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Proof Assume, to the contrary, that none of a + b, a + c and b + c are irrational. Then p = a + b,
q = a + c and r = b + c are all rational. Therefore, p + q + r = 2a + 2b + 2c is ratio-
nal. Since 2r = 2b + 2c is rational, (p + q + r) − 2r = 2a is rational, as is 2a/2 = a.
Similarly, b and c are rational and so all of a, b and c are rational. This is a contradiction.

Proof Evaluation The proposed proof attempts to prove the given statement using a proof by contradiction.
However, there are logical errors here. In a proof by contradiction, it should be assumed,
to the contrary, that at least one of a + b, a + c and b + c is irrational but none of a, b and
c are irrational. This would then imply that all of a, b and c are rational, from which it can
be shown that all of a + b, a + c and b + c are rational. This would be a contradiction. �

EXERCISES FOR CHAPTER 7

7.1. We saw in Result 4.8 for integers a and b that 3 | ab if and only if 3 | a or 3 | b. Use this fact to prove that if
m is an integer such that 10 | m and 12 | m, then 60 | m.

7.2. Let a, b, m ∈ Z with m ≥ 2 such that a ≡ b (mod m).

(a) According to Result 4.11, if c, d ∈ Z such that c ≡ d (mod m), then ac ≡ bd (mod m). Show that
a2 ≡ b2 (mod m) and a3 ≡ b3 (mod m).

(b) Is it true that a2 ≡ b (mod m)?
(c) Prove that an ≡ bn (mod m) for every positive integer n.
(d) Use (c) to prove that 8 | (32n − 1) for every positive integer n.
(e) According to Result 4.6(b), if x is an odd integer, then 8 | (x2 − 1). Use this fact to prove that

8 | (32n − 1) for every positive integer n.

7.3. (a) Let m ∈ Z. Prove that if m is the product of four consecutive integers, then m + 1 is a perfect square
(that is, m + 1 = k2 for some k ∈ Z).

(b) Prove, for every positive integer n, that neither n(n + 1) nor n(n + 2) is a perfect square.
(c) Prove that the product of three consecutive integers is always divisible by 6 but not always divisible by 9.

When will it be divisible by 12?

7.4. Let a, b ∈ N. Prove that if a + b is even, then there exist nonnegative integers x and y such that x2 − y2 = ab.

7.5. It follows from Result 4.6(b) that if a is an odd integer, then a2 ≡ 1 (mod 8). Use this fact to prove that if b
is an odd integer, then b2n ≡ 1 (mod 2n+2) for every positive integer n.

7.6. We saw in Exercise 4.90 that

If a, b, c, d ∈ R+ such that a ≥ b and c ≥ d, then ac ≥ bd. (7.9)

(a) Use (7.9) to prove that if a, b ∈ R+ such that a ≥ b, then
√

a ≥ √
b.

(b) Without using (7.9), prove that if a, b ∈ R+ such that a ≥ b, then
√

a ≥ √
b.

7.7. (a) Let m = 2k be an even integer where k ∈ Z. Prove that if a and b are integers such that a + b ≥ m, then
either a ≥ k or b ≥ k + 1.

(b) Let m = 3k for some k ∈ N. Prove that if a, b, c ∈ N such that a + b + c ≥ m, then a ≥ k, b ≥ k or
c ≥ k + 2.

(c) A set S consists of 20 positive integers whose sum is an even integer. Prove that at least 4 elements of S
are congruent to 0 modulo 4, at least 5 are congruent to 1 modulo 4, at least 7 are congruent to 2
modulo 4 or at least 8 are congruent to 3 modulo 4.
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7.8. (a) Express the following statement in words: ∀n ∈ {3, 4, 5, . . .}, ∃a1, a2, . . . , an ∈ N with
a1 < a2 < · · · < an such that 1

a1
+ 1

a2
+ · · · + 1

an
= 1.

(b) Express in words the negation of the statement in (a).
(c) One of the statements in (a) and (b) is true. Determine, with proof, which is true.

7.9. Prove for every positive integer m that is a multiple of 8, there exist two positive integers a and b that differ
by m such that ab is a perfect square.

7.10. A sequence {an} is defined recursively by a1 = 7 and an = 4an−1 − 9 for n ≥ 2. Conjecture a formula for
an and verify your conjecture for every positive integer n.

7.11. The triples (3, 4, 5), (5, 12, 13) and (7, 24, 25) are called Pythagorean triples because 32 + 42 = 52,
52 + 122 = 132 and 72 + 242 = 252. There are infinitely many Pythagorean triples.

(a) Prove for every odd integer a ≥ 3 that there exists an even integer b such that (a, b, b + 1) is a
Pythagorean triple.

(b) Prove for every odd integer a ≥ 3 and positive integer n, that there exist n positive even integers
b1, b2, . . . , bn such that a2 + b2

1 + b2
2 + · · · + b2

n = c2 for some positive integer c.

7.12. Use induction to prove that 11n ≡ 1 (mod 8) or 11n ≡ 3 (mod 8) for every nonnegative integer n.

7.13. Prove for every three integers a, b and c that an even number of the integers a + b, a + c and b + c are odd.

7.14. Evaluate the proof of the following statement.

Statement If x is an integer such that 3 | (x − 5), then 3 | (7x − 2).

Proof The integer x = 5 has the property that 3 | (x − 5). Furthermore, for x = 5, 3 | (7x − 2).

7.15. Evaluate the proof of the following statement.

Statement Let x, y, z ∈ Z such that 3x + 5y = 7z. If at least one of x, y and z is odd, then at least one of
x, y, z is even.

Proof Let x, y, z ∈ Z such that 3x + 5y = 7z. Assume, to the contrary, that none of x, y and z is odd and
that none of x, y and z is even. This is impossible.

7.16. Evaluate the proof of the following statement.

Statement A sequence {an} of integers is defined recursively by a1 = 1, a2 = 3, a3 = 6 and
an = an−1 + 3an−2 + 6an−3 for n ≥ 4. Then 3 | an for every integer n ≥ 2.

Proof We proceed by induction. Since a2 = 3, it follows that 3 | ak for k = 2. Assume that 3 | ak for an
integer k ≥ 2. Thus, ak = 3x for some integer x. We show that 3 | ak+1. Now

ak+1 = ak + 3ak−1 + 6ak−2 = 3x + 3ak−1 + 6ak−2

= 3(x + ak−1 + 2ak−2).

Since x + ak−1 + 2ak−2 is an integer, 3 | ak+1. By the Principle of Mathematical Induction, 3 | an for every
integer n ≥ 2.

7.17. Evaluate the proof of the following statement.

Statement Let a ∈ R+ and let S = {2r : r ∈ Q}. If a /∈ S, then log2 a is irrational.

Proof Assume, to the contrary, that log2 a is rational. Then log2 a = b ∈ Q and so a = 2b. Since b ∈ Q,
it follows that a ∈ S, which is a contradiction.

7.18. Evaluate the proof of the following statement.

Statement Let a, b, c ∈ Z. If all of the integers 3a + 4b, 5b + 6c and 7c + 8a are odd, then all of a, b, c
are odd.
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Proof Assume, to the contrary, that not all of the integers 3a + 4b, 5b + 6c and 7c + 8a are odd, say
3a + 4b is not odd. Then 3a + 4b is even and so 3a + 4b = 2d for some integer d. Hence,
3a = 2d − 4b = 2(d − 2b). Since d − 2b ∈ Z, it follows that 3a is even. This, however, implies that a is
even and so not all of a, b, c are odd.

7.19. Evaluate the proof of the following statement.

Statement Let a, b, c ∈ Z. Then ab + ac + bc is even if and only if at most one of a, b and c is odd.

Proof We consider the following cases.

Case 1. None of a, b and c is odd. Then all of a, b and c are even. Hence, ab, ac and bc are even, as is
ab + ac + bc.

Case 2. Exactly one of a, b and c is odd, say a is odd. Then b and c are even. Hence, all of ab, ac and bc are
even, as is ab + ac + bc.

Case 3. Exactly two of a, b and c are odd, say a and b are odd and c is even. Then ab is odd and ac and bc
are even. Hence, ab + ac + bc is odd.

Case 4. All of a, b and c are odd. Hence, ab, ac and bc are odd, as is ab + ac + bc.

Therefore, ab + ac + bc is even if and only if at most one of a, b and c is odd.

7.20. In Result 6.5, it was shown that

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)
6

for every positive integer n.
Evaluate the proof of the following statement.

Statement For every integer n ≥ 3,

12 + 22 + · · · + (n − 1)2 <
n3

3
− n.

Proof Assume, to the contrary, that

12 + 22 + · · · + (n − 1)2 ≥ n3

3
− n

for every integer n ≥ 3. By Result 6.5, it follows that

12 + 22 + · · · + n2 = n(n + 1)(2n + 1)
6

.

Therefore,
(n − 1)n(2n − 1)

6
≥ n3

3
− n

and so
2n3 − 3n2 + n

6
≥ n3 − 3n

3
.

Hence, 2n3 − 3n2 + n ≥ 2n3 − 6n and so 3n2 − 7n = n(3n − 7) ≤ 0. Since n is a positive integer, n ≤ 7/3,
which is a contradiction.

7.21. Let A and B be nonempty sets. Prove that A × B = B × A if and only if P (A) = P (B).

7.22. The Fibonacci sequence F1, F2, F3, . . . of integers is defined recursively by F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for each integer n ≥ 3. (This sequence also occurred in Exercise 6.36.) Prove that if
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a0, a1, a2, . . . is a sequence of rational numbers such that a0 = 1
2 , a1 = 2

3 and an = an−2

an−1
for every integer

n ≥ 2, then for every positive integer n,

an =
⎧⎨
⎩

3Fn

2Fn+1
if n is even

2Fn+1

3Fn if n is odd.

7.23. Prove that if the real number r is a root of a polynomial with integer coefficients, then 2r is a root of a
polynomial with integer coefficients.

7.24. Prove that if the real number r is a root of a polynomial with integer coefficients, then r/2 is a root of a
polynomial with integer coefficients.

7.25. Prove, for every nonnegative integer n, that

52n + 22n ≡ 22n+1 (mod 21).

7.26. Let n ∈ Z. Prove that n + 1 and n2 + 3 are of the same parity.

7.27. Prove that an integer m equals n(n + 1)/2 for some n ∈ N if and only if 8m + 1 is a perfect square (that is,
8m + 1 = t2 for some t ∈ N).

7.28. By Result 4.8, if a, b ∈ N and 3 | ab, then 3 | a or 3 | b. Let a and n be positive integers. Prove each of the
following statements.

(a) If 3 | an, then 3 | a.
(b) If 3 | an, then 3n | an.

7.29. Prove that there do not exist two odd integers a and b with a 	≡ b (mod 4) such that 4 | (3a + 5b).

7.30. Prove that there exist three distinct integers a, b, c ≥ 2 such that a ≡ b (mod c), b ≡ c (mod a) and
a + c ≡ 0 (mod b).

7.31. (a) Prove that there exists a 10-digit integer a = a10a9 · · · a1, all of whose digits are distinct, with the
property that k divides akak−1 · · · a1 for each k with 1 ≤ k ≤ 10.

(b) Prove that there exists a 10-digit integer b = b1b2 · · · b10, all of whose digits are distinct, with the
property that k divides b1b2 · · · bk for each k with 1 ≤ k ≤ 10.

(c) The number n = 2468 is a 4-digit integer with distinct digits such that the first and last digits are
divisible by 1 (of course), the first and last 2-digit numbers of n, namely 24 and 68, are divisible by 2,
the first and last 3-digit numbers of n are divisible by 3, and n itself is divisible by 4. Is there a 5-digit
number m with the corresponding properties?

7.32. Let S = {1, 2, 3, 4, 5, 6}. Prove that there exists a collection T of five subsets of S such that for every two
sets A and B in T , there is a unique set C in T for which |A ∩ C| = |B ∩ C| = 1.

7.33. According to Result 3.16, for two integers a and b, a + b ≡ 0 (mod 2) if and only if a ≡ b (mod 2). Let
a, b, c ∈ Z. Prove that a + b + c ≡ 0 (mod 3) if and only if either every two integers in {a, b, c} are
congruent modulo 3 or no two integers in {a, b, c} are congruent modulo 3.

7.34. We have seen that a triple (a, b, c) of positive integers is a Pythagorean triple if a2 + b2 = c2. Therefore, if
(a, b, c) is a Pythagorean triple, then

(
a
c

)2 + (
b
c

)2 = 1.

(a) Show that if u and v are real numbers such that u2 + v2 = 1, then (u + v)2 + (u − v)2 = 2.
(b) We saw in Result 5.30 that there are no rational solutions to the equation x2 + y2 = 3. Prove that there

are infinitely many rational solutions to the equation x2 + y2 = 2.
(c) How many rational solutions to the equation x2 + y2 = 4 are there?

7.35. Prove, for every integer n ≥ 4, that n! > n2.

7.36. An office contains two tables, called Table 1 and Table 2. There are n cards on Table 1. On the bottom of
each card is written a positive rational number. A total of k cards are randomly selected from Table 1 and
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placed on Table 2. Each of these k cards is turned over and the number on it is multiplied by
√

2 and turned
over again. The k cards on Table 2 are then returned to Table 1 and all n cards on Table 1 are shuffled. Then
once again, k cards from Table 1 are randomly selected from Table 1 and placed on Table 2. Each of these k
cards is turned over and the number on it is multiplied by

√
2. This time, however, these k cards are left on

Table 2. Suppose now that a1 of the cards on Table 1 contain an irrational number and a2 of the cards on
Table 2 contain an irrational number. Which of the following can be said about a1 and a2?

(1) a1 < a2 (2) a1 = a2 (3) a1 > a2

(4) It is impossible to determine any relationship between a1 and a2.

7.37. Below is given a proof of a result. Which result is being proved and which proof technique is being used?

Proof Assume that 3x + 5y is odd. Then 3x + 5y = 2z + 1, where z ∈ Z. Then

7x − 11y = (3x + 5y) + (4x − 16y) = (2z + 1) + (4x − 16y)

= 2(z + 2x − 8y) + 1.

Since z + 2x − 8y is an integer, 7x − 11y is odd.
For the converse, assume that 7x − 11y is odd. Then 7x − 11y = 2w + 1 for some integer w. Then

3x + 5y = (7x − 11y) + (−4x + 16y) = (2w + 1) + (−4x + 16y)

= 2(w − 2x + 8y) + 1.

Since w − 2x + 8y is an integer, 3x + 5y is odd.

7.38. Below is given a proof of a result. Which result is being proved and which proof technique is being used?

Proof Assume, to the contrary, that there are integers a and b such that a2 − 4b2 = 2. Certainly, a is not
odd, for otherwise, a2 and a2 − 4b2 are odd and so a2 − 4b2 	= 2. Thus, a must be even and so a = 2c for
some integer c. Therefore,

a2 − 4b2 = (2c)2 − 4b2 = 4c2 − 4b2 = 4(c2 − b2) = 2.

Since c2 − b2 is an integer, 4 | 2, which is impossible.

7.39. Prove that there exist three distinct real number solutions to the polynomial equation x3 − 3x + 1 = 0.

7.40. Prove that there exists no integer a for which a ≡ 17 (mod 35) and 2a ≡ 43 (mod 49).

7.41. We have seen that
n∑

i=1

i = n(n + 1)
2

for every positive integer n. The statement below suggests that there is

another expression for this sum. Evaluate the proof of the following statement.

Statement For every positive integer n,
n∑

i=1

i = (2n + 1)2

8
.

Proof We proceed by induction. First, observe that the statement is true for n = 1. Assume that the

statement is true for a positive integer k. Thus,
k∑

i=1

i = (2k + 1)2

8
. We show that

k+1∑
i=1

i = (2k + 3)2

8
. Now,

k+1∑
i=1

i =
(

k∑
i=1

i

)
+ (k + 1) = (2k + 1)2

8
+ (k + 1)

= 4k2 + 4k + 1 + 8(k + 1)
8

= 4k2 + 12k + 9
8

= (2k + 3)2

8
.

Thus,
n∑

i=1

i = (2n + 1)2

8
for every positive integer n by the Principle of Mathematical Induction.
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7.42. Evaluate the proof of the following statement.

Statement For each positive integer n, every set of n real numbers consists only of equal numbers.

Proof We proceed by induction. Certainly, if a set consists of a single real number, then all numbers in
the set are equal. Assume, for a positive integer k, that the numbers in every set of k real numbers are equal.
Let S be a set of k + 1 real numbers, say S = {a1, a2, . . . , ak+1}. Let S1 = {a1, a2, . . . , ak} and
S2 = {a2, a3, . . . , ak+1} be two subsets of S, each consisting of k real numbers. By the induction hypothesis,
all numbers in S1 are equal and numbers in S2 are equal, that is, a1 = a2 = · · · = ak and
a2 = a3 = · · · = ak+1. Therefore, a1 = a2 = · · · = ak = ak+1 and so all numbers in S are equal. By the
Principle of Mathematical Induction, every set of n real numbers consists only of equal numbers for every
positive integer n.

7.43. Evaluate the proof of the following statement.

Statement For every nonnegative integer n, en = 1.

Proof We proceed by the Strong Principle of Mathematical Induction. First, since e0 = 1, the statement
is true for n = 0. Assume, for a nonnegative integer k, that ei = 1 for every integer i with 0 ≤ i ≤ k. We
show that ek+1 = 1. Observe that

ek+1 = ek · ek

ek−1
= 1 · 1

1
= 1.

By the Strong Principle of Mathematical Induction, en = 1 for every nonnegative integer n.

7.44. Prove that if a is a real number such that |a| < r for every positive real number r, then a = 0.

7.45. Below is given a proof of a result. Which result is being proved and which proof technique is being used?

Proof First, observe that 30 + 1 = 2 ≥ 12 = 1, which verifies the basis step. Assume that
3k + 1 ≥ (k + 1)2 for some nonnegative integer k. We show that 3k+1 + 1 ≥ (k + 2)2. When k = 0, we
have 31 + 1 = 4 = 22. Hence, we may assume that k is a positive integer. Observe that

3k+1 + 1 = 3 · 3k + 1 ≥ 3[(k + 1)2 − 1] + 1

= 3(k2 + 2k) + 1 = 3k2 + 6k + 1 = (k2 + 4k) + (2k2 + 2k) + 1

≥ k2 + 4k + 2 + 2 + 1 ≥ k2 + 4k + 4 = (k + 2)2.

7.46. Evaluate the proof of the following statement.

Statement If a1, a2, . . . , an are n real numbers such that a1a2 · · · an = 0, then ai = 0 for some i with
1 ≤ i ≤ n.

Proof We proceed by induction. Certainly, the statement is true for n = 1. Assume that the statement is
true for some positive integer k. Now, let b1, b2, . . . , bk+1 be k + 1 real numbers such that
b1b2 · · · bk+1 = 0. Thus, (b1b2 · · · bk )bk+1 = 0 and hence either b1b2 · · · bk = 0 or bk+1 = 0. If
b1b2 · · · bk = 0, then it follows by the induction hypothesis that bi = 0 for some integer i with 1 ≤ i ≤ k. If
this is not the case, then bk+1 = 0. Hence, bi = 0 for some integer i with 1 ≤ i ≤ k + 1. Therefore, the
statement is true by the Principle of Mathematical Induction.

7.47. Evaluate the proof of the following statement.

Statement If n ≥ 10 is an integer, then n3 ≥ 100 + 9n2.

Proof First, observe that if n = 10, then n3 = 1000 and 100 + 9n2 = 100 + 900 = 1000 and so
n3 = 100 + 9n2. More generally, observe that n3 ≥ 100 + 9n2 can be written as n3 − 9n2 ≥ 100 and so
n2(n − 9) ≥ 100. Since n ≥ 10, we have n2 ≥ 100 and n − 9 ≥ 1. Therefore, n2(n − 9) ≥ 100 · 1 = 100.




