod m).

(a) According to Result 4.11, if ¢, d € Z such that c = d (mod m), then ac = bd (mod m). Show that
a* = b* (mod m) and a® = b* (mod m).

(b) Is it true that a*> = b (mod m)?

(c) Prove that a” = b" (mod m) for every positive integer n.

(d) Use (c) to prove that 8 | (32" — 1) for every positive integer .

(e) According to Result 4.6(b), if x is an odd integer, then 8 | (% — 1). Use this fact to prove that
8 | (32" — 1) for every positive integer n.

(a) Letm € Z. Prove that if m is the product of four consecutive integers, then m + 1 is a perfect square
(that is, m 4+ 1 = k2 for some k € Z).

(b) Prove, for every positive integer n, that neither n(n + 1) nor n(n + 2) is a perfect square.

(c) Prove that the product of three consecutive integers is always divisible by 6 but not always divisible by 9.
When will it be divisible by 12?

Let a, b € N. Prove that if a + b is even, then there exist nonnegative integers x and y such that x> — y?> = ab.

It follows from Result 4.6(b) that if a is an odd integer, then > = 1 (mod 8). Use this fact to prove that if b
is an odd integer, then »*' = 1 (mod 2"+2) for every positive integer .

We saw in Exercise 4.90 that
Ifa, b,c,d € R* such that a > b and ¢ > d, then ac > bd. (7.9)

(a) Use (7.9) to prove that if a, b € RT such that a > b, then \/a > /b.

(b) Without using (7.9), prove that if a, b € RT such that a > b, then \/a > +/b.

(a) Let m = 2k be an even integer where k € Z. Prove that if @ and b are integers such that a + b > m, then
eithera > korb > k+ 1.

(b) Let m = 3k for some k € N. Prove that if a, b, c € Nsuchthata+ b+ ¢ > m,thena > k, b > k or
c>k+2.

(c) A set S consists of 20 positive integers whose sum is an even integer. Prove that at least 4 elements of §
are congruent to 0 modulo 4, at least 5 are congruent to 1 modulo 4, at least 7 are congruent to 2
modulo 4 or at least 8 are congruent to 3 modulo 4.



194

7.8

7.9

7.10.

7.12.
7.13.
7.14.

7.15.

7.16.

1.117.

7.18.
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. (a) Express the following statement in words: Vn € {3, 4,5, ...}, 3a;, as, ..., a, € N with
ay <ay < --- <ansuchthata'fl+£+-~-+é =1.
(b) Express in words the negation of the statement in (a).
(c) One of the statements in (a) and (b) is true. Determine, with proof, which is true.

. Prove for every positive integer m that is a multiple of 8, there exist two positive integers a and b that differ
by m such that ab is a perfect square.
A sequence {a,} is defined recursively by a; = 7 and a, = 4a,—; — 9 for n > 2. Conjecture a formula for

a, and verify your conjecture for every positive integer n.

. The triples (3, 4, 5), (5, 12, 13) and (7, 24, 25) are called Pythagorean triples because 32 4 4> = 52,
52 4+ 122 = 132 and 7 + 24% = 252, There are infinitely many Pythagorean triples.

(a) Prove for every odd integer @ > 3 that there exists an even integer b such that (a, b, b+ 1) is a
Pythagorean triple.

(b) Prove for every odd integer a > 3 and positive integer n, that there exist n positive even integers
by, by, ..., b, such that @* + b + b3 + - - - + b2 = ¢? for some positive integer c.

Use induction to prove that 11" = 1 (mod 8) or 11" = 3 (mod 8) for every nonnegative integer n.

Prove for every three integers a, b and c that an even number of the integers a + b, a + ¢ and b + ¢ are odd.
Evaluate the proof of the following statement.

Statement  If x is an integer such that 3 | (x — 5), then 3 | (7x — 2).

Proof The integer x = 5 has the property that 3 | (x — 5). Furthermore, for x =5, 3 | (7x — 2). ]
Evaluate the proof of the following statement.

Statement Letx, y, z € Z such that 3x + S5y = 7z. If at least one of x, y and z is odd, then at least one of
X, y, z1s even.

Proof Letx,y,z € Z such that 3x 4+ 5y = 7z. Assume, to the contrary, that none of x, y and z is odd and
that none of x, y and z is even. This is impossible. [

Evaluate the proof of the following statement.

Statement A sequence {a,} of integers is defined recursively by a; = 1, a, = 3, a3 = 6 and
a, = ap— + 3a,—» + 6a,_3 forn > 4. Then 3 | a, for every integer n > 2.

Proof We proceed by induction. Since a, = 3, it follows that 3 | @ for k = 2. Assume that 3 | @, for an
integer k > 2. Thus, a; = 3x for some integer x. We show that 3 | ;. Now

Arr1 = ap + 3ar-1 + 6ar_» = 3x + 3ap_1 + 6a;_»

=3(x+ ak—1 + 2a;-2).

Since x + ay—; + 2a;_; is an integer, 3 | ai,;. By the Principle of Mathematical Induction, 3 | a, for every
integer n > 2. [
Evaluate the proof of the following statement.
Statement Leta € RT andlet S ={2":r € Q}.If a ¢ S, then log, a is irrational.

Proof  Assume, to the contrary, that log, a is rational. Then log, a = b € Q and so a = 2°. Since b € Q,
it follows that a € S, which is a contradiction. n

Evaluate the proof of the following statement.

Statement Leta, b, c € Z. If all of the integers 3a + 4b, 5b + 6¢ and 7c¢ + 8a are odd, then all of a, b, ¢
are odd.
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Proof  Assume, to the contrary, that not all of the integers 3a + 4b, 5b + 6¢ and 7¢ + 8a are odd, say

3a + 4b is not odd. Then 3a + 4b is even and so 3a + 4b = 2d for some integer d. Hence,

3a =2d — 4b = 2(d — 2b). Since d — 2b € Z, it follows that 3a is even. This, however, implies that a is
even and so not all of a, b, ¢ are odd. [

7.19. Evaluate the proof of the following statement.
Statement Leta, b, c € Z. Then ab + ac + bc is even if and only if at most one of a, b and ¢ is odd.
Proof  We consider the following cases.

Case 1. None of a, b and c is odd. Then all of a, b and c are even. Hence, ab, ac and bc are even, as is
ab + ac + bc.

Case 2. Exactly one of a, b and c is odd, say a is odd. Then b and c are even. Hence, all of ab, ac and bc are
even, as is ab + ac + bc.

Case 3. Exactly two of a, b and c are odd, say a and b are odd and c is even. Then ab is odd and ac and bc
are even. Hence, ab + ac + bc is odd.

Case 4. All of a, b and c are odd. Hence, ab, ac and bc are odd, as is ab + ac + bc.
Therefore, ab + ac + bc is even if and only if at most one of @, b and c is odd. ]
7.20. In Result 6.5, it was shown that
42y gt 2 DD

for every positive integer n.
Evaluate the proof of the following statement.
Statement  For every integer n > 3,

3
12+22+---+(n—1)2<%—n.

Proof  Assume, to the contrary, that
3

P42+t n— 17> %—n
for every integer n > 3. By Result 6.5, it follows that

1) (2 1
12+22+...+n2:w.

6
Therefore,
_ _ 3
(n—1)nn—-1) _n W
6 -3
and so
203 =32 +n P —3n
>
6 - 3
Hence, 213 — 3n”> 4+ n > 213 — 6n and so 3n®> — 7n = n(3n — 7) < 0. Since n is a positive integer, n < 7/3,
which is a contradiction. [ ]

7.21. Let A and B be nonempty sets. Prove that A x B = B x A if and only if P(A) = P(B).

7.22. The Fibonacci sequence Fi, F», F3, ... of integers is defined recursively by F; = F, = 1 and
F, = F,_| + F,_, for each integer n > 3. (This sequence also occurred in Exercise 6.36.) Prove that if
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aop, aj, as, ... is a sequence of rational numbers such that ay = %, a = % and a, = Z*f for every integer
3 o
n > 2, then for every positive integer n,
3fn . .
Ly if n is even

a, =

Far1 . .
it if nis odd.

Prove that if the real number r is a root of a polynomial with integer coefficients, then 2r is a root of a
polynomial with integer coefficients.

Prove that if the real number r is a root of a polynomial with integer coefficients, then /2 is a root of a
polynomial with integer coefficients.

Prove, for every nonnegative integer n, that
520 2% = 22"+ (mod 21).
Let n € Z. Prove that n + 1 and n? + 3 are of the same parity.

Prove that an integer m equals n(n + 1)/2 for some n € N if and only if 8m + 1 is a perfect square (that is,
8m + 1 = 12 for some t € N).

By Result 4.8, if a, b € Nand 3 | ab, then 3 | a or 3 | b. Let a and n be positive integers. Prove each of the

following statements.

(a) If 3| a",then3 | a.

(b) If 3| @", then 3" | a".

Prove that there do not exist two odd integers a and b with a # b(mod 4) such that 4 | (3a + 5b).

Prove that there exist three distinct integers a, b, ¢ > 2 such that a = b(mod c), b = c¢(mod a) and

a+ ¢ =0(mod b).

(a) Prove that there exists a 10-digit integer a = ajoay - - - a1, all of whose digits are distinct, with the
property that k divides aya;_; - - - a; for each k with 1 < k < 10.

(b) Prove that there exists a 10-digit integer b = b b, - - - by, all of whose digits are distinct, with the
property that k divides b1b; - - - by for each k with 1 < k < 10.

(c) The number n = 2468 is a 4-digit integer with distinct digits such that the first and last digits are
divisible by 1 (of course), the first and last 2-digit numbers of n, namely 24 and 68, are divisible by 2,
the first and last 3-digit numbers of n are divisible by 3, and n itself is divisible by 4. Is there a 5-digit
number m with the corresponding properties?

Let S = {1, 2,3, 4,5, 6}. Prove that there exists a collection T of five subsets of S such that for every two
sets A and B in T, there is a unique set C in T for which [ANC| = |BNC| = 1.

According to Result 3.16, for two integers a and b, a + b = 0(mod 2) if and only if a = b(mod 2). Let

a, b, c € Z. Prove that a + b 4+ ¢ = 0(mod 3) if and only if either every two integers in {a, b, c} are
congruent modulo 3 or no two integers in {a, b, c} are congruent modulo 3.

We have seen that a triple (a, b, c) of positive integers is a Pythagorean triple if > + b*> = ¢2. Therefore, if
(a, b, c) is a Pythagorean triple, then (?)2 + (?)2 =1.

(a) Show that if u and v are real numbers such that > +v> = 1, then (u + v)*> + (u — v)> = 2.

(b) We saw in Result 5.30 that there are no rational solutions to the equation x> 4 y?> = 3. Prove that there
are infinitely many rational solutions to the equation x> 4+ y? = 2.

(c) How many rational solutions to the equation x> 4 y> = 4 are there?

Prove, for every integer n > 4, that n! > n2.

An office contains two tables, called Table 1 and Table 2. There are n cards on Table 1. On the bottom of
each card is written a positive rational number. A total of k cards are randomly selected from Table 1 and
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placed on Table 2. Each of these k cards is turned over and the number on it is multiplied by +/2 and turned
over again. The k cards on Table 2 are then returned to Table 1 and all n cards on Table 1 are shuffled. Then
once again, k cards from Table 1 are randomly selected from Table 1 and placed on Table 2. Each of these k
cards is turned over and the number on it is multiplied by /2. This time, however, these k cards are left on
Table 2. Suppose now that a; of the cards on Table 1 contain an irrational number and a, of the cards on
Table 2 contain an irrational number. Which of the following can be said about a; and a,?

N ag<a @ a=a ) a>a
(4) Itis impossible to determine any relationship between a; and a,.

Below is given a proof of a result. Which result is being proved and which proof technique is being used?
Proof  Assume that 3x 4+ 5y is odd. Then 3x + 5y = 2z + 1, where z € Z. Then
Tx — 11y = B3x 4+ 5y) + (4x — 16y) = 2z + 1) + (4x — 16y)
=2(z+2x—8y)+ 1.
Since z + 2x — 8y is an integer, 7x — 11y is odd.
For the converse, assume that 7x — 11y is odd. Then 7x — 11y = 2w + 1 for some integer w. Then
3x+ 5y = (Tx — 11y) + (—4x + 16y) = Cw + 1) + (—4x + 16y)
=2(w—2x+8y)+ 1.
Since w — 2x + 8y is an integer, 3x + Sy is odd. ]
Below is given a proof of a result. Which result is being proved and which proof technique is being used?

Proof  Assume, to the contrary, that there are integers a and b such that a> — 4b? = 2. Certainly, a is not
odd, for otherwise, a2 and a*> — 4b? are odd and so a® — 4b* # 2. Thus, a must be even and so a = 2¢ for
some integer c. Therefore,

a> —4b* = (2c)* —4b* =47 — 4P = 4P - D) =2.
Since ¢ — b is an integer, 4 | 2, which is impossible. [
Prove that there exist three distinct real number solutions to the polynomial equation x> — 3x + 1 = 0.

Prove that there exists no integer a for which a = 17 (mod 35) and 2a = 43 (mod 49).

. nn+1) o .
We have seen that Z i= T — for every positive integer n. The statement below suggests that there is

i=1
another expression for this sum. Evaluate the proof of the following statement.
n+ 1)

n
Statement  For every positive integer n, Zi = 2

i=1
Proof  We proceed by induction. First, observe that the statement is true for n = 1. Assume that the

k k+1
2k 4 1)? 2k + 3)?
statement is true for a positive integer k. Thus, E = % We show that Z i= % Now,

i=1 i=1
k+1 k 2
. . 2k +1)
i = i|+k+1)=—+(k+1)
2= (3] ;
A 4k +14+8Kk+1) 4P +12k+9  (2k+3)°
- 8 N 8 - g

2 1)?
Thus, i= % for every positive integer n by the Principle of Mathematical Induction. ]
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Evaluate the proof of the following statement.
Statement  For each positive integer n, every set of n real numbers consists only of equal numbers.

Proof  We proceed by induction. Certainly, if a set consists of a single real number, then all numbers in
the set are equal. Assume, for a positive integer k, that the numbers in every set of k real numbers are equal.
Let S be a set of k + 1 real numbers, say S = {a;, aa, ..., ar+1}. Let S; = {ay, az, ..., a} and

Sy ={ap, a3, ..., ar11} be two subsets of S, each consisting of k real numbers. By the induction hypothesis,
all numbers in §; are equal and numbers in S, are equal, thatis, a; = a; = --- = q; and

a, =az = --- = ay4+1. Therefore, a; = ap = - -+ = a; = ax+1 and so all numbers in S are equal. By the
Principle of Mathematical Induction, every set of n real numbers consists only of equal numbers for every
positive integer n. L]

Evaluate the proof of the following statement.
Statement  For every nonnegative integer n, ¢" = 1.

Proof We proceed by the Strong Principle of Mathematical Induction. First, since ¢® = 1, the statement
is true for n = 0. Assume, for a nonnegative integer k, that ¢’ = 1 for every integer i with 0 < i < k. We
show that ¢! = 1. Observe that

ko k
. 1-1
M=
ok—1
By the Strong Principle of Mathematical Induction, ¢” = 1 for every nonnegative integer n. n

Prove that if a is a real number such that |a| < r for every positive real number r, then a = 0.

Below is given a proof of a result. Which result is being proved and which proof technique is being used?

Proof  First, observe that 30+ 1 =2 > 12 = 1, which verifies the basis step. Assume that
3 4+ 1 > (k + 1)? for some nonnegative integer k. We show that 3**! + 1 > (k 4 2)>. When k = 0, we
have 3! + 1 = 4 = 22, Hence, we may assume that k is a positive integer. Observe that

3 1 =33 1 >3[(k+ 1) —1]+1
=3k +2k)+ 1 =3k +6k+ 1 = (k¥ +4k) + Qk* +2k) + 1
> KP4k +242+1> K +4k+4 = (k+2)°. .

Evaluate the proof of the following statement.

Statement If ay, ay, ..., a, are n real numbers such that a;a; - - - a, = 0, then a; = 0 for some i with
1<i<n.

Proof We proceed by induction. Certainly, the statement is true for n = 1. Assume that the statement is
true for some positive integer k. Now, let by, b, ..., byt be k + 1 real numbers such that

blbz e bk+1 =0. ThUS, (b1b2 cee bk)bk—H = 0 and hence either b1b2 cee bk =0or bk+1 =0.1If

b1b; - - - by = 0, then it follows by the induction hypothesis that b; = 0 for some integer i with 1 <i < k. If
this is not the case, then by = 0. Hence, b; = 0 for some integer i with 1 < i < k + 1. Therefore, the
statement is true by the Principle of Mathematical Induction. L]

Evaluate the proof of the following statement.
Statement  If n > 10 is an integer, then > > 100 + 9n?.

Proof  First, observe that if n = 10, then n® = 1000 and 100 + 9% = 100 + 900 = 1000 and so
n® = 100 4+ 9n2. More generally, observe that n® > 100 4+ 9x2 can be written as n* — 91> > 100 and so
n*(n —9) > 100. Since n > 10, we have n®> > 100 and n — 9 > 1. Therefore, n*(n — 9) > 100 - 1 = 100. m





