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I Naive set theory

1 Sets

A set X is a collection of objects, also called the elements of the set. If ‘a’ is
an element of X, we write a € X. On the other hand, if ‘a’ isn’t an element
of X, we write a ¢ X.

A set X is well defined when there is a rule that allows us to say if an
arbitrary element ‘a’ is or isn’t an element of X.

Example 1. The set X of all right triangles is well-defined. Indeed, given
any object ‘a’, if ‘a’is not a triangle or doesn’t have a right angle then a ¢ X.
If ‘a’ is a right triangle then a € X.

Example 2. The set X of all tall people is not well-defined. The notion of
‘tall’ is mot universally defined, hence given any element a we can’t say if
aeX ora¢ X.

Usually one uses the notation

X ={a,b,¢c ...}

to represent the set X whose elements are a,b,c,..., and if a set has no
elements we denote it by () and call it the empty set.
The set of natural numbers 1,2,3, ... will be represented by

N={1,23, ...}
The set of integers will be represented by
Z=A...,-3,-2,-1,0,1,2,3, ...}

The set of rational numbers, that is, fractions ¢, where a,b € Z and b # 0,
will be denoted by
a
Q={5labezb#0}
The vast majority of sets in mathematics are not defined by specifying its
elements one by one. What usually happens is a set being defined by some

property its elements satisfy, i.e. if @ has property P than a € X, whereas if
a doesn’t have property P then a ¢ X. One writes

X = {a]a has property P}
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For example, the set
X ={a € N|a> 10},

consists of all natural numbers bigger than 10.

Given two sets A, B, one says that A is a subset of B or that A is
included in B (B contains A), represented by A C B, if every element of A
is an element of B.

Example 3. We have the obvious inclusion of sets:
NCZCQ.

Example 4. Let X be the set of all squares andY be the set of all rectangles.
Then X CY, since every square is a rectangle.

When one writes X C Y, it’s possible that X =Y. In case X # Y, we
say X is a proper subset, the notation X C Y is sometimes used to indicate
that X is a proper subset of Y.

Notice that to write a € X is equivalent to say {a} C X. Also, by
definition, it’s always true that () C X for every set X.

It’s easy to see that the inclusion of sets has the following properties:

1. Reflexive, X C X for every set X;
2. Anti-symmetric, if X CY and Y C X then X =Y
3. Transitive, if X CY and Y C Z then X C Z.

It follows that two sets X and Y are the same if and only if X C Y and
Y C X, that is to say, they have the same elements.
Given a set X, we define the power set of X, P(X) as

P(X)={A|AC X}.

The set P(X) is the set of all subsets of X, in particular it’s never empty, it
has at least () and X itself as elements.

Example 5. Let X = {1,2,3} then
P(X) ={0,{1},{2}, {3}, {1, 2}, {1,3},{2,3} }.

Notice that by using the Fundamental Counting Principle, any set with
n elements has 2" subsets. Therefore, the number of elements of P(X) is 2".
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2 Operation with sets

We given two sets X and Y, one can build many other sets. For example,
the union of X and Y, denoted by X UY is the of elements that are in X
or Y, more precisely:

XUY ={alae XoracY}.

Similarly, the intersection of X and Y, denoted by X NY is the of elements
that are common to both X and Y:

XNY={alae XandaecY}.
If XNY =0, then X and Y are said to be disjoint.
Example 6. Let X = {a € N|a <100} and Y = {a € N|a > 50} then
XUY =Nand X NY = {a € N|50 < a < 100}

Example 7. The sets X = {a € N|a > 1} and Y = {a € N|a < 2} are
disjoint, i.e. X NY = since there is no natural number between 1 and 2.

The difference between X and Y, denoted by X —Y is the set of elements
that are in X but not in Y, more precisely:

X—-Y={alaeXanda¢V}

Given an inclusion of sets X C Y, the complement of X in Y is the set
Y — X, the notation X ¢ sometimes is used if there is no confusion about who
the set Y is.

Example 8. Consider the sets X = {a € N|a is even} and Y = N. Then
X CY and X¢={a € N|a is odd}.

Proposition 9. Given sets A, B, C, D the following properties are true:
1. AUD=A; AnD=0
2. AUA=A; ANA=A
3. AUB=BUA; ANB=BNA
4. AU(BUC)=(AUB)UC; An(BNC)=(AnB)NnC
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.AUB=A& BCA;ANB=A< ACB
6. if ACB and C C D then AUC CBUD and ANC CBND
7. AUBNC)=(AUB)N(AUC); AN(BUC)=(ANB)U(ANC)
8 (A=A
9. (AUB)*=A°NB* (ANB) = A°UB°
Proof. The last property, (AU B)¢ = A°N B¢, will be demonstrated below,
the others are trivial or can be proved in a similar way.
We prove that (AU B)¢ C A°N B°. Let a € (AUB)° thena ¢ AUB, in
particular, a ¢ A and a ¢ B, hence a € A° N B°.

Conversely, take a € AN B°. Thena ¢ Aand a ¢ B,soa ¢ AU B and
it follows that a € (AU B)°. O

An ordered pair (a,b) is formed by two objects a and b, such that for any
other such pair (¢, d):
(a,b) = (¢,d) < a=cand b=d.
The elements a and b are called coordinates of (a,b), a is the first coordinate
and b the second one.

The cartesian product X x Y of two sets X and Y is the set of all
ordered pairs (x,y) such that x € X and y € YV

XxY={(r,y)lre XandyeY}.

Remark 1. An ordered pair is not the same as a set, i.e. (a,b) # {a,b}.
Notice that {a,b} = {b,a} but (a,b) # (b,a) in general.
Example 10. Consider the sets X = {1,2,3} and Y = {a,b}, then

X xY ={(1a),(1,0),(2a),(2b),(3,a),(3b)}.

3 Functions

A function f : X — Y consists of three components: a set X, the domain,
a set Y, the co-domain, and a rule that associates each element a € X an
unique element in f(a) € Y, f(a) is called the value of f(z) at a, or the
image of a under f(z).

Another common notation to denote a function is  — f(z). In this case
the domain and codomain can be identified by the context.
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Example 11. The function f : N — N given by f(n) = n+ 1 is called the
successor function.

Example 12. Let X be the set of all triangles. One can define a function
f: X =R by f(x) = area of x.

Example 13. (Relation that is not a function) The correspondence that
associates to each real number x, all y satisfying y*> = x is not a function
because any x # 0 will be associated to two values, namely ++/x, and in order
to be a function every x has to have exactly one image y = f(x).

The graph of a function f: X — Y is a subset of X x Y defined by
() ={(z, flz)) |z e X}

Example 14. Consider the function f(x) = e~ its graph is given below:

1

-2

A function f : X — Y is said to be injective or one-to-one if for every
x,y such that f(x) = f(y) then z = y. Suppose X C Y, then inclusion
i: X — Y given by i(x) = z is a typical example of injective function.

A function f: X — Y is said to be surjective or onto if for every y € Y
there is € X such that y = f(x). The projection p : X x Y — X in the
first coordinate, given by p(z,y) = x is a typical example of surjection.

Finally, a function f : X — Y is bijective or a bijection if it is both
surjective and injective.

3
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Example 16.

Example 17.

(—=Z,2) = R.

202

05

-1.0b

The floor function |x| = max{n € Z|n < z } is not injective.

—_— -4t

The function f(z) = sinx is a bijection if we consider f :

05

-15 -1.0 -0.5 05 1.0 15

Given a function f : X — Y, the image of a set A C X is defined by

flA) ={yeYly=/fla),ac A}



Conversely, the inverse image of a set (sometimes called pre-image) B CY
is given by
f(B)={zeX|f(x)eB}.

Proposition 18. Given f: X — Y and subsets A, B C X, we have:
1. f(AUB) = f(A) U f(B); f(AUB) = f (AU f(B)
f(ANB) C f(A)Nf(B); fHANB) = f1(A)Nf(B)
if AC B then f(A) C f(B) and f~(A) C f~1(B)
f0)=0; f71(0) =0
i) =x

S & e

Example 19. Consider the function f(z,y) = 2% + y?, the inverse image
F7Y{1}) is a circle of radius 1. Similarly, any line ax + by = ¢ can be seen
as g~ Y({c}), where g(x,y) = ax + by.

Given two functions f: X — Y and g : Y — Z, the composition go f of
g and f is defined as the function:

(go f)(x) = g(f(2))

Example 20. The composition of the functions g(x) = sinz and f(x) = e*
is the function (g o f)(z) = sine” depicted below.

10 sin(e™)

N
Vi

—




Given a function f : X — Y and a subset A C X, the restriction of
f(z) to A, denoted by f|a: A — Y, is defined by f|a(x) = f(x). Similarly,
if X C Z, a extension of f(x) to Z is any function g : Z — Y such that

glx(x) = f(2).

Example 21. Consider again the function f(z,y) = x> + y?, and the unit
circle St = { (z,y) | 2* + y* = 1}. Then the restriction f|s: is the constant
function g(x) = 1.

Given functions f : X — Y, and g : Y — X, the function g(z) is called
left-inverse of f(x) if

(go f)lz) =z
Similarly, the function g(z) is called right-inverse of f(x) if
(fog)(z) ==

Finally, if there is a function f~1(x) such that

(fof™(z)=(f"of)lx) =z,

f1(z) is called the inverse of f(x). Notice that any inverse, if exists, is
unique. If g(x) and h(x) are both inverses of f(z) then

9(x) = g(f(h(x))) = (g o f)(h(x)) = h(z).

Proposition 22. A function f: X —Y has an inverse f~1:Y - X & f
18 bijective.
Proof. Suppose f has an inverse f~! and f(x) = f(y) for some x,y. Taking
the inverse on both sides, we conclude that x = y and f is injective. Similarly,
take y € Y and set * = f~!(y), then f(x) = y and it follows that f is
surjective.

Conversely, suppose f bijective. If f(x) =y, set f~!(y) = z. One can
easily check that (fo f~1)(z) = (f~'o f)(z) = . O

Example 23. Consider the function f : (0, +00) — (0, +00) given by f(x) =
1. then the f is its own inverse, i.e. (fo f)(z) = x.
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4 The natural numbers N

The natural numbers are built axiomatically. Start with a set N, whose
elements are called natural numbers, and a function s : N — N, called the
successor function. For any n € N, s(n) is called the successor of n.

The function s(n) satisfies the following axioms:

Axiom 1. s(n) is injective, i.e. every number has a unique successor.

Axiom 2. The set N— s(N) has only one element, which will be denoted by 1, i.e.
every number has a successor and 1 is not a successor of any number.

Axiom 3. (Principle of induction) Let X C N be a subset with the following
property: 1 € X and given n € X, s(n) € X as well. Then X = N.

Whenever axiom 3 is used to prove a result, the result is said to be proved
by induction.

Proposition 24. For any n € N, s(n) # n.
Proof. The proof is by induction. Let X € N be a subset defined by:

X ={neN|s(n)#n}.

By Axiom 2, 1 € X. Let n € X, then s(n) # n. By Axiom 1, s(s(n)) # s(n),
hence s(n) € X. The proof follows by Axiom 3.
[

Given a function f : X — X, its power f" is defined inductively. More
precisely, if one sets f! = f then f" is defined by:

f = fofn

In particular, if one sets 2 = s(1),3 = s(2),..., then f2 = fo f, f? =
fofof,....

Now, given two natural numbers m,n € N, their sum m+n € N is defined
by:

m—+n = s"(m).

It follows that m + 1 = s(m) and m + s(n) = s(m + n), in particular:
m+n+1)=(m+n)+1

More generally, the following can be proved using induction:
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Proposition 25. For any m,n,p € N:
1. (Associativity) m + (n +p) = (m +n) + p;
2. (Commutativity) m +n =n+m;
3. (Cancellation Law) m +n=m+p=n=p;

4. (Trichotomy) Only one of the following can occur: m =n, or 3¢ € N
such that m =n+ q, or Ir € N such thatn =m +r.

The notion of order among natural numbers can be defined in terms of
addition. Namely, one writes
m < n,

if 4¢ € N such that n = m + ¢; in the same situation, one also writes n > m.
Notice in particular that for every m € N:

m < s(m).

Finally, one writes m > n if m > n or m = n and a similar definition applies
to <.

Proposition 26. For any m,n,p € N:
(I) (Transitivity) m <n,n <p = m < p;

(II) (Trichotomy) Only one of the following can occur: m = n, m < n or
m > n.

(III) m <n=m+p<n+p.

The multiplication operation m - n will be defined in a similar way as
m+n was defined. Let a,, : N — N be the ‘add m’ function, a,,(n) = n+m.
Then multiplication of two natural numbers m - n is defined as:

m-1:=m,
m-(n+1):= (an)"(m).
Som-2 = a,(m) =m+m,m-3 = (a,)*(m) =m-+m+m,..., and it follows

that:
m-(n+1):=m-n+m.

More generally, the following is true:
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Proposition 27. For any m,n,p € N:
a. m-(n-p)=(m-n)-p;
b. m-n=n-m;
c.m-mn=p-n=m=p;
d m-(n+p)=m-n+m-p;

e m<n=m-p<n-p.

5 Well-ordering principle

Let X € N. A number m € X is called the minimum element of X,
denoted m = min X, if m < n for every n € X. For example, 1 is the
minimum of N; 100 is the minimum of {100, 1000, 10000}.

Lemma 28. [f m = min X and n = min X then m = n.

Proof. Since m < p for every p € X, m < n in particular. Similarly, n < m
and hence m = n. O

The maximum element is defined similarly: m = max X if m > n, Vn €
X. Notice that not all subsets X C N have a maximum. In fact, N itself
doesn’t have a maximum, since m < m + 1 for every m € N. The lemma
above remains valid if we exchange ‘minimum’ by ‘maximum’.

Despite not all subsets of N having a maximum, they do have a minimum
if they are non-empty.

Theorem 29. (Well-ordering principle) Let X C N be non-empty. Then X
has a minimum.

Proof. If 1 € X then 1 is the minimum, so suppose 1 ¢ X. Let
L ={meN|1<m<n},

and consider the set

L={neN|I, C X}

Since 1 ¢ X = 1€ L. lf n€ L = n+1 € L then induction would imply
L =N,but L # Nsince L C X®=N- X, and X # (). We conclude that
there is a mg such that my € L but mg + 1 ¢ L. It follows than mgy + 1 is
the minimum element of X. O]
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Corollary 30. (Strong induction) Let X C N be a set with the following
property:
Vn € N, if X contains allm <n =n € X.

Then X = N.

Proof. Set Y = X¢, the claim is that Y = (). Suppose not, that is, Y # (.
By the theorem above, Y has a minimum element, say p € Y. But then by
hypothesis p € X, a contradiction. O

Example 31. Strong induction can be used to prove the Fundamental the-
orem of Arithmetic, which says that every number greater than 1 can
written as a product of primes (a number p is prime if p # m - n, with
m < pandn < p). Indeed, Let X = {m € N|m is a product of primes}
and n € N a giwen number. If X contains all numbers m such that m < n,
then if n is prime, n € X ; if n is not a prime thenn = p-q withp < n,q < n,
again it follows that n € X. Therefore, strong induction implies X = N.

Let X be any set. A common way of defining a function f : N — X
is by recurrence (sometimes ‘by induction’ is used), namely, f(1) is given
and also a rule that allows one to obtain f(m) knowing f(n) for all n < m.
Technically, more than one function f could exist satisfying these conditions,
however it is know that such a function is unique, the proof of this fact is
left as an exercise.

Example 32. (Factorial) The factorial function f : n +— n! can be defined
using induction. Set f(1) =1 and f(n+1) = (n+1)- f(n). Then f(2) =
21, f3)=3-2-1,..., f(n) =nl

Example 33. (Arbitrary sums/products) So far the definition of m +n was
used, what about m +n+p or mi + ... +m,? In order to define arbitrary
sums (or products), one can use induction. Namely,

mi+...+my=(my+...4+mu_1)+mp;
and similarly, for products:

My My = (M. My_1) - my.

14



6 Finite and Infinite sets

Throughout this section, I,, stands for the set of numbers less than or equal
to n:
I,={meN|1<m<n}

A arbitrary set X is finite if X = () or there is number n € N and a bijection
f:1,— X.
In the latter case, one says that X has n elements and writes:
X] = n,

f is said to be a counting function for X. By convention, if X = () then one
says X has zero elements, i.e. |(] = 0.

It remains to show that the number of elements is a well-defined notion,
that is to say, if there are bijections f : I, - X and ¢ : I,,, = X then n = m.

Theorem 34. Let X C I,,. If there is a bijection f : I, — X, then X = I,.

Proof. The proof is by induction on n. The case n = 1 is obvious, suppose
the result true for n, the proof follows if one can prove the result for n + 1.

Suppose X C [,1 and there is a bijection f : I,,;; — X. Leta = f(n+1)
and consider the restriction f: I, - X — {a}.

If X —{a} CI,then X —{a}=1,,a=n+1and X = I,4.

Suppose X — {a} € I,, then n +1 € X — {a} and one can find b such
that f(b) = n+ 1. Let g : I,41 — X be the defined by g(m) = f(m) if
m#n+1,a; gln+1) =n+1; g(b) = a. By construction, the restriction
g: I, — X —{n+ 1} is a bijection and obviously X — {n + 1} C I,,, hence
X —{n+1} =1, and it follows that X = [,,,;. O

Corollary 35. (Number of elements is well-defined) If there is a bijection
f: 1L, — I, then m = n. Therefore, if f : I, - X and g : I, — X are
bijections then n = m.

Proof. The first part follows directly from the theorem. For the second part,
consider the composition (f~tog): I, = I,. O

Corollary 36. There is no bijection f : X — Y between a finite set X and
a proper subset Y C X.
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Proof. By definition there is a bijection ¢ : I,, = X for some n € N. Since
Y is proper, A := ¢ 1(Y) is also proper in I,,. Let ¢4 : A — Y be the
restriction of ¢ from I, to A. Suppose there is a bijection f : X — Y,
then the composite function p,' o fo ¢ : I, — A defines a bijection, a
contradiction. O

Theorem 37. Let X be a finite set and Y C X, then Y is finite and |Y| <
| X|, the equality occurs only if X =Y.

Proof. 1t’s enough to prove the result for X = [,. If n = 1 the result
is obvious. Suppose the result is valid for [, and consider Y C I,,y. If
Y C I, the induction hypothesis gives the result, so assume n+1 € Y. Then
Y —{n+1} C I, and by induction, there is a bijection f : I, = Y —{n+1},
where p < n. Let g : I,;1 — Y be a bijection defined by g(n) = f(n) if
n € I,, and g(p + 1) = n+ 1. This proves that Y is finite, moreover since
p<n=p+1<n+1,|Y| <n. The last statement says that if Y C I,, and
|Y| = n then Y = I,,, but this is a direct consequence of theorem O

The following Corollary is immediate:

Corollary 38. LetY be finite and f : X — Y be an injective function. Then
X is also finite and | X| < |Y].

Corollary 39. Let X be finite and f : X — Y be an surjective function.
Then'Y s also finite and |Y'| < |X]|.

Proof. Since f is surjective, by the proof of proposition 22} f has an injective
right-inverse g : Y — X. The result follows by the corollary above. O]

A set X that is not finite is said to be infinite. More, precisely X is
infinite when it’s not empty and there is no bijection f : I, — X for any
n € N.

Example 40. The natural numbers N is an infinite set since there is no
surjection between I,, and N, because given any function f : I, — N, the
number f(1)+ f(2) + ...+ f(n) is not in the range.

Example 41. Z and Q are also infinite sets since they contain N, which is
infinite.

A set X C N is bounded, if there is a number M € N such that n < M
for alln € X.

16



Theorem 42. Let X C N be nonempty. The following are equivalent:

a.
b.

C.

X is finite;
X is bounded;

X has a greatest element.

Proof. The proof is based on the implications a = b, b = ¢, ¢ = a.

(a = b)

(b= ¢)

(c = a)

Let X = {xy,29,...,2,}. Then M =z + ...+ z,, satisfies n < M for
alln € X.

Consider the set A = {n € N|n > z,Vx € X }. Since X is bounded,
A # (). By the principle of well ordering, A has a minimum element,
say m € A. If m € X then m is the greatest element, so suppose
m ¢ X. By definition, m > n for all n € X, and since X # 0, m > 1,
thatism =p+1, forsomep e N. If p>z forallz € X thenp € A, a
contradiction since p < m and m is minimal. If there is a x € X such
that > p, then > m a contradiction unless x = m, but m ¢ X by
assumption. It follows that m € X and m is the greatest element.

If X has a greatest element, say M, then X C I, and it follows that
X is finite.

]

The Theorem below follows directly from the definitions, the proof will
be omitted.

Theorem 43. Let X and Y be two sets such that | X| = m,|Y| = n and
XNY =0. Then X UY is finite and | X UY |=m + n.

The following corollary is immediate:

Corollary 44. Let X1, Xs,...,X,, be a finite collection of sets such that
each X; is finite and X; N X; =0 if i # 5. Then |J X; is finite and
i=1

Jxil=>_1xil
=1 =1

17



Corollary 45. Let X1, X5,...,X,, be a finite collection of sets such that
each X; is finite. Then |J X; is finite and

=1

JXil <) 1l
i=1 =1

Proof. For each i =1,...,n,set Y; = X; x {i}. Then the projection

=1 =1

in the first coordinate is surjective, by Corollaries and [44] the proof is
complete. n

Corollary 46. Let X, Xs,..., X, be a finite collection of sets such that
each X; is finite. Then X1 X ... x X,, is finite and

X1 % ox X | = ]I
=1

Proof. 1t’s enough to prove for n = 2, since the general case follows from this
one. Let X2 = {yl, e ,ym}, notice that X1 XXQ = X1 X {yl}U . UX2 X {ym}7
the result follows by Corollary [44] O

7 Countable Sets

A set X is countable if it is finite or there is a bijection f : N — X. In the
latter case, it is necessarily an infinite set, since as N is infinite, and we use
the term countably infinite.

Example 47. The set X = {2n € N|n € N} of all even numbers is count-
able. The function f(x) = 2x defines a bijection between X and N.

Theorem 48. Let X be an infinite set. Then X has a countably infinite
subset.
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Proof. 1t’s enough to find an injective function f : N — X, since every
injective function is a bijection over its image. Choose an element a; € X,
set X1 = X — {a1} and f(1) = a;. Since X is infinite, X; is also infinite,
choose an element ay in X;, and set f(2) = ay. Proceeding by induction, we
have f(n) = a,, a, € X,,_1, where X,, 1 = X —{ay,as,...,a, 1}

Suppose f(n) = f(m), with n,m € N, then a, = a,,, which is possible
only if n = m. Therefore, f is injective. m

Corollary 49. A set X is infinite <= there is a bijection f : X — Y,
where Y C X is a proper subset.

Proof. (=) Suppose X infinite, by theorem X has a countably infinite
subset, say Z = {aq, az,as,...}. Set Y = (X — Z)U{az, a4, ag, ...} and
define f(z) =z ifx € X —Z, and f(a,) = ag, otherwise. The function
f(x), defined this way, is clearly a bijection.

(<) Follows from Corollary [36]

A function f: X — Y is called increasing if x <y = f(z) < f(y).
Theorem 50. Every subset X of N is countable.

Proof. The proof is very similar to the one in theorem 48 If X is finite then is
countable, so assume X infinite. We define an increasing bijection f : N — X
by induction. Let X; = X, a; = min X (which exists by Theorem , and
set f(1) = a;. Now, define X5 = X — {a1} and f(2) = a3 = min X3. By
induction, we define f(n) = a,, = min X,,, where X,, = X —{ay,as,...,a,-1}.
The function f(n) is injective by construction, suppose f(n) not surjective.
There is x € X such that ¢ f(N). So x € X,, for every n, which implies
that © > f(n) for every n, and z is a bound for the infinite set f(N), a
contradiction by Theorem O

Corollary 51. Let X be a countable set. Then for anyY C X, Y s count-
able.

Corollary 52. The set of all prime numbers is countable.

Corollary 53. LetY be a countable set and f : X — Y an injective function.
Then X s countable.

Corollary 54. The set Z. of integers is countable.
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Proof. The function f : Z — N defined by f(0) = 1, f(m) = 2m,if m > 0
and f(m) = —2m + 1,if m < 0, is bijective. ]

Corollary 55. Let X be a countable set and f : X — Y a surjective function.
Then Y 1is countable.

Proposition 56. The set N x N s countable.

Proof. The function defined by f(m,n) = 2™3" is a bijection f : N x N —
N. O]

Corollary 57. Let X1, Xy, ... be a countable collection of countable sets. Set
X = U Xi, then X is countable.

=1

Proof. Let f; : N — X, be a counting function for each ¢ € N. Then
f(i,m) = fi(m) defines a surjection f : N x N — X. By Corollary [55]
X is countable. O]

Corollary 58. If X,Y are countable sets then X XY is countable.

Proof. Let f1 : N — X, fo: N = Y be counting functions. Then f(m,n) :=
(fi(m), f2(n)) defines a bijection, Proposition 56| concludes the proof. O

Corollary 59. The set Q of rational numbers is countable.

Proof. Let Z* denote the set of nonzero integers. Define the surjective func-
tion f : Z x Z* — Q given by f(m,n) = ™. By Corollary , Q is count-
able. O

8 Uncountable sets

A set X is uncountable if it’s not countable. Given two sets X and Y, if
there is a bijection f: X — Y, we say X and Y have the same cardinality,
in symbols:

card(X) = card(Y).

If we assume f injective only and there is no surjective function g : X — Y,

then we say
card(X) < card(Y).

The cardinality of the Natural numbers N is denoted by
card(N) = Ny.
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If the set X is finite with n elements, we say card(X) = n. By definition, for
any infinite set X:
Ny < card(X).

Recall that given two sets X and Y, the set F(X,Y) denotes the set of all
functions betwenn X and Y.

Theorem 60. (Cantor) Let X and Y be sets such that Y has at least two
elements. There is no surjective function ¢ : X — F(X,Y).

Proof. Suppose a function ¢ : X — F(X,Y) is given and let ¢, = ¢(x) :
X — Y be the image of x € X, which itself is a function. We claim that
there is a f : X — Y that is not ¢, for any X. Indeed, for each x € X let
f(x) be an element different than ¢, (z) (this is possible sice |Y| > 2), then
f # ¢, for every x € X and hence, ¢ is not surjective. O]

Corollary 61. Let Xy, Xo,... be a countable collection of countably infinite

o

sets. Then the infinite cartesian product X = [ X; is uncountable.
i=1

Proof. 1t’s enough to prove the result for X; = N. In this case, X = F(N,N)
and the result follows from Theorem [60. m

Example 62. The set X = {(a1,a9,a3,a4,...} of all sequence of natural
numbers is uncountable.

Example 63. The set of all real numbers R is uncountable. This will be
proved in the next sections.
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II The real numbers R

1 Fields
A field K is a set K together with two operations:

+: K xK—>Kand - : K x K=K

satisfying the following properties (also called field axioms):
Given x,y, 2z € K, we have:

L (z+y)+z=x+ (y+ 2);
2. z+y=y+ux
3. There is an element 0 € K such that Vz € K, 4+ 0 = x;

4. For any x € K there is an element y € K such that x +y = 0. We
define —z := y, and write z — x instead of z + (—z);

b (x-y)-z=x-(y-2);
6. x-y=1y-x;
7. There is an element 1 € K such that 1 #0 and Vx € K, z - 1 = x;

8. For any x # 0 there is an element y € K such that z-y = 1. We define

x~! =y, and write < instead of z - x~

9. z-(y+z2)=z-y+zx- =z

Given two fields K and L, we say a function f : K — L is a homomorphism,
if f(x4+y) = f(x)+f(y) and f(c-z) = c- f(x). We say f is an isomorphism if,
in addition, f is bijective and f~!is also a homomorphism. An automorphism
[+ K — K is an isomorphism between K and itself.

Example 1. The set rational numbers Q together with the operations




Example 2. If p is prime, the set of integers mod p, Z, = {0,...,p — 1},
with operations @ +b=a+b and a-b=a-b, is a field. It easy to see that
0= 0,1 =1 in this case. Moreover, by Fermat’s little theorem a - a?~% = 1,
hence a—! = aP=2.

Example 3. The set of rational functions, Q(t) = {% s p(t), q(t) € Qlt], q(t) #
0}, where Q[t] is the set of polynomials with rational coefficients, with the
usual operations of fractions is a field.

Proposition 4. Let K be a field and x,y € K, then
a. r-0=0;
b. x-z2=y-z and z # 0 then x = y;
c.v-y=0=x=0o0ry=0;
d. 2* =y? = x = $y.
Proof.  a. Indeed, z-0+z=xz-(0+1) =z, hence z -0 = 0.

1 1

b. Wehavex =x-2- 27" =y-2-27" =y.
c. fz#0thenx-y=0-2=y=0.

d. Notice that 22 =y* = 22 —y* = 0= (z — y)(z + y) = 0.

2 Ordered Fields

An ordered field is a field K together with a subset P C K, called the set of
positive elements, such that for any x,y € P the following properties hold:

(I) (Close under addition/multiplication) v +y € P,x -y € P;

(IT) (Trichotomy) For any = € K, only one of the following occurs: x = 0,
re P—xeP.

If we denote —P = { —p; p € P}, then K can be written as a disjoint union
K =PU-PU{0}

Notice that in an ordered field if z # 0 then z? € P. In particular 1 € P in
an ordered field.
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Example 5. The field of rational numbers Q together with the set
Pz{%e@;mbeN}

1s an ordered field.

Example 6. The field Z, can’t be ordered, since if we add 1, p times, the
result is 0, i.e. 1+ -4+ 1 = 0, but in an ordered field the sum of positive
elements has to be positive, in particular nonzero.

Example 7. The field Q(t) of ezample [ together with the set
() : : : .
P = W, the leading coefficient of p(t) - q(t) is positive
q
is an ordered field.

In an ordered field K, if z —y € P we write z > y (or y < z). In
particular, x > 0 implies x € P and x < 0 implies x € —P. Notice that if
x € Pand y € —P then z > y.

We use the notation x < y to indicate x < y or z = y, in a similar way
we can define x > y as well.

Proposition 8. Let K be an ordered field and x,y,z € K, then

(I) (Transitivity) x <y andy < z = x < z;

(1) (Trichotomy) Only one of the following occurs: x =y, © > y,x < y;
(III) (Sum monotoneity) x <y = x+ 2z <y+ z;

(1V) (Multiplication monotoneity)Ilf z > 0, thenxz <y =x -z <y-z and if
z2<0,thenx<y=x-2>y-z.

Since in an ordered field K, 1 is always positive we have 1 +1 > 1 > 0
and 14+ 1+ 1> 141, so we can easily define an increasing injection

f N> K
/—IL%
by f(n) =1+ 1+---+ 1, or more precisely, f(1) = 1 and f(n+1) = f(n)+1.
Therefore, it makes sense to identify N with f(N) C K, so henceforward we
will simply write

NCK
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whenever K is an ordered field.

Notice in particular that f(n) is never zero in this case, hence every or-
dered field is infinite. Whenever f(n) is never zero, for f defined above, we
say K has characteristic zero; if f(p) = 0, then we say K has character-
istic p.

Example 9. The field Q clearly has characteristic zero. The field Z, has
characteristic p.

Proceeding as before, we can extend the bijection above to f : Z — K
and view Z C K as well. Hence, we have N C Z C K.
Finally, we can use f : Z — K to define a bijection g : Q — K by

9(%) = f(a)- f(b)~'. So we may identify Q with g(Q) C K and write

NCZCQCK
whenever K is an ordered field.

Example 10. If K = Q in the above discussion, then g : Q — Q is the
identity automorphism. i.e. g($) = .

Proposition 11. (Bernoulli’s inequality) Let K be an ordered field and x €
K. Ifx>—1andn €N, then

l14+x)">14+n-zx

Proof. We use induction on n € N. The case n = 1 is clear, suppose the
result valid for n. Then (14+z)"™ =(1+2z)"(14+2z) > (1+n-2)(1+x) =
l+z+n-z+2*>>1+z+n-x, as expected. (Notice that we used the fact
that x > —1 in the first inequality and proposition [§(1V).) O

3 Intervals

Let K be an ordered field and a < b be elements of K. We call any subset
of the following form an interval:

la,b] ={z € K;a < x <b} (closed interval)
(a,b) ={x € K;a < x < b} (open interval)
la,b) ={z € K;a <z <b}and (a,b] = {zr € K;a < x < b}
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(—00,b) ={xr € K;z < b} and (—o0,b] = {z € K;z < b}
(a,00) ={x € K;a <z} and [a,00) = {z € K;a <z}
(—o0,00) = K

If a = b, then [a, a] = a and (a,a) = (). We say the interval [a, a] is degenerate.
Let K be an ordered field and z € K. We define the absolute value of z,
denoted by |z|, by
|z| := max{z, —x},

which is to say, |z| is the greater of the two numbers x or —z. Geometrically,
if the elements of K are put in a straight line, || measures the distance
between x and 0, hence |z — a| is the distance between z and a.

Theorem 12. Let x,y be elements of an ordered field K. The following are
equivalent:

(i) ~y<z<y
(i) x <y and —x <y
(i1i) |x| <y
Corollary 13. Let x,a,¢ € K then
lt—a|<e <<= a—e<zr<a-+e

Remark 2. The theorem and corollary remains valid if we exchange < by
<.

Theorem 14. Let x,y,z be elements of an ordered field K .
(1) o +yl < |of +[yl;

(i) |z -yl = [x] - yl;

(1) |z| = |y| < [lz| = [yl| < |z —yl;

() & =2 <[z —yl+ |y — 2|
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Let K be an ordered field and X C K. An upper bound of X is an
element M € K such that x+ < M for every x € X. Similarly, a lower
bound is an element m € K such that m < x for every x € X. We say X is
bounded from above if it has an upper bound, bounded from below if it has a
lower bound, and bounded if it has upper and lower bounds, i.e. X C [m, M].

Example 15. The principle of well-ordering guarantees that N is bounded
from below when viewed as a set inside the ordered field Q. N is obviously
not bounded from above in Q, since given any n, n+ 1 > n.

Example 16. Oddly enough, N is bounded from above in the ordered field
Q(t) from example[] Since given any n € N, the rational function r(t) =t
satisfies r(t) —n > 0. Therefore, r(t) € Q(t) is an upper bound for N and
the latter is bounded from above, hence bounded, in Q(t).

Theorem 17. Let K be an ordered field. The following are equivalent:
1. N is not bounded from above;
2. Giwen a,b € K, with a > 0, dn € N such that n - a > b;
3. Gwen a >0 K, 3n € N such that0<%<a.
A field K satisfying the above conditions is called Archimedean field.
Proof. The proof is based on the implications 1 = 2, 2 = 3, 3 = 1.
(1 = 2) Since N is unbounded, 2 < n for some n € N, hence n - a > b.
(2= 3) Take b=11in 2.

(3= 1) For any a > 0, consider <, by 3., 3n € N such that + < 1 <= n >
a. Therefore, no positive element is an upper bound. Similarly, no
negative element can be an upper bound since if x is negative —x is
positive and we can apply the same argument.

O
Example 18. Ezamples|15 and|16 say that Q is Archimedean but Q(t) isn’t.
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4 The real numbers R

Let K be an ordered field and X C K be a bounded from above subset. The
supremum of X, denoted sup X is the least upper bound of X, in other
words, among all upper bounds M € K of X, ie. x < M for every x € X,
sup X € K is the least of them. Therefore, sup X € K has the following
properties:

(i) (upper bound) For every z € X, x < sup X.

(ii) (least upper bound) Given any a € K such that z < a for every x € X,
then sup X < a. In other words, if a < sup X then 3b € X such that
a <b.

Lemma 19. If the supremum of a set X exists, it is unique.

Proof. Suppos a = sup X and b = sup X. By (ii) above, a < b since a is
the least upper bound, but for the same reason we also have b < a, hence
a =b. O]
Lemma 20. If a set X has a mazximum element, then max X = sup X.

Proof. Indeed, max X is obviously an upper bound and any other upper
bound is greater than or equal to the maximum. O

Example 21. Consider the set I, = {1,2,...,n} C Q. Then supl, =
max I, = n.

Example 22. Consider the set X = {—%;n € N} C Q. Then sup X = 0.
Indeed, 0 is an upper bound and given any number a < 0 we can find —%
such that a < —% since Q is an Archimedean field.

Similar to the idea of supremum, the infimum of a bounded from below set
X C K, denoted inf X, is the greatest lower bound. The element inf X € K
has the following properties:

(i) (lower bound) For every z € X, z > inf X.

(ii) (greatest lower bound) Given any a € K such that x > a for every
x € X, then inf X > a.

The lemmas [19) and [20] extend naturally to the notion of infimum, namely,
if X C K has a minimum element m then m = inf X. Additionally, the
infimum is unique. More generally, we easily conclude that:
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Proposition 23. Let X C K be a bounded subset of an ordered field K.
Then, inf X € X <= infX = minX and supX € X <= supX =
max X . In particular, every finite set has a supremum and infimum.

Example 24. Consider the set X = (a,b), an open interval in a ordered field
K. Then inf X = a and sup X = b. Indeed, a is a lower bound, by definition
of interval, suppose ¢ > a, we claim c can’t be a lower bound. For instance,
consider d = “T*C € (a,b). We have d < ¢ if ¢ < b, hence the conclusion.

Example 25. Let X = {3:;n € N} C Q. Then inf X =0 and sup X = 1.

Notice that max X = %, by lemma sup X = % Now, 0 is obviously a

lower bound. Suppose ¢ > 0, since Q is Archimedean we can find n € N
such that n +1 > % By Bernoulli’s inequality (Proposition , we have
=01+1)">1+n> %, hence ¢ > = and ¢ can’t be a lower bound, so

277.
inf X = 0.
Lemma 26. (Pythagoras) There is no v € Q satisfying x> = 2.

2
Proof. Suppose not, then z = £ satisfies <§) = 2, or p?* = 2¢°, where

p,q € Z and q # 0. If we decompose p? in prime factors, it will have an even
number of factors equal to two, the same occurs for ¢%. Since 2¢* has an odd
number of factors two, we can’t have p? = 2¢%. O

Proposition 27. Consider the sets of rational numbers X = {x € Q;x >
0 and 2* <2} and Y = {y € Q;y > 0 and y* > 2}. There are no rational
numbers a,b € Q such that a =sup X and b =infY.

Proof. We prove the result concerning the supremum, the result about in-
fimum can be proven similarly. We first claim X doesn’t have a maximum
element. Given z € X, take r < 1 satisfying 0 < r < g;jfi, then x +r € X,
so x € X can’t be the maximum. Indeed, since r < 1 = 72 < r, and we have

(z+r)y =2+ 2or+r? <2 +2r+r=2+rQRr+1)<2?+2-2°=2.

By a similar reasoning, given y € Y, it’s possible to find » > 0 such that
y—r €Y, s0Y doesn’t have a minimum element. Finally, notice that if x €
X,y€Y thenx <y,sincez? <2<y’ =0<(z—y)(z+y) = 0< (z—y).

Suppose there is a number a € Q such that a = supX. Then a ¢
X, otherwise it would be its maximum. If a € Y, since Y doesn’t have a
minimum, there would be a b € Y such that b < a, then x < b < a, a
contradiction since a is the supremum. We conclude that a ¢ X and a ¢ Y,
so a has to satisfy a® = 2, a contradiction by lemma . O
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Since every ordered field contains Q, in the proposition above, if there is
an ordered field K such that every nonempty bounded from above set has a
supremum, then a = sup X is an element of K satisfying a? = 2.

Example 28. (A bounded set with no supremum) Let K be a non-Archimedean
field. Then, by definition, N C K is bounded from above. Let M € K be an
upper bound for N. Son+1 < M for all n € N, but thenn < M — 1 and
M — 1 is also an upper bound. We conclude that if M is an upper bound,
M — 1 is one as well, hence supN doesn’t exists in K.

We say that an ordered field K is complete, if every nonempty bounded
from above subset X C K has a supremum in K. This motivates the follow-
ing axiom (also called the fundamental axiom of mathematical analy-
sis):

Axiom. There is a complete ordered field, represented by R, called the
field of real numbers.

Remark 3. Notice that in a complete ordered field K, if X C K is bounded
from below then X has an infimum.

Remark 4. From example |28 we conclude that every complete ordered field
is Archimedean.

Proposition 29. If K, L are complete ordered fields, then there is an iso-
morphism f : K — L.

The proposition above says that, in some suitable sense, R is the only
complete ordered field.

Until the end of the semester, every topic we discuss will involve the
complete ordered field R and its properties.

The discussion above leads to the conclusion that despite there is no
number z € Q satisfying 22 = 2, there is a positive number z € R such that
2> = 2. We denote that number by v/2. There is nothing special about 2, so
we can generalize the proof above to any n € N that is not a perfect square
and conclude that we can find a positive number, denoted by +/n, such that
(vn)? =n.

We can generalize even further and talk about the n'*-root of m € N,
denote by {/m. Namely, a positive number z € R such that z" = m.

We call the elements of the set R — Q, irrational numbers. As we've
just seen, there are many of them, namely, numbers of the form /2, for
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n > 2, are all irrational. In fact, we shall see next that irrational numbers
are everywhere, in a precise sense, as a subset of the real numbers.

A subset X C R is said to be dense in R if for every a,b € R, with a < b,
we can find z € X such that a < x < b. In other words, X is dense in R if
every open non-degenerate interval (a,b) contains a point z € X.

Example 30. Let X = R —Z. Then X is dense in R. Indeed, every open
interval (a,b) is an infinite set (since R is ordered). On the other hand,
Z N (a,b) is finite, hence we can always find a number x ¢ Z with x € (a,b).

Theorem 31. The set of rational numbers, Q, and the set of irrational
numbers, R — Q, are both dense in R.

Proof. Let (a,b) € R be a non-degenerate open interval. The idea of the
proof is that since b — a > 0, there is a natural number n € N such that
% < b—a, hence a multiple of this number, say ™ eventually will be in (a, b).
More formally, let X = {m € Z;™ > b}. Since R is Archimedean, X # 0.
Notice that X is bounded from below by nb € R. By the well ordering
principle, X has a smallest element, say mo € X. By the smallness of my,
the number mg — 1 ¢ X, so mOT_l < b. We claim a < mUT_l Suppose not,
then mOT’l < a < b < =, which implies that b —a < %—’”OT’l = %, a
contradiction. Therefore, the rational number mOTfl satisfies a < mOTfl < b
and Q is dense in R. We can apply the same argument mutatis mutandis to
conclude that R — Q is dense. Namely, instead of using % in our argument,

we use an irrational number, say \/75 O]

Theorem 32. (The nested intervals principle) Let Iy O I O ... 1, D ...

be a decreasing sequence of closed intervals of the form I, = [a,,b,]. Then

ﬂ In 7& @, or more precisely,
n=1

ﬁ I, = [a,b],
n=1

where a = sup a,, = sup{a,;n € N} and b = inf b, = inf{b,;n € N}
Proof. By hypothesis, I, O I,,11,Vn € N, which implies:

al§a2<...an§...§bn§...§bggbl.
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Notice that a, is bounded from above by b;, hence the supremum of a,,
a € R, is well defined. Similarly, the infimum of b,,, b € R, is well defined.
Since b,, is an upper bound for a,, we have a < b,,,Vn € N. On the other
hand, a is also an upper bound and we conclude that

a, < a<b,,Vn e N,
A similar reasoning can be applied to b, hence

[a,b] C I,,¥n € N.

o
If © < a, we can find a,, such that x < ap,, so z & I,, = = ¢ () L.
n=1

Similarly, if > b, then we can find ny such that b,, < z,sox ¢ I,,, = x ¢
() I,. We conclude that () I, = [a, b]. O

n=1 n=1

Theorem 33. R is uncountable.

Proof. Let X = {z1,29,...} C R be a countable subset of R, which we
know exists by theorem We claim there is always an © € R such that
x ¢ X. Pick a closed interval I; not containing z;, this is possible since R is
infinite. Proceed by induction, after setting I,, not containing x,,, we select
I,11 C I, as a closed interval which doesn’t contain x,;. Proceeding this
way, we construct a nested sequence of closed intervals I; D I, O ... I, D ....
Therefore, by theorem [32], there is at least one x € R that is not in X. [

Corollary 34. Any non-degenerate interval (a,b) C R is uncountable.

Proof. The function f : (0,1) — (a,b) defined by f(x) = (b—a)x+a is bijec-
tive, so it suffices to prove the result for (0,1). Suppose (0, 1) is countable,
then (0, 1] is also countable and reasoning as before, (n,n + 1] is countable

for every n € N. Then R = (J (n,n + 1] is countable, a contradiction. [
nez

Corollary 35. The set of irrational numbers R — Q s uncountable.

Proof. Suppose not, then R = QU (R — Q) is countable, a contradiction. [J
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III Sequences and series

1 Sequences

A sequence of real numbers, denoted by z,, := z(n), is a function z : N —
R that associates to each natural number n € N, a real number z(n) € R.
There is no universally defined notation for a sequence z,, but here are
examples of common notation found in the literature:

{xn}nEN) Xns {xla T, .. '}7 ($n>
We say that a sequence x,, is bounded if there are a,b € R such that
a<x, <b,

this is equivalent of saying that z(N) C [a,b], i.e. x(n) is bounded as a
function. A sequence is unbounded when is not bounded.

A sequence x,, is bounded from above when there is b € R such that
T, < b, and bounded from below if there is an a € R such that a < x,.
Notice that a sequence is bounded if and only if is bounded from above and
below.

Let K C N be an infinite subset. Then K is countably infinite, let b :
N — K, given by k +— nj be a bijection. Given any sequence x : N — R, the
composition z,, :=zob: K — R is also a sequence, called a subsequence
of x,,.

Example 1. Let K = {n;n is even} C N and b(k) = 2k. In this case, given
a sequence T,, the sequence x,, = T, is a subsequence of x,. For example,
if €, = (=1)"d.e. {—=1,1,—1,...}, then xq, is the constant subsequence
2on = {1,1,1,...}.

Notice that every subsequence z,, of a bounded sequence z, is itself
bounded by definition. We say a sequence x, is nondecreasing if =, <
Tni1,Vn € N; and if the inequality is strict, i.e. z, < x,y1, we call z,
an increasing sequence. We define nonincreasing and decreasing sequences
in a similar way by placing > (>) instead of < (<).

A sequence that is either nondecreasing, nonincreasing, increasing, or
decreasing will be called monotone.

Lemma 2. A monotone sequence x, is bounded <= it has a bounded
subsequence.
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Proof. Only the converse is not obvious. Suppose z,, is a bounded monotone
subsequence, say ,, < T, < ... <b. Given any n € N, we can find ny > n,
hence z,, < z,, <b. O

Example 3. z, =1, i.e. {1,1,1,...}, is a constant, bounded, nonincreasing
and nondecreasing sequence.

Example 4. z,, =n, i.e. {1,2,3,...}, is an unbounded increasing sequence.

Example 5. z, = %, i.e. {1, %, %, ...}, is a bounded decreasing sequence,
since 0 <z, < 1.

Example 6. =, = 1+ (—1)", i.e. {0,2,0,2,...}, is a bounded sequence that
18 not monotone.

Example 7. 2, = 1 + 5 + 5 + ... + = is increasing, and bounded, since
o<z, < 1+1—|—%+%+...+27}_1 < 3. The sequence y,, = (1—1—%)” 1s related

to this sequence, since by the binomial theorem vy, < x,, therefore y, is also
bounded, 0 < y, < 3.

0 5 10 15 20

Figure 1: y, = (1+ )"

Example 8. Let 1 = 0 and x5 = 1, and consider, by induction, x,.o =
Tni1+xn. It’s easy to see that 0 < x, < 1, and moreover a quick computation
shows that o, = 1—(3 + 35 + ... 4+ go7) and zan = 5 (1+ 14+ &+ ...+ 77) -
So x, is a bounded sequence that is not monotone.

Example 9. Let a € R such that 0 < a < 1. The sequence x, = 1 +a+a®+

_an+1 . . . . .
coFar =1 L s increasing, since a > 0, and bounded since 0 < x, < ﬁ
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5 10 15 20

Figure 2: xp190 = Tpi1 + Tn

Example 10. The sequence {1,v/2,v/3,v/4,...} given by x, = I/n, in-
creases for n = 1,2. We claim that starting at the third term, this sequence
is decreasing. Indeed, T, 1 < T, is equivalent to (n + 1)" < n"™ ! which is
equivalent to (1 + %)” < n, which is true for n > 3 by Example @ Hence, x,
15 bounded.

of 20 40 60 80 100

Figure 3: z, = {/n

2 The limit of a sequence

Informally, to say a € R is the limit of the sequence z,, is to say that the
terms of the sequence are very close to a, when n is large. More precisely,
we quantify this using the following definition:

lim z, =a:=Ve>03ng € Nyn>ny = |z, —al <e

n—o0

In other words: “The limit of sequence x, is a, if for every positive number
€, no matter how small it is, it’s always possible to find an index ng such that

35



the distance between x,, and a is less then €, forn > ng.”
Additionally, the above is the same of saying that any open interval

(a—€,a+e€)

centered at a and with length 2¢, contains all the points of the sequence x,,
except possibly a finite amount of them.

Remark 5. It’s a common practice to omit “n — oo "and write lim x,, only.

When lim z,, = a, we say x,, converges to a, also denoted by x,, — a, and
call x,, convergent. If x, is not convergent, we call it divergent, i.e. there is
no a € R such that limx,, = a.

Theorem 11. (Uniqueness of the limit) If limz, = a and limz,, = b, then
a=b.

Proof. Let limx,, = a and b # a, it’s enough to prove that lim z, # b. Take
€= @, then since lim z,, = a, we can find ng such that n > ny = |z, —al <
e. Therefore, z, ¢ (b —€,b+ €) if n > ng and we can’t have limz,, =b. O

Theorem 12. Iflimz, = a, then for every subsequence x,, of x,, we also
have lim z,, = a.

Proof. Indeed, since given € > 0 it’s possible to find ngy such that n > ny =
|z, —a| < €, the same ny works for z,, as well, namely, ny > ng = |z,, —a| <
€. ]

Corollary 13. Let k € N. Iflimx, = a then limz,, = a, since T, 1S a
subsequence of x,,.

In other words, Corollary says that the limit of a sequence doesn’t
change if we omit the first £ terms.

Theorem 14. Every convergent sequence x,, s bounded.

Proof. Suppose limz,, = a. Then it’s possible to find ng such that z, €
(a —1,a+1) for n > ng. Let M = max{|x1]|,...,|Tn|,|a — 1],]a + 1|}, then
Ty € (=M, M). O

Example 15. The sequence {0,1,0,1,0,1,...} can’t be convergent by theo-
rem[19, since it has two subsequences converging to different values, namely,
Top, = 1 and 9,1 = 0. Also, this sequence is an example of a bounded
sequence which is not convergent, illustrating the fact that the converse of

theorem [1]) is false.

36



Theorem 16. Every bounded monotone sequence is convergent.

Proof. Suppose z,, < x,11, the other cases are proved similarly. Since z,, is
bounded, sup x,, is well defined, say a = supz,. Let ¢ > 0 be given, then
dng € N such that a — ¢ < z,,, but since z,, < 2,41, we must have have
a— € < T,, Yn > ng. We obviously have x, < a, hence a —€¢ < z, < a+¢€
for n > ng and limx,, = a. O

Corollary 17. If a monotone sequence x,, has a convergent subsequence then
T, 1S convergent.

Example 18. FEvery constant sequence x, = k € R s convergent and
limz,, = k.

Example 19. The sequence {1,2,3,4, ...} is divergent because it’s unbounded.

Example 20. The sequence {1,—1,1,—1,...} is divergent because it has two
subsequences converging to different values.

Example 21. The sequence z, = % 1s convergent and limx,, = 0, since R
is Archimedian and given any € > 0 it’s possible to find ng € N such that
0<ni0<6. Hence,n>n0:>%<6.

Example 22. Let 0 < a < 1. The sequence x, = a™ is monotone and

bounded, hence convergent. Notice that limx, = 0 in this case.

3 Properties of limits
Theorem 23. Let limx, =0 and y, a bounded sequence. Then
limz, -y, = 0.

Proof. Let ¢ > 0 be such that |y,| < ¢. Let € > 0 be given, and ny € N a
number such that n > ng = |z, < £. Then, n > ng = [Ty, < S-c=e. O

Example 24. Using the theorem above we have lim S = (
n—oo

Theorem 25. Let limx, = a and limy,, = 0. Then
1. imz, +y,=a+0b, imz, —y, =a—b;

2. limzx, -y, = ab;
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3. Ifb#0 thenlim%:%

Example 26. Let a € R be a positive number. The sequence x, = {/a is
bounded and monotone, hence converges. We claim

lim /a = 1.
Indeed, let L :=1im {/a and consider the subsequence vy, = Tn(nt1) then

. 1
. [ S B T liman

L =limy, =lima"® =lima»" 1 = —— =1
lim an+1

Example 27. Similar to the example above is the sequence x, = {/n. It is
bounded and monotone (starting from the third term), hence converges. We

clartm
lim /n = 1.
Let L :=lim /n and consider the subsequence y, = T2, then
L?>=limy, -y, =lim V2n =lim V2/n=1-L=1L
Hence, L=0 or L =1, but L # 0 since x,, > 1.

Theorem 28. If limx, = a and a > 0, then Ing such that x, > 0 for
n > ng. An equivalent statement is valid if a < 0, namely, up to a finite
amount of indexes, x,, < 0.

Proof. It’s possible to find ng such that n > ng = |z, —a| < §, in particular,
x> 5 >0if n > ng. The case a <0 is proved similarly. O]

Corollary 29. If x,,y, are convergent sequences and x,, <y, then limz, <
lim g,,.

Corollary 30. If x,, is convergent and x,, > a € R then limx, > a.

Theorem 31. (Squeeze theorem) If x,, <y, < z, and limx,, = lim z,,, then
limy, =limz, = lim z,.
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4 liminfz, and limsup z,

A number a € R is an accumulation point of the sequence z,, if there is a
subsequence x,, such that klim T, = Q.
—00

Theorem 32. a € R is an accumulation point of the sequence x,, if and only
if Ve > 0, there are infinitely many values of n € N such that z,, € (a—e, a+e).

Proof. The implication is clear, we prove the converse only. Take ¢ =

1,3,%,---, ..., then it’s possible to find z,, such that |z, —a| <  for
every k € N and moreover n, < ngy1, in particular, klim Ty, = Q. O
—00

Example 33. Iflimz, = a then x, has only one accumulation point, namely
a € R. This follows directly from theorem [13

Example 34. The sequence {0,1,0,2,0,3,...} is divergent. However, it
has 0 as an accumulation point, due to the constant subsequence o, 1 =
0. Similarly, the divergent sequence {1,—1,1,—1,1,—1,...} has only two
accumulation points: 0 and 1. The divergent sequence {1,2,3,4,5,6,...}
doesn’t have an accumulation point.

Example 35. By theorem every real number r € R is an accumulation
point of a sequence of rational numbers.

We shall see below that every bounded sequence has at least two accu-
mulation points, and the sequence converges if and only if they coincide.
Let x,, be a bounded sequence, say m < x,, < M, with m, M € R. Set

X ={xn, Tns1, ..}

Then X,, C [m, M] and X,,,; C X,,. Define a,, := inf X, and b,, := sup X,,,
then
m<a <a<...<a, <. .<b, <. <by <0y <M,

and the following limits are well defined ¢ = lim a,, = sup a,, and b = limb,, =
inf b,,. We define the limit inferior of z,, as

liminf z, :=a
and the limit superior of x, as

limsup z,, := b.
We obviously have

liminf z,, <limsup x,.
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Example 36. Consider the sequence x, = {0,1,0,1,0,1,...}. Using the no-
tation above, a, =0 and b, = 1. Therefore, liminf x,, = 0 and limsup z,, =
1. More generally, we have:

Theorem 37. Let x,, be a bounded sequence. Then liminf x,, is the smallest
accumulation point and lim sup x,, s the greatest one.

Proof. We prove the limit inferior claim, the other part can be proved anal-
ogously. First, we claim that a = liminf z, is an accumulation point. In-
deed, using the notation above, a = lima,, hence given any ¢ > 0, for
n > ng, we have a — € < a, < a + €. In particular, choose n; > ng, then
a—¢€ < ay, < a-+ e Therefore, for n > n; we have a,, <z, < a+e We
conclude that a — € < x, < a+¢€, by theorem [32] a is an accumulation point.
To prove the minimality, let ¢ < a. We claim ¢ is not an accumulation point.
Since ¢ < a = ¢ < ay,, for some ny € N. Hence, ¢ < a,, < x, for n > ny.
Finally, setting € = a,,, — ¢, we conclude that the interval (¢ —e¢, c+¢€) doesn’t
contain any z,, for n > ng, by theorem [32] this concludes the proof. O]

Corollary 38. (Bolzano—Weierstrass theorem) Every bounded sequence x,
has a convergent subsequence.

Proof. Since x,, is bounded, a = liminf x,, is well defined and is an accumu-
lation point. In particular, there’s a subsequence of z, converging to a. [

Corollary 39. A sequence x,, is convergent if and only if lim inf z,, = lim sup z,,
(x, has a unique accumulation point)

Proof. 1f x, is convergent, all subsequences converge to the same limit,
in particular liminfx, = limsupx, = limz,. Conversely, suppose a =
liminf x,, = limsup x,,. Then, using the notation above, we can find ng such
that a — € < ap, < a <b,, < a-+eandn > ng implies a,, < z, < b,,. We
conclude that a —e < z,, < a + ¢. O

Corollary 40. If ¢ < liminf z, then dng € N such that n > ng = ¢ < x,.
Similarly, if ¢ > limsup x,, then dn; € N such that n > n; = ¢ > x,.

5 Cauchy Sequences

A sequence z,, is called a Cauchy sequence if given ¢ > 0 we can find
ng € N such that for n, m > ng we have

|Ty — x| < €
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In other words, a Cauchy sequence is a sequence such that its terms x,
are infinitely close for sufficiently large n. It’s reasonable to expect that a
sequence with this property converges, and that is indeed true as the theorem
below shows (for sequences in R, we will see in a few weeks when we talk
about topology, that it’s possible to construct a topological space where no
Cauchy sequence converges.)

Theorem 41. Every Cauchy sequence is convergent.
The proof is a direct consequence of the two lemmas below.
Lemma 42. Every Cauchy sequence is bounded.

Proof. By definition, we can find ng € N such that m,n > ng = |z, — z,,| <
1. Fix x,, and set M := max{|z1|, |x2|,. .., |Tnol|s|Tm — 1|, |Tm + 1]}, then
n € [=M, M]. O

Lemma 43. If a Cauchy sequence x,, has a convergent subsequence x,, with

klim T, = a then it converges and lim z,, = a.
— 00

Proof. Given € > 0, it’s possible to find ng such that m,n > ng = |r,—z,,| <
5. Additionally, it’s possible to find mg such that n, > mg = |z,, —al < §,
take one my > ng such that this is true. Then n > ng = |z, — a| <
Ty — Ty, | + |T0, — a] <e. O

Now we prove the converse of the theorem above.
Theorem 44. Every convergent sequence is a Cauchy sequence.

Proof. Suppose a := limz,,. Then it’s possible to find ny and n; such that
n>nyg = |z, —al < §and m >n; = [z, —a| < 5. We conclude that

|2y — Tp| < |2, — a| + |z — a] <,
for m,n > max{ng, n1}. O
We conclude that

Corollary 45. A sequence x,, of real numbers is a Cauchy sequence if and
only if it converges.
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6 Infinite limits

A divergent sequence x,, converges to infinity, denoted by lim z,, = +o0, if for
any number M > 0, there is ng > 0 such that n > ng = z,, > M. Similarly,
A sequence x,, converges to negative infinity, denoted by lim x,, = —oo, if for
any number M > 0, there is ng > 0 such that n > ng = z, < —M.

Example 46. The sequence x,, = n converges to infinity, since given any
M > 0, take any natural number ng > M, then x, =n > M if n > ng. On
the other hand, the sequence x, = (—1)"n is divergent but doesn’t converge
to 0o, nor to —oo, since it is unbounded from above and below, and as a
consequence of the definition a sequence converges, say to +oo, then it’s
bounded from below, and similarly, converges to —oo, then it’s bounded from
above.

The following theorem, similar to theorem gives some properties of
infinite limits. The proof will be omitted.

Theorem 47. (Arithmetic operations with infinite limits)

1. Iflimx, = 400 and y, is bounded from below, then lim(z,+y,) = +00
and lim(z,, - y,) = +00 ;

2. If x, > 0 then limz, = 0 if and only if lim ﬁ = +00;
3. Let x,,y, > 0 be positive sequences. Then:

(a) If z, is bounded from below and limy, = 0 then lim w2 = 400;

(b) If x, 1s bounded and limy,, = +oo then lim 3 = 0.

Example 48. Let x,, = vVn+1 and y, = —+y/n. Then limz, = oco,limy, =
—o0. We have:

(Vn+1—+/n)(vn+1++/n)  lim 1

Vn+1+n Vn+14+yn

which gives lim(x,, + y,) = 0. However, it’s not true in general that
lim(z, + y,) = limz, + limy, if both sequences have infinite limit. For
example, T, = n* and y, = —n give a counter-example, since limx,, = +00,
limy, = —oo, but im(x,, + y,) = +00.

lim(z,+y,) = limvn + 1—/n = lim
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Example 49. Let z,, = [2+ (—1)"|n and y,, = n. Then limz, = limy, =
+00, but lim $* = lim[2 + (—1)"] doesn’t exists. So it’s not true in general
that lim = =1 if lim x,, = lim y,, = +o0.

Yn
Example 50. Let a > 1. Then lim % = +00. Indeed, a =1+ s with s > 0,

n n(n—l)sg
soa"” = (1+s)" > 1+ns+@32 forn > 2, but lim =22 +00,
hence lim% = 400. Arguing by induction, it’s easy to show that for any

m € N, limg—:l:+oo.

Example 51. Let a > 0. Then lim :—T'L = +00. Indeed, pick ng € N such that
0 > 2. Then

n! nn—1)...(ng+ 1)ng! - no!

ar a“va...a amno
N——

n—ng

and it follows that lim :—T'L = +00.

7 Series

Given a sequence of real numbers z,,, the purpose of this section if to give
meaning to expressions of the form, x1 + x9 + 3 + ..., that is, the formal
sum of all the elements of the sequence x,,.

A natural way of doing this is to set s, := x1 + ... + x,, called partial

sums, and define
o
E T, = lims,
n=1

o
It’s a common practice to write »  x, instead of Y x,, and to call x,, the

n=1
general term of the series. In these notes we shall adopt these conventions.
Since we define ) z,, as a limit, it may or may not exist. In case )z, =
L € R we say that the series ) x,, converges, otherwise we say > z,, diverges.

Theorem 52. If the series > x,, converges then limz,, = 0.

Proof. Indeed, we have =, = s,, — s,,_1. Therefore, limz,, = lim(s,, — s,,_1) =
lim s, —lims,_1 = 0. ]

The converse of the theorem above is not true. Here’s a counterexample:
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Example 53. (harmonic series) Consider the series Y, L. We obviously
have lim% = 0, however, we claim Z% diverges. Indeed, in order to prove

that lim s,, diverges, it’s enough to find a divergent subsequence. Take for
example Son :

1 1
—1+1+ 1+1 + 1+1+1+1 +
a 2 3 4 5 6 7 8
>1+1+2+4+8+ +2n_1
2 4 8 16 T on
1
=1 -
+n2

Hence, son > 14n - % and lim s9n = +00.

Example 54. (geometric series) The series > a™, with a € R, diverges if
la| > 1, since the general term x,, = a™ doesn’t satisfy limz,, = 0. If |a| < 1,
then >~ a™ converges. Indeed, we can show by induction that

1— an+1

Sn = )

1—a
and hence Y- a™ =lims, = T, if [a| < 1.
Theorem 55. Given series > ay, Y b,, we have:

1. If >~ a, and > b, converge, then > (a, + b,) converges and » (a, +
bo) =D a, + 3. by.

2. Letc € R. If " a, converges, then ) ca, also converges, and >, ca, =
Y ay.
n n—1
3. Suppose Y a, and )b, converge, set ¢, := > a;b, + Y a,b;. Then
i=1 j=1
> cn converges and Y e, = (O] an) - (O] bn)-

Example 56. (telescoping series) The series > ﬁ is convergent. Since
n(nl—‘,-l) = % — n+r1’ we easily see that s, =1 — n+r1’ s0 Y m =1.

Example 57. The series Y (—1)" is divergent since the sequence (—1)" has
two distinct accumulation points, so it’s impossible to have lim(—1)" = 0.
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Theorem 58. Let a, > 0 be a nonnegative sequence of real numbers. Then
> an converges if and only if the partial sum s, is a bounded sequence for
every n € N.

Proof. The implication is clear. The converse follows from the fact that every
bounded monotone sequence converges. O]

Corollary 59. (Comparison principle) Suppose > a, and > b, are series of
nonnegative real numbers, i.e. ay,b, > 0. If there are ¢ € R and ng € N such
that a,, < cb,, forn > ng, then if Y _ b, converges, > a, converges. Moreover,
if > ay, diverges then Y b, diverges.

Example 60. Ifr > 1, the series > # converges. Indeed, the general term
of this series is positive, so the partial sums s, are increasing, hence it’s
enough to prove that a subsequence of s, is bounded. We claim son_q is

bounded. We have:

1
Sgn_1:1+§+...+m

11 11 11 1
=gty etstetw) Ty

or ' 3r T TN TN — 1)
1+ ryd 8
ar qr 87 o 2(n—1)r

n—1 9 j
-2 ()
7=0
On the other hand, the geometric series » (2%)] converges since 2% <1. We
j=0

conclude that sen_1 s bounded and the cl_aim follows.

Corollary 61. (Cauchy’s criteria) The series Y a, is convergent if and only
if given € > 0, there is ng € N such that |ani1 + . .. + pyp| < € for n > ny.

Proof. Notice that s, converges if and only if it is a Cauchy sequence (see

Corollary . m

A series > a, is absolutely convergent if > |a,| is convergent. A
series with all of its terms positive (or negative) is convergent if and only if
is absolutely convergent. Hence, in this case the two notion coincide. Here’s
a classical counterexample that shows that they don’t coincide in general:
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Example 62. Consider the series ) % We already know that % + di-

verges, however we claim that Z% converges. Indeed, notice that the
subsequence sop, satisfies

Sg < 8§40 < S < ... < Sop,
and is a Cauchy sequence, hence convergent. Whereas sa,_1 satisfies
81 >83>85 > ...> Sop—1,

so it’s bounded and monotone, hence convergent as well. Set a := lim sy, b :=
lim s9,,_1, then since S, — Sop_1 = % — 0, we necessarily have a = b. We
conclude that s, has only one accumulation point, hence converges. (We will
see later that a = b = log 2)

A series Y a, is conditionally convergent if ) a, is convergent but
> |a,| is divergent. The example above shows that > % is conditionally
convergent.

Theorem 63. Every absolutely convergent series . a, is convergent.

Proof. By hypothesis, > a, is Cauchy, so we can find ny € N such that
n > ng,Vp € N = |ap1| + ... + |ansp| < €. In particular, |a,41 + ... +
Antp| < |ans1|+. ..+ |antp| <€, the conclusion follows from Cauchy’s criteria

(Corollary [61). O

Corollary 64. Let > b, a convergent series with b, > 0. If there are ng € N
and ¢ € R such that n > ny = |a,| < cb, then the series Y a, is absolutely
convergent.

Corollary 65. (The root test) If there are ng € N and ¢ € R such that
n > ny = W < ¢ < 1, then the series ) a, is absolutely convergent. In
other words, if lim sup W < 1 then Y a, is absolutely convergent. On the
other hand, if lim sup {L/a_n| > 1, then Y a, diverges.

Proof. In this case, we can compare » _ |a,| with > ¢"; the latter (absolutely)
converges since it’s a geometric series with 0 < ¢ < 1. If {/]a,| > 1 for n
sufficiently large, then lim a,, # 0. O]

Corollary 66. (The root test — second version) If lim {/|a,| < 1, then the

series Y . ay s absolutely convergent. If lim {/|a,| > 1, then the series Y ay,
1s divergent.
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Example 67. Leta € R and consider the series Y na™. Notice thatlim {/n |a|® =
lim {/nlim |a| = |a|. Hence, if |a| < 1 the series > na™ is absolutely con-
vergent and if |a| > 1 it diverges. If |a| = 1 the series also diverges, since
limna™ # 0 in this case.

Theorem 68. (The ratio test) Let Y a, and > b, be series of real numbers
such that a, # 0,b, > 0,Yn € N and »_ b, convergent. If there is ng € N

such that n > ny = ‘az—zl’ < b’l;—:l , then > ay, is absolutely convergent.

Proof. Consider the inequalities:

QAno+2 bno+2

IN

Anp+1 brg+1

Qny+3 brg+3

IN

Ano+2 bno+2

ap by

VAN

an—1 bn—l
Multiplying them together, we have:

An

<

Ano+1 bno+1

Hence, |a,| < ¢b, and the result follows by the comparison principle. ]

Ant1
an

Corollary 69. (The ratio test — second version) If lim sup < 1, then

An41
Qn

)™ in theorem . If

> 1 then lima, # 0. O

the series . a, is absolutely convergent. Iflim sup > 1, then the series

> ay is divergent.

Proof. For the convergence, take b, = (limsup

An41
Qn

lim sup

An41
an

Corollary 70. (The ratio test — third version) If lim

an+1
an

< 1 then > ay

1s absolutely convergent, if lim > 1 then Y a, diverges.

Ant1
an
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Example 71. Fiz x € R and consider the series ) 7+, then =7

0 regardless of x, and the series is absolutely convergent. We will see later
that this series coincides with e”.

An+1

Theorem 72. (Root test is stronger than the ratio test) For any bounded
sequence a, of positive numbers we have

lim inf a4

.. . . a
1 < liminf /a, < limsup /a, < limsup nH,

Qn Qn

In particular, if lim “** = ¢ then lim {/a, = c.

Proof. It’s enough to prove that lim sup {/a,, < limsup 2+ the first inequal-
ity can be proven mutatis mutandis. We argue by contradiction, suppose
there is a k € R such that

Ap+1

limsup /a,, > k > limsup

n

Proceeding as in the proof of theorem [68 we can find ng € N such that
n >ny = a, < ck™, which implies that /a, < ¢ k and hence:

limsup a, <k
a contradiction. O

Example 73. A nice application of the theorem above is the computation of

lim \/77 Set x, = VLE and y, = #, then x, = /y,. On the other hand,
o= (14 L), hence lim i = e, and it follows that lim -7 oo =€

Example 74. Given two distinct numbers a,b € R, consz’der the sequence
r, = {a,ab,a®b,a®V*,a’b?, ...}, then the ratio - = b if n is odd, and

It — q if nois even, hence the sequence “=L doesn’t com)erge and lim =2+

In
doesn’t exist. On the other hand, we have hm vz, = Vab. This demonstmtes
that in the theorem above the inequalities can be stmct.

Theorem 75. (Dirichlet) Let b, be a nonincreasing sequence of positive num-
bers with limb,, = 0, and »_ a, be a series such that the partial sum s, is a
bounded sequence. Then the series > a,b, converges.
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Proof. Notice that

a1b1 + a2b2 4+ ...+ anbn = al(bl — bg) -+ (CLl + (lg)(bQ — b3)+
+ (a1 +as+az)(bs—by) + ...+ (a1 + ...+ an)b,

= Z Si—1(bi—1 — b;) + snby,
i=2

Since s, is bounded, say |s,| < k and b, — 0, we have lims,b, = 0.
MOI‘GOVGI‘, |Z?:2 Si—l(bi—l - b2)| S k?| 2?12([)1'_1 - bz)l = k’(bl - bn) So
> 8i—1(bi—1 — b;) converges, and therefore, by comparison, Y a,b, con-
verges as well. OJ

We can weaken the hypothesis limb, = 0 if we take > a, convergent.
Indeed, if lim b,, = c just take b}, := b,, — c and use this new sequence instead.
We conclude:

Corollary 76. (Abel) If > a, is convergent and b, is a nonincreasing se-
quence of positive numbers then Y a,b, converges.

Corollary 77. (Leibniz) Let b, be a nonincreasing sequence of positive num-
bers with limb, = 0. Then the series Y (—1)"b,, converges.

Proof. In this case, a,, = (—1)" has bounded partial sum, namely |s,| < 1,
and the result follows directly from theorem [75] O

Example 78. Some periodic real valued functions can be written as a linear
combination of > cos(nz) and > sin(nx). The properties of such functions
and generalizations are addressed in area of mathematics called Fourier
Analysis. FE. Stein’s book on the subject is a wonderful first-read of the
topic.

Take the example of f(x) = > %, we claim that if © # 27k, k € Z
then f(x) is well-defined, i.e. 2% converges. Indeed, let a, = cos(nx)
and b, = %, then b,, is decreasing, so by theorem it’s enough to prove that
the partial sums s, of > a, are bounded. In other words, we need to show
that

s, = cos(x) + cos(2x) + cos(3x) + ... 4 cos(nx)
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is bounded. Recall, that ¢ = cos(z) + isin(z). Therefore:

1+ 8, = Re[l 4 € 4 2@ 4 3% 4 | 4 ™7
1— 6(n+1)iw]

1+ s, = Re] T
_67,33

14s, < —o
T s 11— efz|

It follows that s, is bounded and we conclude that Z@ converges if

x # 2mk.

Given a series »_ a,, we define the positive part of Y a, as the series
> Pn, where p, = a, if a,, > 0, and p,, = 0 if a,, < 0. Similarly, the negative
part of Y a, as the series > q,, where ¢, = —a, if a, < 0, and ¢, = 0
if a, > 0. It follows immediately from the definition that p,,q, > 0 and
Ap = Pn — Gn, |Gn| = Pn + ¢, V0 € N.

Proposition 79. The series Y a, is absolutely convergent if and only if
> Pn and ) g, converge.

Proof. Notice that p, < |a,| and ¢, < |a,|, hence if ) |a,| converge then by
comparison » _ p, and »_ ¢, also converge. The converse is obvious. ]

Example 80. If > a, is not absolutely convergent, then the proposition is
false. Take the example of > % In this case, > p, = % and > q, =
> 5, and both diverge.

Proposition 81. If > a, is conditionally convergent then > p, and > q,
diverge.

Proof. Suppose not, say »_ ¢, converge. Then > |a,| = D pn + D qn =
> an+ 2 g, also converges, a contradiction. O

Let f: N — N be a bijection and ) a, be a series of real numbers. Set
b, = aymn). We say ) a, is commutatively convergent if > a, = ) b,
for every bijection f : N — N. We will show below that the notion of
commutative convergence coincides with absolute convergence.

Theorem 82. A series > a, is absolutely convergent if and only if is com-
mutatively convergent.
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Proof. Suppose ) a, absolutely convergent, and let b, = ay(,) for some
bijection f : N — N. It’s enough to assume that a, > 0, otherwise just use
the fact that a, = p, — qu, for p,,q, > 0, and apply the result for p, and

¢n. Now, fix n € N and let s, = > a; denote the partial sum of »_ a,, and
i=1

tn, = Y b;, the partial sum of Y b,. If we set m := max{f(z);1 <z <n}, it
i=1

follows that t, = > aru) < > a; = Sp,. We conclude that for each n € N it’s
i=1 i=1

possible to find m € N such that ¢, < s,,, and similarly using f~!(y) instead
of f(x), given m € N it’s possible to find n € N, such that s, < t,, which
implies lim s,, = lim ¢,,, hence > a, = >_b,.

Conversely, we want to show that if > a, is commutatively convergent
then it is absolutely convergent. We prove the contra-positive, that is, sup-
pose > a, is not absolutely convergent then ) a, is not commutatively
convergent. Indeed, if ) a, is divergent, just take b, = a,. Otherwise,
> a, is conditionally convergent, say > a, = S € R, and by proposition
B both > p, and ) g, diverge. Moreover, since lima, = 0, we have
limp, = limg, = 0. Take any number ¢ # S, we will show that we can
reorder a, into b, in such a way that > b, = ¢, hence > _ a, can’t be com-
mutatively convergent. Let n; be the smallest natural such that

pL+pa+...+pp >0
and no > nq, be smallest number such that

Prt. ot Pp =@ —G2— ..~ Gy, <C

Proceeding by induction, we obtain a new series > b,, such that the partial
sums ¢, approach c. Indeed, for odd i we have ¢,, — ¢ < p,,, be definition
of n;, and similarly, ¢ —t,,,, < @y,,,. Since limp, = limg, = 0, we have
lim¢,, = c. A similar argument holds for ¢ even. O
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IV Topology of R

1 Open sets

Let X C R. A point p € X is called an interior point if there is an open
interval (a, b), also called a neighborhood, such that p € (a,b) C X. In other
words, p is an interior point if all points sufficiently close to p remain in X.

It’s easy to see that p € X is an interior point if and only if de > 0 such
that (p—e, p+€) C X. Equivalently, p is an interior point if and only if3e > 0
such that |z —p| <e= 2z € X.

The set of all interior points of X, denoted by int(X) (also by X°),
is called the interior of X. Notice that by definition, we necessarily have
int(X) C X.

A set X C R is open if X = int(X). That is to say, every point of X is
an interior point.

Example 1. By definition if X has an interior point then it contains an
open interval, in particular it is an infinite set. Hence, if X = {x1,...,2,}
is finite then it has no interior points. Moreover, if int(X) # 0 then X is
uncountable since it contains an interval. Therefore,

int(N) = int(Z) = int(Q) = 0,

and they can’t be open sets. Similarly, since Q is dense, any open interval
containing an irrational point also contains a rational point, hence

int(R — Q) =0,
and it’s not open as well.

Example 2. The open interval (a,b) is open. Indeed, any x € (a,b) is an
interior point because (a,b) itself contains x. On the other hand, the closed
interval [a, b] is not open because int([a,b]) = (a,b) # |a,b]. Indeed, any open
interval containing the endpoints necessarily contain points outside |a,b|, so
the endpoints can’t be interior points. Similarly, if X = [a,b) or X = (a, ]
then int(X) = (a,b)

Example 3. The empty set () is open since its interior is also empty, i.e.

int(0) = 0.
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Example 4. The union of two open intervals X = (a,b) U (¢, d) is open.
Indeed, any interior point of X has to be an interior point of (a,b) or (c,d).

Theorem 5. a) If A, B C R are open then AN B is open

b) Given an arbitrary set L. If { A; }icr is a family of open sets, then |J A;
i€l
1S open.
Proof. a) Let z € AN B, then we can find a,b,¢,d € R such that
z € (a,b) € A and z € (¢,d) € B. Let m := max{a,c} and
M := min{b, d}, then z € (m, M) C AN B.

b) Let z € |J A;, then there is at least one iy € L such that x € A,,.
icL
Since A;, is open by definition, we can find a neighborhood (a,b) > x

such that (a,b) C A;, € |J A;. We conclude that every point is an
i€l
interior point.

O
Corollary 6. Fvery open set X C R is a union of open intervals.

Proof. For each x € X, take an open interval I, 3 x such that I, C X. Then
X=U L. m

zeX

Corollary 7. If Ay, As, ..., A, are open sets then Ay N Ay N...NA, is an
open set.

The corollary above is false for countably infinite intersections, take for
example the open intervals A, = (—+,%). Then () A; = {0}, which is not
i=1
open (since it’s finite).

Example 8. Let a € R, then the set X = R — {a} is open. Indeed, set
A = (—o00,a) and B = (a,+o0). Then both A and B are open and X =
AU B, hence X is open. More generally, we can use induction to show that
R —{ay,...,a,} is open.

Before proving the next theorem, we need the following lemma:

Lemma 9. Let {I;};cr, be a family of open intervals containing a point v € R.

Then I = | 1; is itself an open interval.
jEL
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Proof. Suppose I; = (aj,b;). By hypothesis,
CLj<$<bj,Vj€L.

Set a := infa; and b := supb; (Notice that it’s possible that a« = —00,b =
+00.) We claim that I = (a,b). The inclusion I C (a,b) is clear. Conversely,
let y € (a,b). Then by definition of supremum and infimum, we can find a;
and by such that a; <y < by, if y < b; then y € I;. Otherwise, y > b;, and
a; < b; <y, which implies that a, < y < bg, and y € I. In conclusion,
(a,b) C I, hence I = (a,b). O

Theorem 10. (Structure of open sets) Every open set X C R can be written
uniquely as a countable union of pairwise disjoints open intervals, called the
interval components of X.

Proof. Given x € X, let I, be the union of all open intervals I; contained
in X such that I; > z. By lemma |§|, I, is an open interval. We claim that
either I, N [, = 0 or I, = I,. Indeed, if I, NI, # 0 then I, N I, itself is
an interval containing, say x, hence I, NI, C I, and I, C [,. Similarly,
I.nI, CI,= I, C I, and it follows that I, = I,.

Define L = {7 € X;o ~ yif I, = I,}, that is, L is constructed by
identifying elements of X who have the same component. Then X is the

union X = |J I, of pairwise disjoints open intervals. In order to prove that
zEL
this union is countable we define a function that associates to each T € L a

random rational number (Z) € Q contained in I,. Since I, # I, = [, NI, =
0 = r(T) # r(y), hence the function r : L — Q is injective and corollary
implies that L is countable.

We are left to prove uniqueness. Suppose X = |J Ji, where J; are open

i=k

intervals, say Jr = (ay, by), pairwise disjoints. We claim the endpoints of Jj
are not in X. Indeed, if a; € X then 3J; such that a; € (a;,b;), but then
if we set b := min{by, b;}, we have (ag,b) C J, N J;, a contradiction since
Jp N J; = (. Therefore, for each x € J, J, is the largest open interval
containing x inside X, and we must have J, = [,. O

Corollary 11. (Connectedness of intervals) Let I C R be an open interval.
If I = AU B, where A and B are open and AN B = (), then either A =1 or
B=1(B=0orA=10.)
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2 Closed sets

We say a point a € R is adherent (or closure point) of the set X C R if it
is limit of a sequence of points in X. Every point of X is adherent to itself,
since any point z € X is the limit of the constant sequence z,, = x.

Example 12. Consider X = (0,400). Then 0 ¢ X but 0 is an adherent
point, since 0 = lim x,,, where x,, = % e X.

Theorem 13. A point a € R is adherent of the set X C R if and only if for
every e >0, (a —e,a+¢) N X # 0.

Proof. Suppose a is an adherent point, say lim z,, = a, where z,, € X. Given
any € > 0, we can find ng € N such that n > ng = z, € (a —€,a + ¢€), in
particular, (a —€,a+€) N X # (. Conversely, suppose (a —e,a+¢) N X # ()
for every € > 0. By choosing € = % for each n € N, we are able to construct
a sequence x, € X such that z,, € (a — %, a+ %), and hence limz,, = a. O

Corollary 14. A point a € R is adherent of the set X C R if and only if
every open interval I > a we have I N X # ().

Corollary 15. Suppose X C R is bounded, then sup X and inf X are adher-
ent points.

The set of all adherent points of X, denoted by X is called the closure
of X. A set X C R is closed if X = X. In other words, a set X is closed if
and only if it contains all of its adherent points.

Notice that a set X C R is dense in R if and only if X =R.

Example 16. The closed interval [a,b] is a closed set. Indeed, for any se-

quence x,, € la,b|, we must have a < limx, < b, hence [a,b] = [a,b]. Simi-

larly, (a,b) = [a,b], since in this case the endpoints aren’t in (a,b); but still,
we have a =lim(a + ) and b = lim(b — ).

Example 17. Using the density of the rationals in R we have Q = R and
R-—Q=R.

Theorem 18. A set X C R s closed if and only if X is open.

Proof. X is closed if and only if X¢ doesn’t contain any adherent points,
which is the case if and only if Vx € X¢ Je > 0 such that (r —e, z4+¢) C X€,
that is to say, X¢ is open. O

95



Corollary 19. R itself and () are closed sets.
Corollary 20. If A and B are closed sets then AU B s closed.
Proof. Notice that (AU B)® = A°N B¢ is open. O

Corollary 21. Let {A;};cr be a family of closed sets. Then () A; is closed.
jEL

Example 22. Arbitrary union of closed sets meed mot to be closed. For

example, for each x € (0,1), the set {x} is closed since it’s finite, but

U {z}=(0,1) is open.

z€(0,1)

Eheorem 23. Let X C R be an arbitrary set. Then X is closed. (i.e.
X-X)

Proof. Take z € X', then we can find an open interval I > x such that
INX =0, hence  in an interior point of X . ]

Example 24. R itself is closed, and so is (). Every finite set {x1,...,z,} CR
1s closed, since its complement is open. Similarly, Z is closed.

Example 25. The sets Q, R —Q, (a,b], [a,b) are not open nor closed.
Theorem 26. Every set X C R has a countable dense subset D, i.e. D=X.

Proof. Notice that, if we fix n € N, we can write R = |J [%, 1%1) For each
pEZ
neNandpeZif XN [%,1%1) # (0, choose a number z,,, € X N [%,’%1),
and let D be the set of all such z,,. By construction, D is countable. We
claim D = X. Indeed, let I be an open interval of length € > 0 containing a
point z € X. For n sufficiently large such that % < €, we can find ap € Z

such that [%, ’%1) C I, and hence z,, € I. H

A point a € R is an accumulation point of the set X C R if a = lim x,,,
for z,, € X and x,, is sequence with pairwise disjoint elements. Alternatively,
every open interval containing a contains points of X other than a itself.

The set of all accumulation points of X is called the derived set of X,
denoted by X'.

We easily see that if X’ # () then X is infinite.

Example 27. Let X = {1,1, 1 ...}, Then X' = {0}.

)99 39

56



Example 28. (a,b)" = [a,b]. Also, Q' = (R—Q)' =R’ =R, whereas Z = ).

Given a point a € R and a set X C R. We say a is an isolated point of
X if a is not an accumulation point. In other words, a is isolated if we can
find an open interval I 5 a such that I N X = {a}.

Example 29. Fvery natural number n € N is isolated. More generally, every
n € 7 is isolated.

Theorem 30. For every X C R, we have
X=XuUXx.

Proof. Since X € X and X’ C X, we have X U X’ C X. Conversely, let
a € X. Then every open interval I containing a also contains points of X,
either a itself or a point different from a, hence a € X U X". O

Corollary 31. A set X is closed if and only if X' C X.
Corollary 32. If all the points of X are isolated then X is countable.

Proof. Let D be a countable dense subset of X, ie. D = X, and x € X. By
definition, any interval containing = contains points of D, since z is isolated,
that can only happen if x € D. Hence X = D. O

We need the following lemma to prove the next theorem.

Lemma 33. Let X C R be a closed nonempty set with no isolated points.
Then Vo € R, I, C X, a closed bounded nonempty subset with no isolated
points, such that x ¢ I,.

Proof. Since X is infinite, we can find a point y € X, with y # x. Take a
interval (a,b) C R such that x ¢ [a,b] and y € (a,b). Set A = (a,b) N X,
then A C X is bounded and nonempty. The set [, = A satisfies the desired
properties. ]

Theorem 34. Let X C R be a nonempty closed set such that X' = X (X
has no isolated points). Then X is uncountable.

Proof. The proof is based on lemma |33| applied inductively in the following
way: Let {x1,xs,...} be any countable subset of X. We use the lemma to
find I; € X such that z; ¢ I, and proceed inductively by finding I,, C I,, 4
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such that z, ¢ I,. Choose y, € I, for each n. Then the sequence v, is
bounded, by Bolzano-Weierstrass theorem, it has a converging subsequence,
say Yn, — y. For n sufficiently large we have y € I,,, hence y € I, for every
n € N, since the [,, are nested, and moreover y # x,, by construction. We
conclude that it’s impossible for X to be {z1,z,,...}, a countable set. [

Corollary 35. (The contrapositive version) If X is a closed countable nonempty
set then X has an isolated point.

3 The Cantor set

The Cantor set is a bounded set K C [0, 1] defined in the following way: Start
with the interval [0,1] and remove the middle third open interval (3, ). We
are left with [0, 5] and [2,1]. Proceed inductively, removing the middle third
of each interval obtained in the previous interation, what is left is the Cantor

set K.
]
L 1] L 1]
H B H B
il 11 il 11
i1 L1
i 1

For example, the numbers %, %, %, %, ... which are endpoints of removed inter-

vals in each iteration are elements of the Cantor set K. So K has a countable
subset. Interesting enough, those are not the only points of K, as a matter
of fact most points of K are not endpoints of removed intervals, and it turns
out the K is actually uncountable as we shall see.

Since in each iteration we remove a finite amount of intervals, the number
of intervals removed is countable. If we denote each open interval removed

by I;, then
K=[0,1-JL=10.1n (R—Ufj).
j=1

=1
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Since K is the union of two closed sets, it is closed.
Lemma 36. K doesn’t have interior points, i.e. int(K) = ().

Proof. K doesn’t have any open intervals, because after each interaction the
remaining intervals shrink, so it’s impossible to exists an interval I C K of
length [, for any [ € R. Hence, K doesn’t have interior points. O

Lemma 37. Let R be the set of endpoints of removed intervals in each iter-
ation. Then R 1is dense in K, i.e. R= K.

Proof. We have to show that given any z € K, for every ¢ > 0, we must have

(x—e,x+e)NRAD. If e > %, the result is immediate, so let’s assume € < %

At least one of intervals, (x — €, x] or [,z + ¢€), is entirely contained in [0, 1],

say (z — €, z]. After the n-th iteration, only intervals of length 5= are left,
1

hence when g < ¢, part of (z—¢, z] will be removed (or was removed already

previously), and it can’t be the whole (z — ¢, ] because © € K. Hence, the
endpoint of the removed interval is the point of R we are looking for. O
Corollary 38. K is uncountable.

Proof. Tt follows directly from lemma [37] and theorem [34] m

4 Compact Sets

A open cover of a set X C R is a collection C = {U,};cr, (not necessarily
countable) of open sets U; C R, such that X C (J U;. A subcover C' of C is

jEL
a collection formed by sub-indexes L' C L, that is, C' = {U,};jer, such that
Xcyus
jEL

A set X C R is called compact, if every open cover has a finite subcover,
that is to say, we can take L’ a finite set in the definition above.

Example 39. Let X = (3;,1). The sets Uy = (0,3),U> = (3,3),Us = (% 1
form a (finite) open cover of X, since X C Uy UUs UUs. Also, Uy = (3,3)

and Us = (%, 1) form a subcover, since it is still true that X C Us U Us

59



Example 40. Consider the set X = {1, %, %, ...}, which has all of its points
1solated, so it’s possible to find an open interval I,, around each point % € X,
such that I, N {+} = {£}. Therefore, C = {I,}nen forms an open cover of
X, and moreover, C doesn’t have any open subcover, since if we remove at

least one I,, of C, it ceases to be a cover in the first place.

Theorem 41. (Borel-Lebesque Theorem — simple version) Any closed inter-
val [a,b] C R is compact.

Proof. We need to prove that any open cover C = {I,};¢, of [a,b] has a finite
subcover. We may assume that I; are open intervals, since each I; is open,
so it has to contain an interval around each point.

Let X be the set of all points x € [a, b] such that [a,z] can be cover be
finitely many I;. Notice that X # (), since a € X. Set ¢ = sup X, we claim
¢ = b. First, we prove ¢ € X. Indeed, ¢ < b, so we can find I;, = (ao, bo)
covering c. Since ¢ > ag, we can find ap < x < ¢such that [a, 2] C [U...UI,,
but then [a,c] C [ U...UI, U, hence ¢ € X. If ¢ < b, then we can find
d € I, such that ¢ < ¢ < b. But then [a,c] would still be covered by
LHU...UIl,Ul;, and cisn’t an upper bound, a contradiction. O

Jo»

Corollary 42. (Borel-Lebesgue Theorem — classical version) Any bounded
and closed set X C R 1s compact.

Proof. Since X is closed, its complement X¢ =R — X is open. Moreover, we
can find [a,b] D X, because X is also bounded. Let C = {I;},c;, be a open
cover of X, then C U X¢ is an open cover of [a, b], by the theorem above we
can extract I; U...UI; UX¢ a finite subcover of [a,b]. Thus I;, U...UI;,
is a finite subcover of X. [

Example 43. The real line R is not compact. Indeed, consider the cover

R = U (=n,n). Any finite subcover would be equal to the largest interval
n=1

since they are nested, and hence can’t cover the whole line. Similarly, (0,1]

is not compact either, if we consider the nested cover | (%, 2), we can argue

n=1
like before.
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Theorem 44. (Heine—Borel theorem) Let K C R. The following are equiv-
alent:

1. K s closed and bounded;
2. K is compact;
3. Every infinite subset of K has an accumulation point in K,

4. (Sequential compactness) Every sequence x,, € K has a convergent sub-
sequence with limait in K.

Proof. We already know that 1 = 2. We first prove 2 = 3. It’s easy to show
the contrapositive of 3, namely, if X C K doesn’t have accumulation points
in K then X is finite. Indeed, we can find for each x € K an interval I, such
that , N X =0ifz ¢ X, and [, N X = {z} if € X. Then |J I, is a cover
of K, by compactness, we extract a finite subcover, say I,, U... I, , but this
would force X = {xy,...,x,},i.e. X is finite.

We now show 3 = 4. Consider the set X = {x;,2,...} formed by
elements of the sequence z,, € K. If X is finite then at least one member
of the sequence repeat itself infinitely many times, hence forms a constant
(convergent) subsequence. Otherwise, by hypothesis we have some a € X’
that is also in K. Equivalently, every neighborhood of a € K contains point
of the sequence x,, hence a subsequence of x,, converges to a.

Finally, we show 4 = 1. The proof is by contradiction, namely, suppose
K is not bounded or not closed. If K is not closed, at least one sequence x,,
converges to a point outside K, so any subsequence of this sequence would
also converge to point not in K, a contradiction. If K is not bounded we can
easily construct an unbounded sequence, say K is unbounded from above,
then construct a sequence satisfying z, +1 < x,41, and any subsequence
would also be increasing and unbounded, hence can’t converge. O

Corollary 45. (Bolzano- Weierstrass alternative version) Every infinite bounded
set X C R has an accumulation point.

Proof. Apply theorem 44| to X. O

Corollary 46. Let K1 O Ky D ... be a nested sequence of nonempty compact

sets. Then () K, is compact and nonempty.
j=1
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Example 47. The Cantor set K is compact since it’s closed and bounded.
Every finite set is compact. Z is not compact because it’s unbounded, nor is
R idtself. QN [0, 1] is bounded but it’s not compact because it’s not closed.
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V Limits

1 The limit of a function

Let f: X C R — R be a function of a real variable, and a € X’. We say the
number L € R is the limit of f(z) as z approaches a, denoted by

lim f(x) =L,

T—a

if given € > 0, we can find § > 0, such that for every x € X:
O0<|z—al<d=|f(x)—L|<e

In other words, f(z) can be made arbritarily close to L by choosing « # a in
a sufficiently small neighborhood (a — d,a + §) of a.

Notice that a € X’ is an accumulation point, so the definition makes
sense even if a ¢ X. In fact, most interesting cases are when a ¢ X. If a is
not an accumulation point, i.e. an isolated point, then the same definition
would imply that every number L € R is a limit! Hence, the definition only
makes sense if a € X'.

Theorem 1. (Uniqueness of limits) Let X CR, f: X - R anda € X'. If
lim f(z) = L and lim f(z) = M, then L = M.
Tr—a Tr—a

Proof. Given any € > 0, we can find 9, ~ such that
v —a| <6 = |f(x) - L| <§, and |z — a| < v = |f(z) — M| <§

Let a = min{d,~} then

€
2
This is only possible if L — M =0= L = M. O

= €.

2 —al <a=|L—M|<|L—f@)]+ /@)~ M| <3+

Theorem 2. (Restriction of limits) LetY C X CR, f: X - R, a € X'NY".
Consider the restriction g : Y — R given by g(z) = f(x) (Also written as

fiy(@)): 1f lim f(@) = L then lim g(a) = L.

Proof. Self-evident. m
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Theorem 3. (Local boundedness) If lim f(x) = L, then 3M > 0,6 > 0 such
T—a
that 0 < |z —a| < d = |f(z)] < M.

Proof. Take € = 1 in the definition. Then we can find § > 0 such that
O<|z—a|l|<d=|f(x)— Ll <1l=|f(z)|<|L|+1= M. O

Theorem 4. (Squeeze-theorem) Let X C R, f,g,h: X - R and a € X'. If
for every x # a:
f(z) < g(x) < h(z),
then
lim f(z) = limh(x) = L = limg(z) = L

r—ra T—ra r—ra

Proof. We can find d§,¢g > 0 such that 0 < [z —a| < d = |f(z) — L| < e =

L—e< f(x),and 0 < |z —a| <vy=|h(x)— L|<e= h(z) < L+e
Hence, if we set @ = min{d,v} then 0 < |z —a| <a= L —e < f(z) <

g(x) < h(z) < L+e=|g(z) —a| <e O

Theorem 5. (Monotonicity preservation) Let X C R, f,g : X — R and

a € X' Iflimf(z) = L and limg(x) = M and L < M then there exists

T—a Tr—a

d >0, such that 0 < |z —a|] <d = f(x) < g(x).

Proof. Set € := Y=L There exists § > 0 such that 0 < [z —a| < § =

|f(x) — L| < e and |g(z) — M| < e. It follows that, f(z) <e+ L < g(x). O

Corollary 6. If lim f(x) > 0, then there exists 6 > 0 such that 0 < |z —a| <

Tr—a

b= f(z) > 0.
Corollary 7. If f(x) < g(z) for every x, then lim f(z) < lim g(x).
Tr—a T—a
Theorem 8. (Equivalent definition of limit) Let X C R, f : X — R and
a € X'. Then lim f(x) = L if and only if for every sequence =, € X — {a},
r—a

with x, — a, we have lim f(z,) = L.
T—a

Proof. Suppose lim f(x) = L and z,, — a. Given € > 0, there exists § > 0
Tr—ra

and ng € N such that 0 < [z —a| < d = |f(x) = L| <eand n >ny =0 <
|z, — a| < d. Therefore, n > ng = |f(z,) — L] <e.

Conversely, suppose f(z,) — L for every =, — a but lim f(x) # L.

Tr—a

There exists € > 0, such that we can find a sequence x, € X — {a} satisfying
0 < |z, —a] <= |f(z,) — L| > ¢, but then this sequence converges to a,
yet it’s not true that f(z,) — L, a contradiction. O
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Corollary 9. (Properties of limits) Let X CR, f,g: X - R and a € X'.

1. m(f(x) & g(a)] = im f(z) & lim g()

r—a

2. lim[f(z) - g(x)] = lim f(x) - lim g(x)

r—ra r—a Tr—a

3.8 I 0 then lim 1@ = 22/
- Suppose lim g(x) # en im 0oy = oo

x
z—a 9T

4. Suppose ilg; f(z) =0 and |g(x)] < M then im[f(z) - g(z)] = 0.

T—ra

Proof. We proved the equivalent result for sequences, the result then follows

by theorem [§] O
Example 10. [t follows from the definition of limit that lim x = a. Similarly,
Tr—a
using the properties of limits (Corollary|9), we obtain lim x> = a®. Proceeding
T—a
by induction, we conclude that lim x™ = a™, and hence for every polynomial
T—a

p(z) € Riz], limp(z) = p(a). Similarly, for any rational function r(x) =
r—a
25) if g(a) # 0 then lim 22 — 2@

q(z)’ S d@) T qla)

Example 11. Consider the function:

)L ifreQ
ﬂ@_{aﬁxeR—Q

Then for any a € R, the limit lim f(x) doesn’t exist. Indeed, given any real
Tr—a

number a we can construct two sequences x, € Q and y, € R — Q, with
T, — a and y, — a. Therefore, f(x,) — 1 but f(y,) — 0, so lim f(z)
T—a

doesn’t exist.

Example 12. Consider the function f : R—{0} — R given by f(z) = sin(2).

We claim lin% f(x) doesn’t exist. It’s enough to find two sequences x, — 0
z—>

and y, — 0 such that f(x,) and f(y,) converge to different limits. Take

T, =+ and y, = (5 + 2nm)~", then f(x,) — 0 but f(y,) — 1.

nm
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2 One sided and infinite limits

Let X C R and a € R. We say a is accumulation point to the right (or one-
sided right accumulation point) if for every € > 0, (a, a+€)NX # (). Similarly,
a is accumulation point to the left if for every € > 0, (a — €,a) N X # 0.

We denote X', (X”) , the set of all accumulation points to the right (left)
of X. The definition of limit can be extended in this scenario as well. For
example, let X CR, f: X — R and a € X/, then we write

lim f(z)=1L
z—at
[fVe>0,30>0,0<xz—a<d=|f(x)— L| <e Wedefine lim f(z)=1L

r—a~
analogously.

Theorem 13. Let X CR, f: X - R and a € X'. Then lim f(x) = L if

r—a

and only if lim f(z)= lim f(x)= L.

z—at T—a~
Proof. The conditional implication is trivial, we prove the converse. Suppose
lim+ f(z) = lim f(x) = L. Then we can find §,v > 0 such that given ¢ > 0,
Tr—a Tr—a—

O<z—-—a<d=|f(r)—Ll<eand0<a—z<vy=|f(x)—L| <e Ifwe
set @ = min{d, v}, then 0 < |z —a| < a = |f(z) — L| <e. O

Example 14. Consider the function sign: R — {0} — R given by

, x
sign(x) = &k
Then lim sign(x) = —1 but lim sign(z) = 1, so lim sign(x) doesn’t exist.
z—0~ z—0t z—0

Example 15. Consider the function f(x): R — R given by f(x) = e
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Then lim f(z) =0 but lim f(z) doesn’t exist.

z—0t z—0~

Recall that a function is increasing if v < y = f(x) < f(y), nondecreasing
if v <y= f(x) < f(y). We define decreasing, nonincreasing in a similar
way. Finally we say a function is monotone if satisfies any of the above
conditions.

Theorem 16. Let X C R and f : X — R a bounded monotone function.
Given a € X! b € X', the one sided limits lim+ f(z) and lirlr)l f(z) exist.
Tr—0—

r—a

Proof. Without loss of generality, suppose f(x) increasing. We prove lim+ f(x)

T—a
exist, the other limit is analogous. Set L := inf{f(z);z > a}. We claim

lim+ f(z) = L. Indeed, given € > 0 the number € + L is not a lower bound,
Tr—a

hence we can find § > 0 such that L < f(a+9) < L + €. Since f(z) is
increasing, it follows that « < x < a+ 3§ = L < f(z) < L + ¢, as required.
]

Let X C R be a set unbounded from above. Given f : X — R we write

lim f(z) =L,

T—+00

if there is a number L € R such that
Ve>0,3M >0, M <z =|f(x) — L| <e

The limit lim f(z) is defined analogously. Notice that both infinite
Tr—r—00

limits are, in a way, one sided limits. In particular, the limit of a sequence z,,
is an infinite limit when we consider the sequence as a function z : N — R,
e limz, = lim z(n).

n——+oo

Example 17. We have lim 1 = lim 1 = 0. Also, lim e® = 0 but

x——o0 " x—+oo T——00

lim e* doesn’t exist.
Tr—400

Let X CR, f: X > Rand a € X' We write
lim f(z) = +o0,
Tr—a
ifVM >0,30 >0,0< |z —a| <e= f(x) > M.
The definition of lim f(x) = —o0, lilil f(z) = +oo, and lim f(z) =
r—a T—rL 00

r—a
400 can be given mutatis mutandis.
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Example 18. With the definitions above we have, for example, hIJP e’ =
T—>+00
+OO’3:EIPOOZE = —|—oo,xlig£ (%2) oo,xligl+ (%2) +00.

The theorem below can be proven using the same arguments we used to
prove their finite counterpart, so the proof will be ommitted.

Theorem 19. (Properties of infinite limits) Let X C R, f: X — R and
ae X'
- (Uniqueness) If lim f(x) = 400 then it’s impossible to have lim f(z) =
r—a Tr—a
L for LeR or L = —o0.

(Restriction) If lim f(x) = +oo, then for every Y C X, if we set
r—a
g(x) = f, (x), we still have lim g(x) = 4o00.
r—a

(Unboundedness) If im f(x) = +o0, then f(x) is not bounded in any
r—a
netghborhood of a € X.

(Monotonicity) If f(z) < h(z) and lim f(z) = +oo, then lim h(x) =
r—a r—a
+00.

(Preservation of the sign) If lim f(x) = L and lim h(x) = +oo, then
T—a T—a
30 > 0 such that 0 < |z —a| < 0 = f(z) < h(x).

(Equivalent definition) lim f(x) = +oo if and only if for every sequence
T—a

x, € X — {a} with limz, = a, we have lim f(z,) = +oo.
n—oo

3 Limit superior and inferior of functions

Let X CR, f: X > Rand a e X'. Wesay f is bounded in a neighborhood
of a, if there is k,6 > 0 such that

O<|z—a|l<d=|f(z)| <k

A number ¢ € R is an adherent value of f at a if there exists a sequence
x, € X such that limz,, = a and lim f(x,) = ¢. In particular, if a function
has a limit lim f(z) = L, then L is the only adherent value.
T—

Given a € ?X’ and § > 0, we denote by I5 the j—neighborhood around a
given by Iy = X — {a} N (a —d,a+9).
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Theorem 20. A number ¢ € R is an adherent value of f at a if and only if

for every 6 > 0 we have ¢ € f(Iy).

Proof. Suppose ¢ € R is an adherent value. Then a = limx, and ¢ =
lim f(z,). Since Is 3 a, x, € Is for n sufficiently large, so f(x,) € f(Is).
Conversely, suppose ¢ € f(Is) for every § > 0. We can take 0 of the form
6 =L for n € N, to obtain a sequence z,, € I1, such that |f(z,) —c| < L.
We conclude that limz,, = a and lim f(z,) = c. O

Let’s denote the set of all adherent values at a of a function f by AV (f,a).

Corollary 21. AV (f,a) = () f(Is)

>0

Corollary 22. AV(f,a) is a closed set. If f is bounded in a neighborhood
of a, then AV (f,a) is compact and nonempty.

sin( L
Example 23. Let f(x) = #, whose graph is shown below.

y

Every ¢ € R is an adherent value of f at 0, that is, AV(f,0) = R. Indeed,
given any ¢ € R and an open intervals (c—¢,c+¢€) > ¢ and Is :== (—6,0) 50,

we claim (¢ — e,c+¢€) N f(I5) # 0, or equivalently, ¢ — € < @ < c+e
for some a € (—9,6), which is easily true by the periodicity of sin(z) and the
behavior of %

Example 24. Let f(z) = L, then AV(f,0) = 0.

According to corollary 2] if f is bounded in a neighborhood of a, the set
AV (f,a) # 0 is compact, hence has a maximum and minimum value.
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We call the maximum value of AV (f,a) the limit superior of f at a and
denote it by

lim sup f(x).

Tr—a

Similarly, the minimum value of AV (f,a) is called the limit inferior of f at
a and denote it by
lim inf f(z).

r—a

We use the convention that when f is not bounded around a, we write
lim sup f(z) = 400 and lim inf f(z) = —o0.
Tr—a r—a

Example 25. Let f(z) = sin (L) then AV(f,0) = [-1,1]. Indeed, for a
fized a € [—1,1] consider z,, = (a + 27n)~', then f(x,) = a. Therefore,
lim inf f(z) = —1 and limsup f(z) = 1.

r—a

r—a

Theorem 26. Let f be a bounded function in a neighborhood of a. Then
giwen € > 0, there exists 6 > 0 such that

0<|r—a|l<éd=liminf f(x) —e < f(x) < limsup f(x) + €.
Tr—a r—a

Corollary 27. lim f(z) = L if and only if f has only one adherent value at
T—a
a, namely L itself.

4 Continuity

Intuitively, a continuous function is a function whose graph has no gaps or
holes. More precisely, let f : X — R be a real valued function and a € X.
We say f is continuous at a if

Ve>0,30 >0; |z —al <= |f(z) = fla)] <e

If f is continuous for every a € X we simply say f is continuous.

Notice that if a € X is an isolated point then any function f: X — R
is continuous at a. In particular, if X’ = ) then any function f : X — R is
continuous.

Example 28. Any function f : Z — R is continuous, since Z' = ().

Theorem 29. Ifa € X', then f is continuous at a if and only if im f(z) =
Tr—a

f(a).
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Proof. Self-evident. O
By using the already proven properties of limits we conclude:

Theorem 30. If f : X — R is continuous then for anyY C X the restriction
fly s also continuous. Conversely, if Y = I N X for some open interval I
containing a point a € X, then if f|, is continuous at a, f is also continuous
at a.

In other words, theorem |30] says that continuity is a local property. More
precisely, if f coincides with a continuous function in a neighborhood of
a € X, then f itself is continuous at a.

Corollary 31. If f is continuous at a € X, then f is bounded in a neigh-
borhood of a.

Corollary 32. If f,g are continuous at a € X and f(a) < g(a), then f(x) <
g(x) in a neighborhood of a.

Corollary 33. If f is continuous at a € X and f(a) < k (f(a) > k), for
some k € R, then f(x) < k (f(x) > k) in a neighborhood of a.

Using the alternate definition of limit we can prove:

Theorem 34. f is continuous at a € X if and only if for every sequence
T, — a, we have f(z,) — f(a).

Theorem 35. f, g are continuous at a € X, them f+gqg,f —g, and f-g are
also continuous at a. If g(a) # 0 then f/g is also continuous at a. Moreover,
the composition of continuous function is also continuous.

Example 36. The function f(x) = x is clearly continuous, hence its self-
product z™ is also continuous, and so is any polynomial p(x) = a,x™ + ... +

a1z +ag. A rational function p(x)/q(z) is continuous at points where q(x) #
0.

Example 37. The function f(x) = |z| is continuous on the open interval

(0, +00) since it is constant there, for the same reason it’s also continuous

in (—o00,0). Finally, it’s continuous at 0, since lim |x| = lim || =0. On
z—0~ z—0

the other hand, the function defined by g(x) = |i—|, if x #0, and g(0) =1, is

not continuous at the origin since lim g(z) = —1 # lim g(z) = 1.
z—0~ z—0t
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Theorem 38. Suppose X C AU B, where A, B C R are closed sets. If the
function f : X — R satisfies f., is continuous and f,., 1s continuous,
then f itself is continuous.

Proof. Let a € X and € > 0 be given. Suppose first a € A N B. Then there
are 6,7 > 0 such that Vo € X NA |z —a| < § = |f(x) — f(a)] < € and
Ve e XNB,|lx—al <v=|f(x)— fla)] < e Set a = min{d,~}, then
Ve e X, |z —a|l <a=|f(x)— f(a)| < e, which implies f is continuous at a.

Now suppose a € A but a ¢ B. There exists 6 > 0, such that Vz €
XNA, |z—a| <= |f(z)— f(a)| < e. Since B is closed, B = B, and we can
find v > 0 such that [zt —a| < v = x ¢ B. As before, if we set « = min{d, v},
then Vo € X, |z —a| < a = |f(z) — f(a)] < e, as desired. The case a ¢ A
but a € B can be proven analogously. O]

Corollary 39. Suppose X = AU B, where A, B C R are closed sets. If the
restrictions f|,, fi, of a function f : X — R are continuous, then f itself is
continuous.

We can generalize the result above if we take the cover AU B to be open.
In fact, a stronger result is valid. (The proof follows directly from theorem
and will be omitted.)

Theorem 40. (Sheaf property) Let X C |J Ay be an open cover of X. If
AEL
the restrictions fbmAA of a function f : X — R are continuous, then f itself

18 continuous

Corollary 41. Suppose X = |J Ay, where each Ay is open. If the restric-
AEL

tions f‘AA of a function f : X — R are continuous, then f itself is continuous

Example 42. Consider again f(x) = rap but this time with domain X =
(—00,0) U (0,+00). Then f is continuous by the corollary above.

Let f : X — R be areal valued function and a € X. If f is not continuous
at a, we say it is discontinuous at a.

Example 43. (Thomae’s function)The function f : R — R given by:
Fa) = o freQandr =2 peZqgeNged(pq) =1
0, ifr e R-Q

The graph of f(z) on the interval (0,1) is shown below.
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0.5

0 05 1

Notice that f(x) is periodic, since f(x + 1) = f(x). We claim that f is
discontinuous at any a € Q. Indeed, we can find a sequence, say x, = a+ ‘/75,
of irrational numbers, with x, — a but f(x,) — 0, since f(a) # 0 in this
case, f can’t be continuous at a.

Surprisingly enough, f is continuous at every a ¢ Q. FEquivalently, we
must have hm f( ) = 0. Since f is periodic, it’s enough to prove the conti-

nuity for a E (0 HN(R-Q).
Suppose € > 0 is given. Using the Archimedean property of R, there is
n € N such that % < €. Decompose (0,1) into k subintervals of length %, for
k=1,2,....,n. Then ‘a’ will be in one of these intervals, for each k, say
a€ (m’c m‘““) Let 0y, = m1n{|a me| g — ML the minimum distance
mp mk—i—l

between a and the endpoints of (5, ™2=), and define 0 := n%l? -

Given x € (a —d,a+0) if v ¢ Q then f(x) = 0 < e. Otherwise, v =
and by minimality of 0, we must have ¢ > n, hence f(x) = % < % < € and
we conclude that lim f(x) = f(a) = 0.

Tr—a

SRS

It’s impossible to have a function which is discontinuous at every irra-
tional number, see the exercises.

Example 44. If f : R — R s given by:

)L ifzeQ
f(x)_{o, ifreR—Q

Then f is discontinuous at every a € R, since the limit lim f(x) doesn’t exist.
r—a

Example 45. Consider f: R — R given by f(0) =1 and f(x) = 23 — ;—‘ if
x #0. Then f is discontinuous at 0 only.
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Example 46. Let K be the Cantor set. Consider the function f :[0,1] - R

given by

0, ifee K

f(z) = .

L, ifr ¢ K
Then f is discontinuous at every point a € K and continuous at the open set
K¢. Indeed, f is constant, hence continuous, at every a € K.

Suppose now a € K. Since every point of K is an accumulation point, it’s

possible to find a sequence x,, ¢ K such that x, — a, hence f(x,) — 1 # 0,
so f is discontinuous at a.

Example 47. The function f(0) = a and f(z) = sin% if © # 0 is discontin-
uous at 0, regardless of a € R, since 1iIT(l] f(x) doesn’t exist.
T—>

Y

0.5 1

Example 48. The function f(0) = 0 and f(x) = fin% if x # 0 is dis-

+ew

continuous at 0, since lim f(x) doesn’t exist. In this case, lim f(z) =0
xz—0~ z—07t

however.
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Example 49. The function f(0) =0 and f(z) = . L ifx # 0 is discontin-

1
+ew
uous at 0, since lim f(z) =1 but lim f(x)=0.
z—0~ z—0t
Let f: X — R, a € X and suppose f is discontinuous at a. Then we

say a € X is a jump discontinuity, if both one sided limits lim+ f(z) and
r—a

lim f(z) exists but are different. If at least one of the one sided limits
r—a~

doesn’t exist, then we say a € X is an essential discontinuity.

Theorem 50. A monotone function f: X — R can’t have essential discon-
tinuities.

Proof. Suppose f nondecreasing and a € X. If z+ 9§ € X then f is bounded
in [z,z + 0] N X. The result then follows from theorem [16] O

Theorem 51. Let f : X — R be a function having only jump discontinuities.
Then the set of discontinuities of f is countable.

Proof. Define the jump function j(x) : X — R of f by:

(0, if a is isolated.

. |f(a)—xll>1r£1+f(:p)|, if a € X! only.

7@ =9 f(a) - Tim ()], if a € X" only.

| max{|f(a) — lm_f(@)].[f(a) ~ lim f(@)]}. iFaeX,NX

Intuitively, j(z) measures the length of the ‘jump’ of f(x). Consider the set
. 1
Cn={reX;jx)> ﬁ}
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The set of discontinuities of f(z) is the set |J C,, hence if we can prove

that each (), is countable then we’re done. Wg Cllaim that for each n € N,

the set C), has only isolated points, hence it’s countable (see corollary .
Let a € C, and suppose a € X. By using the definition of one sided

limit, if we set L := lim f(z) we can find 06 > O such that 0 <z —a < § =

z—a
|f(#) = L| < & = L — 4 < f(z) < L+ 4, hence if € (a,a + ) then
j(z) < 5=, which is to say (a,a+8)NC, =0. If a ¢ X/, we can just choose
d > 0 such that (a,a+ )N X = 0. In any case, we can find § > 0 such that
(a,a+9)NC, =0. A similar argument implies we can find v > 0 such that

(a —v,a) N C,, = 0. We conclude that a € C,, is isolated. O

Corollary 52. The set of discontinuities of a monotone function f is count-

able.

5 Continuous functions defined on intervals

The next result highlights the fact that continuous functions can’t have gaps,
in other words, if two numbers a # b are in the range, then [a,b] is also in
the range.

Theorem 53. (Intermediate Value Theorem) Let f : [a,b] — R be a contin-
uous function and d € R be a number such that f(a) < d < f(b). Then there
is ¢ € [a,b] such that d = f(c).

Proof. Define X = {z € [a,b]; f(x) < d}. This set is nonempty because
f(a) < f(d), and due to the continuity of f(z), X doesn’t have a maximum
element. Set ¢ = sup X, then ¢ ¢ X. However, since ¢ is an adherent value,
there is a sequence x, — ¢, which implies f(c¢) < d. We conclude that

fle)=d. O

Corollary 54. Let f : I — R be a continuous function, where I is an interval
(not necessarily bounded). If a,b € I and f(a) < d < f(b), then there exists
c € I such that f(c) =d.

Corollary 55. Let f : I — R be a continuous function, where I is an
interval. Then f(I) is an interval.

Proof. 1f we set ¢ = inf f(x) and d = sup f(z) then f(I) is an interval with
endpoints ¢ and d (not necessarily bounded, nor open/closed). O

76



Example 56. Let f : I — R be a continuous function such that f(I) CY,
where Y has empty interior. Then f is constant. Indeed, it follows by
that f(I) is an interval, so it must be of the form [c, c], otherwise, f(I) would
have an interior point. In particular, every continuous function f : I — Z is
constant.

Example 57. Every polynomial p(z) = ag, 12" + ...+ ag of odd degree
has at least one real root. Indeed, in this case p(x) is a continuous func-
tion defined on the interval (—oo,+00), so its image is an interval. Since

lirin p(z) = to0, that interval has to be (—oo,+00), hence p(x) is surjec-
T—>T 00

tive.

A function f : X — Y is a homeomorphism, if f is a continuous bijection
having a continuous inverse f~!.

Theorem 58. Let f : I — R be a continuous injective function defined on a
interval I. Then f is monotone, and if we set J = f(I), then f: 1 — J is a
homeomorphism.

Proof. 1t’s enough to prove the result for I = [a,b]. Suppose f(a) < f(b),
we claim f is increasing. Suppose not, that is, we can find ¢,d € [a,b]
such that ¢ < d but f(¢) > f(d). Either f(a) < f(d) or f(a) > f(d).
If f(a) < f(d) < f(c), by theorem [53| we can find p € (a,c) such that
f(p) = f(d), a contradiction by the injectivity of f. For the same reason we
can’t have f(d) < f(a) < f(b). Hence, f has to be increasing.

Using corollary m we see that J is an interval, hence f=!:.J — I is an
increasing function (since f is) whose image is an interval. Suppose f~! is
not continuous at a point y € J, say M = xlg;lJr fHz)# L= xlg;l_ fHa).

Then f~'(c) € (L, M) and (L,M) NI = {f'(c)}, which implies I has an

isolated point, a contradiction. O

Theorem 59. Let f : X — R be a continuous function. If X is compact
then f(X) is compact.

Proof. We claim f(X) is sequentially compact, which is equivalent to com-
pactness by theorem [14] Let y, = f(z,) be a sequence in f(X), we claim
it has a converging subsequence. By the compactness of X, there is a con-
verging subsequence z,, — = € X. If we set y,,, = f(xy,), then y,, — f(x),
since f is continuous. O
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Corollary 60. (Weierstrass Extreme Value Theorem) Let X C R be compact
and f : X = R be a continuous function. Then f achieves its mazimum and

minimum value, that is to say, there are a,b € X such that f(a) < f(z) <
f(b) for every z € X.

Theorem 61. Let X C R be compact and f : X — R be a continuous injec-
tive function. If we set’Y := f(X), then f: X — Y is a homeomorphism.

Proof. Let y € Y, we claim f~! is continuous at y = f(z). Suppose y, =
f(z,) is a sequence of points in Y such that y, — y = f(z), we claim z,, — =.
It’s enough to prove that any converging subsequence of x,, converges to x.
Let z,, be a converging subsequence, say z,, — a € X. Then y, —
f(a), but since y,, is a subsequence of y,, it also converges to f(x), by the
injectivity of f we deduce that a = z. O

We say a function f : X — R is uniformly continuous if
Ve>0,30 >0:Vr,ye X, |z —y| <d=|f(x) — fly)| <e

It follows that every uniformly continuous function is continuous. The con-
verse is false, as the example below illustrates.

Example 62. The function f(z) = L is continuous on (0,400) but is not
uniformly continuous. Indeed, given €,0 > 0, take a point 0 < x < min{J, i}
andy =z + 3. Then |z —y| < § but

)
z(2x 4 0)

)
30z

1 1

x x—l—g

[f(x) = f(y)l =

> €.

>

Example 63. Linear functions f(z) = mx+0b are continuous. Indeed, given
€ > 0 just take 0 = =, so that lz—y| <d=|f(x)— fly)] =|mx—y)| <

m| o =€

Example 64. A function f : X — R s called Lipschitz if there exists a
constant C' > 0 such that | f(z) — f(y)| < Clz—y|. Any Lipschitz function is
obviously uniformly continuous. For example, linear functions f(x) = mx+b
are Lipschitz, and if X is bounded, f(x) = a™ is Lipschitz.

Theorem 65. If f : X — R is uniformly continuous and z, s a Cauchy
sequence then f(x,) is also Cauchy.
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Corollary 66. If f : X — R is uniformly continuous and a € X' then
lim f(x) exists.
Tr—a

Example 67. The functions f(z) =sin and g(z) = < can’t be uniformly

continuous because the limit when when x approaches 0 doesn’t exist.

Theorem 68. Let X C R be compact and f : X — R continuous then f is
uniformly continuous.
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VI Derivatives

1 Definition and first properties

Let X CR,ae XNX' and f: X — R be a real valued function. We say
f is differentiable at a € X if the following limit exists:

f’(a) — lim f(iL‘) — f(a)

r—a T —a

(1)

The number f'(a) is called the derivative of f at a. If f is differentiable at
every a € X, we simply say f is differentiable (in X).

Intuitively speaking, for x # a, the number W is the slope of the
secant line connecting the points (z, f(z)) and (a, f(a)), hence when x — a,
this number becomes the slope of the tangent line.

Similarly to one-sided limits, we can define one- sz'ded dem’uatives fi(a) =

lim fO=H9 if g € XN XY, and f7 (o) := lim {E9=H G X0 X7 We can
r—a r—a~

casily see that f'(a) exists for some a € X N X/ ﬂX’_ 1f and only if f’ (a) and
J'(a) exist and f’ (a) = f' (a). In particular, a function is not differentiable
if its graph has sharp corners, since this implies f’ (a) # f! (a) at the corner.

If we set h := x — a in equation [1} then we can see that f’(a) can be
equivalently defined by

f'(a) :=lim flat hf)L — f(a)' (2)

h—0

Sometimes the latter definition is more convenient for computational pur-
poses.

If a € X/, but a ¢ X', and [’ (a) exists, we can set f'(a) = f(a)
and consider f to be differentiable at a. A similar convention holds for
a € X' . According to this convention, the function f : [a,b) — [a,b), given
by f(x) = z, is differentiable.

Example 1. Let f: R — R be linear, f(x) = mx +0b. Then f'(z) =m. In
particular, if m =0 and f(x) = b is constant, then f'(x) = 0.

Example 2. Consider f(x) = |x|. Using the definition of one-sided deriva-
tives we obtain f'(0) = 1 and f'(0) = —1. Therefore, f is not differen-
tiable at 0. On the other hand, we easily see that f'(z) = 1, if x > 0, and
fl(x)=-1,ifx <O.
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Example 3. Let f: [0,400) — R be defined by f(x) = \/x. Using equation
19, for x > 0, we obtain:
Fla) = im VIR VT h _ 1
" h—0 h W0 h(VE+ h+\z) 22

On the other hand, at x = 0 the quotient \/TE = \/LH — +00 as h — 07, hence
1(0) doesn’t exits. Intuitively, this is clear since the tangent line being a
vertical line has ‘infinite’ slope.

y
1k

- X
1

Example 4. (Sawtooth function)Let f: R — R be defined by

f(z) = inf{|x — n|;n € Z}

N

X
2 4

Notice that the graph of f has sharp corners at every n, 5, for n € Z, hence
it’s not differentiable at those points. Otherwise, the function is differentiable
with f'(x) = £1, depending whether or not the fractional part of f(x) is less

than 0.5.
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Example 5. Let f : R — R be defined by f(0) = 0 and f(z) = = +
22%sin(1/z), if © # 0. Despite this seemly complicated definition, this func-
tion is indeed differentiable everywhere and f'(x) = 1—2 cos(1/x)+4x sin(1/z)

y

01+

0.05

-0.05

0.1+

Example 6. (Weierstrass function) Given 0 < a < 1 and b € N, such that
ab > 1+ 3m. Let f : R — R be defined by f(z) = > a"cos(b"wz). The

n=1
figure below is the graph of f(x). It is an example of a continuous function
that is nowhere differentiable.

A

2t

Moreover, the graph of f(x) is self-similar if we zoom in, in the sense, that

if we restrict the the domain of f(x) to [—%, L] and take n bigger and bigger,

the shape of the graph doesn’t change. We will prove these claims later, when
we discuss series of functions.

Theorem 7. A real valued function f: X — R s differentiable at a € X if
and only if there is number C € R and a real valued function r(x), such that
ifa+heX:

fla+h) = f(a)+ Ch+r(h), (3)

;ILiH(l) r(:) = 0. Moreover, C = f'(a).
—

and r(z) satisfies
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Proof. The implication is clear. We prove the converse. Suppose that there
is C' € R satisfying . Then

fla+h) = f(a) —r(h) = Ch (4)
Dividing both sides by h and taking the limit when A — 0 we obtain
fla+h) - f(a)
h

lim =C eR,
h—0

as required. O

The theorem above says that f is differentiable at a if and only if in a
neighborhood of a, f can be approximated by the linear function p(x) =
f'(a)x + f(a) with error r(x) that goes to zero faster than g(x) = x. We
will see soon that the more derivatives f has, the better we can make this
approximation using a polynomial p(x) whose degree is equal to the number
of derivatives of f.

If f: X — R differentiable at a € X N X', we define the differential at a,
denoted by df, : R — R, as the linear transformation given by

dfa(h) = f'(a)h. (5)
In this notation, equation |3| becomes
fla+h) = f(a) + dfa(h) +r(h). (6)

Theorem 8. Ifthe f : X — R s differentiable at a € X then f is continuous
ata € X.

Proof. Indeed, we have

o) = o) = oy [P = ) = g [P -
= f(a) 0=
(7)
*. f is continuous at a. m

The theorem below follows directly from the definition of derivative and
the properties of limits we have already proved.
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Theorem 9. (Properties of derivatives) If f, g : X — R are differentiable at
ae XNX' then fxg, f-g, f/g (if ¢'(a) # 0) are also differentiable at a.
Moreover,

(f +9)'(a) = f'(a) £ ¢'(a)
(f - 9)'(a) = f'(a) - g(a) + f(a) - 4'(a)
(i)’ oy {1@)s(0) ~ ')

g g(a)? '
Theorem 10. (The Chain Rule) Let f : X — R and g : Y — R be real

valued functions, such that f(X) C Y. If f is differentiable at a € X, and
g is differentiable at b := f(a), then go f : X — R is differentiable at a,

moreover (g f)'(a) = ¢'(b) f'(a).

Proof. By hypothesis, we have

(o f)la+h)=glf(athn)

(8)

glf(a) + f'(a)h + r(h)]
glf (@] + g (@][f (a)h +r(R)] + s(f'(a)h + r(h))
9(b) + g O)[f (@)h] + g'(B)[r()] + s(f(a + h) — f(a)).

Since

g SOLB] @t h) = F@) o) s ath) = fl@)
h—0 h h—0 h  h—0 h

The proof is complete by theorem [7] O

Corollary 11. Let f : X — Y C R be a bijective real valued functions. If
f is differentiable at a € X, and f~:Y — X is continuous at b := f(a),
then f=1 is differentiable at b if and only if f'(a) # 0, moreover, if that’s the
case, then (f~1)(b) = ﬁ

Proof. If f=! is differentiable at b, we can apply the Chain rule to 1 = (f~'o
f)(a) = (f71)(b)f'(a). Conversely, suppose f'(a) # 0, set g(y) = f~(y).

Then

o W =) o gly)—a (f[g(y)] - f(a)>_1 _ 1

y=b Yy —b y=b flg(y)] = fla) w0\ g(y) —a f’(a)(9>
L g(b) = % and the theorem is proved. O
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Example 12. (The Sigmoid function) Consider the function f : R — R
given by f(x) = H%, whose graph is shown below.

y
11

0.75

0.5

o s 5 10
Using the chain rule, we have that

1 e "

Fe) = et = trep

2 Maximum and minimum points

The derivative of f : X — R at point a € X tells us crucial information
about the behavior of the function in a neighborhood of a.

Let f : X — R be a real valued function and a € X. We say f has a local
mazimum at a if there exists 0 > 0, such that x € (¢ —d,a+ ) = f(z) <
f(a). If the strict inequality f(z) < f(a) is true, then a is called strict local
maximum. Similar definitions are given to local minimum and strict local

Example 13. The function cos : R — R has (strict) local mazima at points
of the form a = 2mn, n € 7Z.

1

1+
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Similarly, cosx has (strict) local minima at points of the form (2n—1)m, n €
Z.

Example 14. The constant function given by f(x) = C has (non-strict)
local maxima and minima at every point of its domain.

Example 15. Consider the function f : R — R given by f(0) = 0 and
f(z) = 2?(1+sin L), whose graph is shown below.

y
0.015

0.010

0.005 -

X
-0.10 -0.05 0.05 0.10

By definition, f(x) > 0, Vx € R. Moreover, any neighborhood of 0 contains
points whose image is 0. Hence, the point 0 is a (non-strict) local minimum.

Theorem 16. Let f : X — R be differentiable from the right at a € X N X/,
i.e. fi(a) exists. If f.(a) > 0 then we can find § > 0 such that x €
(a,a +0) = f(z) > f(a). Similarly, if fi(a) < 0 then 3§ > 0 : = €
(a,a+6) = f(z) < f(a).

Proof. Follows directly from Corollary [6] m
A similar result is valid in the case f’ (a) > 0 or f’ (a) < 0.

Corollary 17. Let f : X — R be differentiable at a € X N X\ N X’.
If f'(a) > 0 then we can find § > 0 such that for all x,y € X, we have
a—d<zr<a<y<a+d= f(x)< fla) < f(y).

Notice that the corollary above is not saying that f is locally increasing.

Corollary 18. Let f : X — R be differentiable at a € X N X, . NX". If f
has a local maximum or minimum at a € X then f'(a) = 0.

Example 19. The converse of C’orollary is false. The function f(z) = x3
and a = 0 gives a counter-example.
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Example 20. Consider the continuous function f(x) = x?sin % +5 ifw#0
and f(0) = 0.

0.04

0.02}

S S S R el S S R SRS
-0.10 -0.05 t 0.05 0.10

-0.02 -

—-0.04 -

We have f'(0) = % > 0, but f is not increasing in any neighborhood I of 0.

Indeed, f'(x) = 2x sin% — cosi + %, so we can pick x € I sufficiently small
such that sin 2 = 0 and cos * =1, for this x € I we have f'(z) = —3 <0, so

f can’t be increasing in I.

3 Derivative as a function

Let f : I — R be a differentiable function defined on a interval I. We
associate to f its derivative function f’: I — R, whose value at each x € [
is f'(z).

When f’ is continuous, we say f is continuously differentiable. The set of
all continuously differentiable functions on a interval I is denoted by C*(I).
In case [ = (—00,+00), we simply write f € C! and say f is of class C'.

Example 21. The function defined by f(x) = 2?sin + if x # 0 and f(0) =0
is differentiable but f ¢ C1.
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At x = 0 we have f'(0) = 0. However, f'(x) = 2zsin L —cos < and lim f'(z)

z—0
doesn’t exists. Therefore, f' is not continuous at 0.

If f:1 — Ris of class C!, then we can apply the Intermediate Value
Theorem to f’ to conclude that: Given a,b € I such that f'(a) <y < f'(b)
for some y € R, then there exists ¢ € I such that y = f'(c).

The following theorem strengthens the above by removing the continuity
assumption of f’.

Theorem 22. (Darboux’s theorem) Let f : [a,b] — R be differentiable. If
f'(a) <y < f'(b), then there exists ¢ € I such that y = f'(c).

Proof. Tt suffices to prove the result when y = 0 and then consider g(z) =
f(z) —yx. From the fact that f'(a) < 0 < f'(b), we know that f(z) < f(a) in
a neighborhood of a, and f(z) < f(b) in a neighborhood of b. That implies
that f achieves its minimum (see corollary at a point ¢ € (a,b), byﬂ we
must have f’(c) = 0. O

Example 23. The corollary above says that the Dirichlet function f(x) =1,
ifx e QNI0,1], f(z) =0ifx e (R—-Q)NI0,1] can’t be the derivative of a
function defined on [0, 1].

Corollary 24. Let f : I — R be a differentiable function on an interval I.
Then f" doesn’t have jump discontinuities.

Proof. We claim that given a point a € I, if the one sided limits lim+ f(z), lim f'(x)

r—a Tr—a—

exist, then f'(z) is continuous at a. Suppose R = lim f'(x) exists but
T—a

R # f'(a), say R > f'(a). Take y € R such that f'(a) < y < R. Then
there exists 0 > 0 such that = € (a,a +6) = f'(z) > y. In particular,
f/(a) < R < f'(a+ %) but there is no ¢ € (a,a + 2) such that f'(c) = R, a
contradiction. Using a similar argument, we conclude the equivalent result
if lim f'(x) exists. O
T—a~

Example 25. The corollary above says that the floor function f(x) = |z],
can’t be the derivative of a function defined on R.
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Theorem 26. (Rolle) Let f : [a,b] — R be continuous satisfying f(a) = f(b).
If f is differentiable on (a,b) then there exists ¢ € (a,b) such that f'(c) = 0.

Proof. If f is constant then f’(z) = 0, so suppose f not constant. Since f
is continuous on [a, b], it achieves its maximum and minimum in [a, b]. Since
f(a) = f(b), the maximum/minimum can’t be at an endpoint, otherwise the
function would be constant. Hence, the function has at least one maximum
or minimum in the interior (a,b), at that point the derivative must be zero

by Corollary [18| H

Notice that we didn’t use f’(a) or f’(b) in the proof, hence the requirement
that f be differentiable in (a,b) and not in [a, b].

Example 27. The absolute value function f(x) = |x| when defined on [—1,1]
is continuous and satisfies f(—1) = f(1), but there is no point ¢ € [—1,1]
such that f'(c) = 0. This is not a counter-ezample to Theorem because
f is not differentiable at 0 € [—1,1].

Example 28. The function f(x) = /1 — a2 is continuous on [0,1] but it’s

differentiable only in (0,1), since it’s derwative f'(z) = — 7= s discontin-
uwous at £1, as the picture below suggests.

. .
0.5 1.0




Still, Rolle’s theorem guarantees the existence of a point ¢ € [0, 1] with f'(c) =
0. Indeed, c = 0 in this case.

Example 29. (The headphone function) The function f :[—1,1] — R de-
fined by
0, if |z =1
fly= {0 TR
(1 —2%)sin——, if [z| #1

is another example of function continuous on [—1,1] but differentiable only
in (—1,1).

Theorem 30. (Lagrange’s Mean Value Theorem) Let f : [a,b] — R be
continuous. If f is differentiable on (a,b) then there exists ¢ € (a,b) such

that
£(8) ~ fla)

o)==~

Proof. Set g(x) = w(x —a) + f(a). Then g satisfies g(a) = f(a) and

g(b) = f(b). If weset h(x) = f(x)—g(x), the function h satisfies h(a) = h(b),
hence by Rolle’s theorem //'(¢) = 0 for some ¢ € (a,b). The result follows. [

Corollary 31. Let f : [a,b] — R be continuous such that f'(x) = 0 for every
x € (a,b). Then f is constant.

Corollary 32. Let f, g : [a,b] — R be continuous functions such that f'(x) =
g'(z) for every x € (a,b). Then f(x) = g(x)+ C, for some constant ¢ € R.

Corollary 33. Any function f : I — R defined on a interval such that
zel=|f(x)] <C for some C €R, is Lipschitz.
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Corollary 34. Let f : I — R be differentiable in an interval I. Then
f'(x) >0 if and only if f is nondecreasing in 1. In case f'(x) > 0, then f is
increasing. Equivalent statements are true if f'(x) <0 and f nonincreasing.

Proof. Suppose f'(z) > 0 and x,y € I such that x < y. By the Mean Value
Theorem, f(y)— f(x) = f'(¢)(y —x) > 0, and we conclude that f(z) < f(y).
Conversely, if f is nondecreasing then for every x € I such that x +h € I,
we have that the ratio w is always nonnegative, hence its limit when
h — 0 is also nonnegative. The same argument mutatis mutandis applies in

the strict inequality. O

Example 35. As a nice application of the Mean Value theorem we show that
lim(v/n+ 1 —+/n) = 0. Consider the function f : [n,n+ 1] — R given by
f(z) = J/x. Using the Mean Value Theorem we can find ¢ € (n,n+ 1) such

that
_ViFI-

fe) (n+1)—n

Y

or equivalently
1
vn+1— \/_ = %
Using the Squeeze theorem we conclude that lim(v/n + 1 — +/n) = 0.

1
< —.
— 2n

4 Taylor’s Theorem

Let f: I — R be a real valued function defined on an interval /. The n-th
derivative of f, if exists, is defined inductively by setting f”(z) = (f')(x)
and f((x) = (f™Y)(z) for n € N. By convention, we set f°(z) = f(z).

We say that f is of class C* in I, denoted by f € C*(I), if f* exists
and is continuous in /. When I = R, we simply write f € C*. Recall that
f € CY means f is continuous, so the definition makes sense even if k is
7Z€ro.

In case f € C*(I) for every k € N, we say that f is smooth and write
f € C(I). Equivalently, a function f is smooth if f(™ exists for every
n € N.

The following example generalizes example [21]
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Example 36. The function f : R — R given by f(x) = |z|r is C* but it’s
not C?. Indeed, we can easily check that its derivative is given by

Fz) = {220, x>0

—2z, v <0

which is continuous everywhere. Whereas, " has a jump discontinuity at
zero, so f & C?*. More generally, the function g(x) = |z|z" is in C™ but
g¢Cmth

Example 37. (Standard Mollifier) Consider the function defined by:
1
e -l x| <1
(a) :{ i

0, |z >1

y
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We can easily see that f € C* and the set where f # 0 is bounded, hence
has compact closure. This type of function and its higher dimensional gen-
eralization are extensively used in the field of differential equations.

Example 38. Since sin’z = cosz and cos’x = —sinx, we deduce that
sinz,cosx € C®. Similarly, e*,logx and any polynomial are examples of
smooth functions.

Let f : I — R be a real valued function defined on an interval [ C R
having derivatives up to order n at a € I, i.e. f("(a) exists. The polynomial
p(x) defined by

f//(a)

/ 2 f(n) a)
p(x) = fla)+ fla)(e —a) + ——(z —a)"+... (x—a)" (10)

is called the Taylor polynomial of order n of f at a.
Equivalently, the n-th order Taylor polynomial of f at a is the unique
polynomial p(x) of degree n, such that f*(a) = p*(a) for k =1,2,...,n.
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Theorem 39. (Taylor’s Theorem) Let f : I — R be a real valued function
having derivatives up to order n at a € I, and p(x) be the n-th order Taylor
polynomial at a. Then the function r : I — R, defined by r(z) = f(x) —p(x),
1.€.

1" (n)
1) = f(a) + f@)e—a)+ DD a4 Ty,
satisfies liin (;(?)n =0.

Proof. Recall that the case n = 1 was proved in theorem [7} Suppose n = 2,
we use the Mean Value Theorem to obtain ¢ between x and a such that:

r@) (@) =r(e) _r()@=a) () _ [r'(c) =r(a)(c—a)

(r—a)? (r—a)?  (r—a)? z—a  (c—a)(z—a)

lim (ﬁz))z =0, since r®(a) = 0 and ‘;:‘lﬂ < 1. Using the same argument,
T—a

we can prove the result for any value n. O]

Corollary 40. (L’Hépital’s rule) Let f,g : I — R be real valued functions
having derivatives up to order n at a € I, such that f*(a) = ¢¥(a) = 0,
fork=0,1,2,...,n—1, but f™(a) and g™ (a) are non-zero. Then

f@) )

lim = .
hg@)  g(a)

Proof. By Taylor’s formula and the hypothesis of the corollary, we have:

[ | (@)

f<$> _ n! (z—a)™
D@, @
g9(z) gT + —ay
for some r(z), s(x), satisfying (;_(Z))n — 0 and (;ﬁ))n — 0, when = — a. The
corollary is then immediate. O

Corollary 41. Let f : I — R be real valued function having derivative up
to order n at a € int(I), such that f*(a) = 0, for k = 1,2,...,n — 1,
but f™(a) # 0. Then if n is odd, the point a is not a local mazimum or
minimum, and if n is even, two outcomes are possible: f™(a) > 0 implies
the point a is a strict local minimum; f™(a) < 0 implies the point a is a
strict local maximum.
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Proof. Notice that in this case Taylor’s formula can be written as

f"(a) | r(a+h)
n! + h™

fla+h) = f(a) = A"

for h € R such that a+h € I. Since T(‘Z—th) — 0 when h — 0, for h sufficiently
small, say 0 < |h| < 9, the expression in the square brackets has the same
sign as f(™(a). Hence, if n is odd, we can always find hi, hy € I such that
fla+hy)—f(a) > 0and f(a+hse)— f(a) <0, so a can’t be a local maximum
or minimum.

Now, suppose n is even. Then if f(™(a) > 0, the above discussion implies
fla+h)— f(a) >0 for 0 < |h| < 0, hence a is a local minimum. Similarly, if
f™(a) < 0 we must have f(a+h)— f(a) < 0, and a is a local maximum. [J

We can enhance Taylor’s Theorem if we require f to be of Class C™ and
having the f*1 derivative, instead of just having the f” derivative, which
is not necessarily continuous.

Theorem 42. (Taylor’s Theorem with Lagrange Remainder) Let f : [a,b] —
R be a real valued function such that f € C™ and f"*V(z) ewists in (a,b).
Then there ezists ¢ € (a,b) such that

_ : f"(a) n, FO () nt1
f(b)—f(a)+f(a)(b—a)+...+T(b—a) +m(b—a)+.
Proof. Define g : [a,b] — R by
/ f(n)(w) n c n+1
o) = 10) = 1) ) 0—2)+ .+ LD o L,

where C'is the unique number such that g(a) = 0.

The function g is continuous on [a, b], differentiable in (a,b), and satisfies
g(a) = g(b). Therefore, by Rolle’s Theorem, there exists ¢ € (a,b) such that
g'(¢) = 0. On the other hand, a quick computation gives:

_C— f" ()

g(@) -y

We conclude that C = f™*Y(c), and the theorem becomes the statement
g(a) =0. O
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Let f : I — R be a smooth function, i.e. f € C*°, and a € I°. Using
Taylor’s Theorem with Lagrange remainder, for each n € N we have:

(n—1) (4
F@) = £@) 4 f)a =)+t e @ () (D

where r,(z) = %(m —a)" and ¢ is between x and a. It is then natural to
ask what happens when we let n — 400 in .

The series f(a)+f'(a)(x—a)+.. 0@ ()(:1: a)+.. Ef( >(a)(x a)”,

is called the Taylor Series of f at a € I. Notice that it’s not entirely clear
that the Taylor Series of f at a has to coincide with f(z), in fact, it’s possible
for the Taylor Series to diverge and even if it converges, it could converge to
a number other than f(z).

A function f : I — R is called Analytic if for every a € I, there exists
0 > 0 such that

f

(x —a)",

lz—a| < 6= f(x Z

In other words, a function is analytic if it coincides with its Taylor series
in a neighborhood of every point of its domain. Notice that it follows from
that a function is analytic if and only if for every x € I, we have
lim r,(z) = 0.

n—oo

Example 43. Any polynomial p(x) is clearly analytic, since p™ () vanishes
for sufficiently large n € N.

Example 44. The exponential function f(z) = e is perhaps one of the most
famous analytic functions. We use Taylor’s theorem (with a = 0), to obtain:

. z? A
e"'=14r+—+4+...+ — +e—
2 n! n!

with |c,| < |z|. Sincelim L+ = 0, the Taylor series for e” at 0 converges to e”.
Moreover, notice that e*T* = e%e®, hence the Taylor series for e® converges
at any point a € R, and e* is analytic.

Example 45. Let x € R, then

l+o+22+.. 42"+ =




Consider the function f : (0,1) — R given by f(z) = ﬁ Then using

Taylor’s Theorem we obtain r,(x) = {—

in this case, so lim r,(x) = 0,
n—oo
which implies f(x) = > x™. Hence, f(x) agrees with its Taylor Series at 0.
n=0

Example 46. Let f : R — R be defined by f(x) = cosz. Using Taylor’s
theorem around the origin (with a = 0), we can write

. R 2n
cost =1— o + TR + (—1)”7)! + Tony1 ()

where ry,(z) = [cos #™](c)%;. Notice that

|x|2n+1

0< |ry(z)| < ——nu,
< Il < Gy

|z|2n+1

and recall that by eazample lim Gy = V- We conclude that lim r,(z) =
n—0o0 ) n—o0
0 and it follows that

.1]2 .’174 xZn

cosle—a—l—z—...—l—(—l)

(2n)!+""

Hence, the Taylor series of cosx at 0 converges to cosx at every point x € R.
The same argument can be applied if if the Taylor series is not centered at
zero (a #0). In conclusion, the function cosx is analytic.

Example 47. Consider the function f: R — R defined by

flz) = {6_127:"07& !

=
&

08

06

04

02r

-3 -2 -1 1 2 3
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Using the fact that hII(l) ezf =0 for any n > 0, we can see that f™(0) =0,
T—

and the function f is smooth. However, the Taylor series at 0 is identically

zero, since %x” = 0. In particular, since x # 0 = f(z) # 0, it’s

n=0
impossible for f(x) to be analytic on R.
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VII Integrals

1 Definition and first properties

Let [a,b] € R be a closed interval. A partition of [a,b] is a finite subset
P ={xq,z1,...,2,} of [a,b], such that o = a and z, = b.

By convention, the elements of a partition are written in increasing order,
P={a=zy<z <x9 <...<um, =0}

a=xg X1 X2 X3 Xp-2 Xp-1 Xxn=b

Let P, @ be partitions of [a,b]. We say that the partition @ is a refinement
of the partition P if P C (). More precisely, @) is obtained from P by adding

a finite number of points.

Let f : [a,b] — R be a bounded function. Set m = inf f and M = sup f,
then:
m < f(x) < M, Va € [a,].

If P ={zg,21,...,2,} is a partition of [a, b], we denote
m; o= inf{f(z);z; 1 <2 <} and M; = sup{f(z); 21 <o <4},
and define the oscillation of f at [x;_1,z;] by
w; = M; —m;.

If f is continuous, the values m;, M;, w; are achieved by Weierstrass Extreme
Value Theorem.
We define the lower sum of f with respect to P by

s(fi P) =ma(x1 —x0) + - + mp(@n — Tpo1) = Zmz(% — Ti—1),
i=1

and likewise, the upper sum of f with respect to P by

n

S(f; P) = M1($1 - 930) +---+ Mn(ﬂfn - iEn—l) = ZMz(xz - %‘—1)-

=1
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s(f,P) S(f,P)

By definition, we have
m(b—a) < s(f; P) < S(f; P) < M(b—a) and S(f; P)— Zwl Ti—Ti—1)

When f > 0, the number s(f; P) represents an approximation of the area
under the graph of f using rectangles that are below the graph, whereas
S(f; P) represents an approximation using rectangles above the graph of f.

Let P = {P; P is a partition of [a,b]} and f : [a,b] — R be a bounded
function. The lower integral and upper integral are defined respectively by:

/bf(x = sup s(f; P) and / f(z X::;Iéng(f P),

Pep

Theorem 1. Let P,QQ € P. Then

PCQ=s(f;P)<s(f;Q) and S(f;Q) < S(f;P)

Proof. 1t’s enough to prove the result when @ = P U {a}. Suppose P =
{zg <x1 <...<uz,} and z5_; < a < zy for some k < n. Define

m':= inf f(z)and m”:= inf f(x).

w€lzp1,0] w€la,zy]

Notice that my, is less than or equal to m/, m”. We have:

s(f;Q) — s(f; P) =m'(a — xp—1) + m" (z — a) — my(z), — 2p-1)

= (" — )k — @) + (0 — )@ —m) (1)
>0
A similar argument shows that S(f; Q) < S(f; P). O
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The figure below illustrates theorem |If for a partition P and a refinement
Q 2 P, when f(z) = % The sum of the highlighted rectangles represent
s(f; P) and s(f; Q) respectively. It’s easy to see that s(f; Q) > s(f; P).

\

y y

=

Corollary 2. For any partitions P,Q) € P we have

s(f; P) < S(f;Q)
Proof. Apply Theorem [l|to P and PUQ (Q and PU Q). O
Lemma 3. Let X,Y C R be sets satisfing

<y Vee X,VyeYy,

then sup X < infY. Moreover, the equality sup X = infY holds if and only
if given € > 0, there are x € X,y € Y such that y — x < €.

Proof. By definition, every y € Y is an upper bound for X hence sup X < y,
for every y € Y. On the other hand, sup X is a lower bound for Y, thus
sup X < infY. Suppose sup X = infY and € > 0 is given. Then sup X — §
is not an upper bound, so dz € X such that sup X — 5 < x < sup X.
Similarly, we can find y € Y such that infY <y < infY + 5. Therefore,
y—x <infY + 5 —sup X + § = e. Conversely, suppose sup X < infV. If

we set € = infY —sup X, then y — x > e. n

Theorem 4. Let f : [a,b] — R be a bounded function, say m < f(x) < M,
then:

m(b— a) < / F@)dx < / F@)dx < M(b— a)

Proof. The proof of the middle inequality follows directly from lemma[3] The
other two inequalities are obvious. O]
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A bounded function f : [a,b] — R is (Riemann) integrable if

/ = [ rwas

and we denote this common value by fab f(x)dx, or simply, by f; f

Example 5. The constant function f : [a,b] — R given by f(x) = C is
clearly integrable since s(f; P) = S(f; P) = C(b— a) for any partition P.

Example 6. The Dirichlet function f : [0,1] — R given by f(z) = 1 if
x € Q, and 0 otherwise, is not integrable since s(f; P) = 0 and s(f; P) = b—a
for any partition P.

Theorem 7. Let f : [a,b] — R be a bounded function. The following are
equivalent:

(1) f is integrable,

(2) For every € > 0, there are partitions P and @Q of [a,b] such that
S(f;Q) —s(fi P) <e,

(3) For every e > 0, there is a partition R = {xg < x1 < ... < x,} of [a,b]

such that S(f; R) — s(f; R) = > wr(xr — xp—1) < €.
k=1

Proof. The fact that (1) = (2) and (3) = (1) follows directly from lemma [3]
Suppose (2) is true and set R = P U (@, then

s(f; P) < s(f;R) < S(f;R) < S(f;Q),
2S(fsR) —s(f; R) < e, and (2) = (3). O
2 Properties of Integrals

Let f : [a,b] — R be a bounded function. For simplicity, we adopt the
following conventions:

/aaf:Oand/baf:—/abf
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Theorem 8. Let a < ¢ <b. Then f : [a,b] — R is integrable if and only if
Jlwa and fi,, are integrable. In the affirmative case, we have

/abf=/acf+/cbf-

A= {s(fj,.; P); P is a partition of [a, ]},
B = {s(fi..,;; P); P is a partition of [c, 0]},
C = {s(f; P); P is a partition of [a,b] and ¢ € P}.

Proof. Consider the sets

Notice that by Theorem , fab f =supC. It follows that

/abf:sup(A+B):supA+supB: /acf+ /be,

Cefel
/abf—_/abf=(/acf—_/:f)+(/cbf__/cbf>'

We conclude that I;f = fff if and only if ch = [T f and fcbf = fcbf.
N B ]

and similarly,

Example 9. (Step functions) Given a set X C R, consider the function

X4 : R — R defined by
(2) 1, ifre A
xT) =
X 0, ifr ¢ A
Xa is called the characteristic function of A C R. Let P = {xy < 1 <
... < xp} be a partition of [a,b], and ¢y, co, ..., c, € R. The function f(x) =

n
cjX1,, where Ij = [x;_1, 2], is called a Step function. Since f is constant,
=1

J
in particular integrable, on I;, theorem [§ guarantees that f is integrable.

Theorem 10. Let f, g : [a,b] — R be integrable. Then
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(1) f+ g is integrable and f:(f+g) — fabf_|_ fabg;
(2) f-g is integrable,

(3) If 3k > 0 such that 0 < k < |g(x)| for every x € [a,b], then f/g is
integrable,

(4) If f < g then [} f < [} 9,
(5) |f]| is integrable and ‘fabf‘ < fab|f|

Proof. Notice that for P, Q) partitions of [a, b] we have:

b
S(f;P)+S(g;Q)Ss(f;PUQ)+S(g;PUQ)Ss(f+g;PUQ)§/(f+g),

_/abf+_/abg§_/ab(f+g>-

Similarly, we can show that f; f+ jab g> f:( f+g). We conclude from the
inequalities

_/abf+_/abg§_/:(f+g)§/;b(f+g)§/;bf+/;bg,

that (1) is true.
To prove (2), choose K > 0 big enough such that max{|f(z)|, |g(z)|} <
K. Let P = {z;;i = 0,...,n} be a partition of [a,b], and w],w! w; the

oscillations of f,g and fg respectively, on the interval [z;, z;_1]. For z,y €
[z, x;_1] we have:

and hence:

and (2) is a direct consequence of Theorem [7](3).
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Item (3) follows from (2), if we can show that %} is integrable. Let P =
{z;;i=0,...,n} be a partition of [a,b], and z,y € [x;,z;,_1]. By hypothesis:

1 l9(y) — g(z)|
‘g(x) - g(y)‘ = K

Once more, the result follows from Theorem [7|(3)
Item (4) is trivial, since in this case s(f; P) < s(g; P) for every partition,

hence fab f< fab g. Finally, to see why (5) is true, consider the inequality:

F @) = [f@I < 1f (=) = f(y)]

Which tell us that the oscillation of |f] is always bounded by the oscillation
of | f], hence by Theorem [7|(3) again, |f| is integrable. The last part follows
from the inequality —|f(z)| < f(z) < |[f(z)]. O

Corollary 11. Let f : [a,b] — R integrable and bounded, say |f(x)| < K.

Then
b
|1

Theorem 12. Let [ : [a,b] — R be continuous. Then f is integrable.

< K(b—a).

Proof. By Theorem [68 f is uniformly continuous. Let e > 0 be given,
and take § > 0 such that |z —y| < d = [f(z) — f(y)| < = . Now, choose a
partition P = {x;;1 =0,...,n} such that x; —xz;_ 1 < ¢ for every i=1,...,n.
If w; is the oscillation of f at [x;_1, ;] then w; < = and it follows that

n

Sl i) < o Sl ) =

k=1

The proof is complete by Theorem (3) ]
Theorem 13. Let [ : [a,b] — R be monotone. Then f is integrable.

Proof. The argument is similar to the above theorem, namely it uses Theorem
(3). Without loss of generality, suppose f increasing. Let € > 0 be given,
choose a partition P = {x;;¢ =0,...,n} such that z; —x; 1 < m We

have: .
sz z_le m;wi:e.
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Recall that given an interval [ C R with end-points a and b, the length
of I, denoted by |I|, is given by |I| = b — a.

A set X C R has measure zero if given € > 0, it’s possible to find a
countable open cover of X C |J I,, by open intervals I,,, such that > |I,,| <

n=1 n=1

€

Example 14. Any countable set X C R has measure zero. Indeed, given any

€ > 0, take an open interval of length 5 around the n-th number x,, € X,
o0
then > |I,| < e. In particular, the set of Rational numbers Q has measure

n=1
ZEero.

Example 15. The Cantor set K has measure zero since after the n-th it-
eration, K is contained in the union of 2" intervals of length 37™. Hence,
given any € > 0, if we take n sufficiently large, K can be covered by open sets
whose length add to a number less than €.

Theorem 16. Let f : [a,b] — R be bounded function. If the set of disconti-
nuities D of f has measure zero then f is integrable

Proof. Let w := sup f — inf f, be the oscillation of f in [a,b]. Let € > 0

be given, and suppose D C |J I,, where [, are open intervals such that
n=1

Z [In| < 5. For each z € [a,b] — D, take an interval J, > z, such that

the oscillation of f in J, is less than this is possible because f is

continuous at z.
Now, [a,b] C (U In) U <U Jz>, and by Borel-Lebesgue Theorem,
n=1

z¢D
there is a finite subcover, say I,f U...L,, UJ, U...J, of [a,b]. Form a
partition P of [a,b] whose elements are a, b, and each endpoint of I,,, and
Jog, forp=1,...k, ¢=1,...,1. We write [y;_1,y;] for an interval associated
to P which is contained in I, , for some p, and [y, 9], otherwise. Let w
denote the oscillation of f in the j-th interval of P. We have:

S(f; P) Z% —Yj-1 +Zwt Ye — Ye—1)
<Z w(y; — Yj-1) +Z — Y1)

(b—a)=

2(bE—a) )

<“Z+2(b—a)
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By Theorem Theorem [7|(3), f is integrable. O

Example 17. The Cantor function f:[0,1] — R given by

_JLifreK
J(@) = {0, ifz ¢ K,

is integrable. Indeed, f is continuous in [0, 1] — K because it’s constant there,

but it’s discontinuous at every point a of K, since we can find a sequence
z, € [0,1] — K such that x, — a. By Theorem|[10, f is integrable.
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