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I Naive set theory

1 Sets

A set X is a collection of objects, also called the elements of the set. If ‘a’ is
an element of X, we write a ∈ X. On the other hand, if ‘a’ isn’t an element
of X, we write a /∈ X.

A set X is well defined when there is a rule that allows us to say if an
arbitrary element ‘a’ is or isn’t an element of X.

Example 1. The set X of all right triangles is well-defined. Indeed, given
any object ‘a’, if ‘a’ is not a triangle or doesn’t have a right angle then a /∈ X.
If ‘a’ is a right triangle then a ∈ X.

Example 2. The set X of all tall people is not well-defined. The notion of
‘tall’ is not universally defined, hence given any element a we can’t say if
a ∈ X or a /∈ X.

Usually one uses the notation

X = {a, b, c, . . .}

to represent the set X whose elements are a, b, c, . . ., and if a set has no
elements we denote it by ∅ and call it the empty set.

The set of natural numbers 1, 2, 3, . . . will be represented by

N = {1, 2, 3, . . .}

The set of integers will be represented by

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

The set of rational numbers, that is, fractions a
b
, where a, b ∈ Z and b ̸= 0,

will be denoted by

Q = { a

b
| a, b ∈ Z, b ̸= 0 }

The vast majority of sets in mathematics are not defined by specifying its
elements one by one. What usually happens is a set being defined by some
property its elements satisfy, i.e. if a has property P than a ∈ X, whereas if
a doesn’t have property P then a /∈ X. One writes

X = {a | a has property P}
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For example, the set
X = {a ∈ N | a > 10},

consists of all natural numbers bigger than 10.
Given two sets A,B, one says that A is a subset of B or that A is

included in B (B contains A), represented by A ⊆ B, if every element of A
is an element of B.

Example 3. We have the obvious inclusion of sets:

N ⊆ Z ⊆ Q.

Example 4. Let X be the set of all squares and Y be the set of all rectangles.
Then X ⊆ Y , since every square is a rectangle.

When one writes X ⊆ Y , it’s possible that X = Y . In case X ̸= Y , we
say X is a proper subset, the notation X ⊊ Y is sometimes used to indicate
that X is a proper subset of Y .

Notice that to write a ∈ X is equivalent to say {a} ⊆ X. Also, by
definition, it’s always true that ∅ ⊆ X for every set X.

It’s easy to see that the inclusion of sets has the following properties:

1. Reflexive, X ⊆ X for every set X;

2. Anti-symmetric, if X ⊆ Y and Y ⊆ X then X = Y ;

3. Transitive, if X ⊆ Y and Y ⊆ Z then X ⊆ Z.

It follows that two sets X and Y are the same if and only if X ⊆ Y and
Y ⊆ X, that is to say, they have the same elements.

Given a set X, we define the power set of X, P(X) as

P(X) = {A |A ⊆ X }.

The set P(X) is the set of all subsets of X, in particular it’s never empty, it
has at least ∅ and X itself as elements.

Example 5. Let X = {1, 2, 3} then

P(X) = { ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} }.

Notice that by using the Fundamental Counting Principle, any set with
n elements has 2n subsets. Therefore, the number of elements of P(X) is 2n.
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2 Operation with sets

We given two sets X and Y , one can build many other sets. For example,
the union of X and Y , denoted by X ∪ Y is the of elements that are in X
or Y , more precisely:

X ∪ Y = { a | a ∈ X or a ∈ Y }.

Similarly, the intersection of X and Y , denoted by X∩Y is the of elements
that are common to both X and Y :

X ∩ Y = { a | a ∈ X and a ∈ Y }.

If X ∩ Y = ∅, then X and Y are said to be disjoint.

Example 6. Let X = {a ∈ N | a ≤ 100} and Y = {a ∈ N | a > 50} then

X ∪ Y = N and X ∩ Y = {a ∈ N | 50 < a ≤ 100}

Example 7. The sets X = {a ∈ N | a > 1} and Y = {a ∈ N | a < 2} are
disjoint, i.e. X ∩ Y = ∅ since there is no natural number between 1 and 2.

The difference betweenX and Y , denoted byX−Y is the set of elements
that are in X but not in Y , more precisely:

X − Y = { a | a ∈ X and a /∈ Y }.

Given an inclusion of sets X ⊆ Y , the complement of X in Y is the set
Y −X, the notation Xc sometimes is used if there is no confusion about who
the set Y is.

Example 8. Consider the sets X = {a ∈ N | a is even} and Y = N. Then
X ⊆ Y and Xc = {a ∈ N | a is odd}.

Proposition 9. Given sets A,B,C,D the following properties are true:

1. A ∪ ∅ = A; A ∩ ∅ = ∅

2. A ∪ A = A; A ∩ A = A

3. A ∪B = B ∪ A; A ∩B = B ∩ A

4. A ∪ (B ∪ C) = (A ∪B) ∪ C; A ∩ (B ∩ C) = (A ∩B) ∩ C
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5. A ∪B = A ⇔ B ⊆ A; A ∩B = A ⇔ A ⊆ B

6. if A ⊆ B and C ⊆ D then A ∪ C ⊆ B ∪D and A ∩ C ⊆ B ∩D

7. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C); A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

8. (Ac)c = A

9. (A ∪B)c = Ac ∩Bc; (A ∩B)c = Ac ∪Bc

Proof. The last property, (A ∪ B)c = Ac ∩ Bc, will be demonstrated below,
the others are trivial or can be proved in a similar way.

We prove that (A∪B)c ⊆ Ac ∩Bc. Let a ∈ (A∪B)c, then a /∈ A∪B, in
particular, a /∈ A and a /∈ B, hence a ∈ Ac ∩Bc.

Conversely, take a ∈ Ac ∩ Bc. Then a /∈ A and a /∈ B, so a /∈ A ∪ B and
it follows that a ∈ (A ∪B)c.

An ordered pair (a, b) is formed by two objects a and b, such that for any
other such pair (c, d):

(a, b) = (c, d) ⇔ a = c and b = d.

The elements a and b are called coordinates of (a, b), a is the first coordinate
and b the second one.

The cartesian product X × Y of two sets X and Y is the set of all
ordered pairs (x, y) such that x ∈ X and y ∈ Y :

X × Y = { (x, y) |x ∈ X and y ∈ Y }.

Remark 1. An ordered pair is not the same as a set, i.e. (a, b) ̸= {a, b}.
Notice that {a, b} = {b, a} but (a, b) ̸= (b, a) in general.

Example 10. Consider the sets X = {1, 2, 3} and Y = {a, b}, then

X × Y = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) }.

3 Functions

A function f : X → Y consists of three components: a set X, the domain,
a set Y , the co-domain, and a rule that associates each element a ∈ X an
unique element in f(a) ∈ Y , f(a) is called the value of f(x) at a, or the
image of a under f(x).

Another common notation to denote a function is x 7→ f(x). In this case
the domain and codomain can be identified by the context.
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Example 11. The function f : N → N given by f(n) = n + 1 is called the
successor function.

Example 12. Let X be the set of all triangles. One can define a function
f : X → R by f(x) = area of x.

Example 13. (Relation that is not a function) The correspondence that
associates to each real number x, all y satisfying y2 = x is not a function
because any x ̸= 0 will be associated to two values, namely ±

√
x, and in order

to be a function every x has to have exactly one image y = f(x).

The graph of a function f : X → Y is a subset of X × Y defined by

Γ(f) = { (x, f(x)) |x ∈ X }.

Example 14. Consider the function f(x) = e−x2
, its graph is given below:

A function f : X → Y is said to be injective or one-to-one if for every
x, y such that f(x) = f(y) then x = y. Suppose X ⊆ Y , then inclusion
i : X → Y given by i(x) = x is a typical example of injective function.

A function f : X → Y is said to be surjective or onto if for every y ∈ Y
there is x ∈ X such that y = f(x). The projection p : X × Y → X in the
first coordinate, given by p(x, y) = x is a typical example of surjection.

Finally, a function f : X → Y is bijective or a bijection if it is both
surjective and injective.

Example 15. The function given by f(x) = x3 is injective.
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Example 16. The floor function ⌊x⌋ = max{n ∈ Z |n ≤ x } is not injective.

Example 17. The function f(x) = sinx is a bijection if we consider f :
(−π

2
, π
2
) → R.

Given a function f : X → Y , the image of a set A ⊆ X is defined by

f(A) = { y ∈ Y | y = f(a), a ∈ A }.
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Conversely, the inverse image of a set (sometimes called pre-image) B ⊆ Y
is given by

f−1(B) = {x ∈ X | f(x) ∈ B }.

Proposition 18. Given f : X → Y and subsets A,B ⊆ X, we have:

1. f(A ∪B) = f(A) ∪ f(B); f−1(A ∪B) = f−1(A) ∪ f−1(B)

2. f(A ∩B) ⊆ f(A) ∩ f(B); f−1(A ∩B) = f−1(A) ∩ f−1(B)

3. if A ⊆ B then f(A) ⊆ f(B) and f−1(A) ⊆ f−1(B)

4. f(∅) = ∅; f−1(∅) = ∅

5. f−1(Y ) = X

6. f−1(Ac) = (f−1(A))c

Example 19. Consider the function f(x, y) = x2 + y2, the inverse image
f−1({1}) is a circle of radius 1. Similarly, any line ax+ by = c can be seen
as g−1({c}), where g(x, y) = ax+ by.

Given two functions f : X → Y and g : Y → Z, the composition g ◦ f of
g and f is defined as the function:

(g ◦ f)(x) = g(f(x))

Example 20. The composition of the functions g(x) = sinx and f(x) = ex

is the function (g ◦ f)(x) = sin ex depicted below.
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Given a function f : X → Y and a subset A ⊆ X, the restriction of
f(x) to A, denoted by f |A : A → Y , is defined by f |A(x) = f(x). Similarly,
if X ⊆ Z, a extension of f(x) to Z is any function g : Z → Y such that
g|X(x) = f(x).

Example 21. Consider again the function f(x, y) = x2 + y2, and the unit
circle S1 = { (x, y) |x2 + y2 = 1 }. Then the restriction f |S1 is the constant
function g(x) = 1.

Given functions f : X → Y , and g : Y → X, the function g(x) is called
left-inverse of f(x) if

(g ◦ f)(x) = x.

Similarly, the function g(x) is called right-inverse of f(x) if

(f ◦ g)(x) = x.

Finally, if there is a function f−1(x) such that

(f ◦ f−1)(x) = (f−1 ◦ f)(x) = x,

f−1(x) is called the inverse of f(x). Notice that any inverse, if exists, is
unique. If g(x) and h(x) are both inverses of f(x) then

g(x) = g(f(h(x))) = (g ◦ f)(h(x)) = h(x).

Proposition 22. A function f : X → Y has an inverse f−1 : Y → X ⇔ f
is bijective.

Proof. Suppose f has an inverse f−1 and f(x) = f(y) for some x, y. Taking
the inverse on both sides, we conclude that x = y and f is injective. Similarly,
take y ∈ Y and set x = f−1(y), then f(x) = y and it follows that f is
surjective.

Conversely, suppose f bijective. If f(x) = y, set f−1(y) = x. One can
easily check that (f ◦ f−1)(x) = (f−1 ◦ f)(x) = x.

Example 23. Consider the function f : (0,+∞) → (0,+∞) given by f(x) =
1
x
, then the f is its own inverse, i.e. (f ◦ f)(x) = x.
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4 The natural numbers N
The natural numbers are built axiomatically. Start with a set N, whose
elements are called natural numbers, and a function s : N → N, called the
successor function. For any n ∈ N, s(n) is called the successor of n.

The function s(n) satisfies the following axioms:

Axiom 1. s(n) is injective, i.e. every number has a unique successor.

Axiom 2. The set N− s(N) has only one element, which will be denoted by 1, i.e.
every number has a successor and 1 is not a successor of any number.

Axiom 3. (Principle of induction) Let X ⊆ N be a subset with the following
property: 1 ∈ X and given n ∈ X, s(n) ∈ X as well. Then X = N.

Whenever axiom 3 is used to prove a result, the result is said to be proved
by induction.

Proposition 24. For any n ∈ N, s(n) ̸= n.

Proof. The proof is by induction. Let X ∈ N be a subset defined by:

X = {n ∈ N | s(n) ̸= n }.

By Axiom 2, 1 ∈ X. Let n ∈ X, then s(n) ̸= n. By Axiom 1, s(s(n)) ̸= s(n),
hence s(n) ∈ X. The proof follows by Axiom 3.

Given a function f : X → X, its power fn is defined inductively. More
precisely, if one sets f 1 = f then fn is defined by:

f s(n) = f ◦ fn.

In particular, if one sets 2 = s(1), 3 = s(2), . . ., then f 2 = f ◦ f, f 3 =
f ◦ f ◦ f, . . ..

Now, given two natural numbers m,n ∈ N, their sum m+n ∈ N is defined
by:

m+ n = sn(m).

It follows that m+ 1 = s(m) and m+ s(n) = s(m+ n), in particular:

m+ (n+ 1) = (m+ n) + 1

More generally, the following can be proved using induction:
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Proposition 25. For any m,n, p ∈ N:

1. (Associativity) m+ (n+ p) = (m+ n) + p;

2. (Commutativity) m+ n = n+m;

3. (Cancellation Law) m+ n = m+ p ⇒ n = p;

4. (Trichotomy) Only one of the following can occur: m = n, or ∃q ∈ N
such that m = n+ q, or ∃r ∈ N such that n = m+ r.

The notion of order among natural numbers can be defined in terms of
addition. Namely, one writes

m < n,

if ∃q ∈ N such that n = m+ q; in the same situation, one also writes n > m.
Notice in particular that for every m ∈ N:

m < s(m).

Finally, one writes m ≥ n if m > n or m = n and a similar definition applies
to ≤.

Proposition 26. For any m,n, p ∈ N:

(I) (Transitivity) m < n, n < p ⇒ m < p;

(II) (Trichotomy) Only one of the following can occur: m = n, m < n or
m > n.

(III) m < n ⇒ m+ p < n+ p.

The multiplication operation m · n will be defined in a similar way as
m+n was defined. Let am : N → N be the ‘add m’ function, am(n) = n+m.
Then multiplication of two natural numbers m · n is defined as:

m · 1 := m,

m · (n+ 1) := (am)
n(m).

So m ·2 = am(m) = m+m,m ·3 = (am)
2(m) = m+m+m, . . ., and it follows

that:
m · (n+ 1) := m · n+m.

More generally, the following is true:
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Proposition 27. For any m,n, p ∈ N:

a. m · (n · p) = (m · n) · p;

b. m · n = n ·m;

c. m · n = p · n ⇒ m = p;

d. m · (n+ p) := m · n+m · p;

e. m < n ⇒ m · p < n · p.

5 Well-ordering principle

Let X ⊆ N. A number m ∈ X is called the minimum element of X,
denoted m = minX, if m ≤ n for every n ∈ X. For example, 1 is the
minimum of N; 100 is the minimum of {100, 1000, 10000}.

Lemma 28. If m = minX and n = minX then m = n.

Proof. Since m ≤ p for every p ∈ X, m ≤ n in particular. Similarly, n ≤ m
and hence m = n.

The maximum element is defined similarly: m = maxX if m ≥ n, ∀n ∈
X. Notice that not all subsets X ⊆ N have a maximum. In fact, N itself
doesn’t have a maximum, since m < m + 1 for every m ∈ N. The lemma
above remains valid if we exchange ‘minimum’ by ‘maximum’.

Despite not all subsets of N having a maximum, they do have a minimum
if they are non-empty.

Theorem 29. (Well-ordering principle) Let X ⊆ N be non-empty. Then X
has a minimum.

Proof. If 1 ∈ X then 1 is the minimum, so suppose 1 /∈ X. Let

In = {m ∈ N | 1 ≤ m ≤ n },

and consider the set
L = {n ∈ N | In ⊆ Xc }.

Since 1 /∈ X ⇒ 1 ∈ L. If n ∈ L ⇒ n + 1 ∈ L then induction would imply
L = N, but L ̸= N since L ⊆ Xc = N − X, and X ̸= ∅. We conclude that
there is a m0 such that m0 ∈ L but m0 + 1 /∈ L. It follows than m0 + 1 is
the minimum element of X.
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Corollary 30. (Strong induction) Let X ⊆ N be a set with the following
property:

∀n ∈ N, if X contains all m < n ⇒ n ∈ X.

Then X = N.

Proof. Set Y = Xc, the claim is that Y = ∅. Suppose not, that is, Y ̸= ∅.
By the theorem above, Y has a minimum element, say p ∈ Y . But then by
hypothesis p ∈ X, a contradiction.

Example 31. Strong induction can be used to prove the Fundamental the-
orem of Arithmetic, which says that every number greater than 1 can
written as a product of primes (a number p is prime if p ̸= m · n, with
m < p and n < p). Indeed, Let X = {m ∈ N |m is a product of primes }
and n ∈ N a given number. If X contains all numbers m such that m < n,
then if n is prime, n ∈ X; if n is not a prime then n = p ·q with p < n, q < n,
again it follows that n ∈ X. Therefore, strong induction implies X = N.

Let X be any set. A common way of defining a function f : N → X
is by recurrence (sometimes ‘by induction’ is used), namely, f(1) is given
and also a rule that allows one to obtain f(m) knowing f(n) for all n < m.
Technically, more than one function f could exist satisfying these conditions,
however it is know that such a function is unique, the proof of this fact is
left as an exercise.

Example 32. (Factorial) The factorial function f : n 7→ n! can be defined
using induction. Set f(1) = 1 and f(n + 1) = (n + 1) · f(n). Then f(2) =
2 · 1, f(3) = 3 · 2 · 1, . . . , f(n) = n!.

Example 33. (Arbitrary sums/products) So far the definition of m+ n was
used, what about m + n + p or m1 + . . . +mn? In order to define arbitrary
sums (or products), one can use induction. Namely,

m1 + . . .+mn = (m1 + . . .+mn−1) +mn;

and similarly, for products:

m1 · . . . ·mn = (m1 · . . . ·mn−1) ·mn.
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6 Finite and Infinite sets

Throughout this section, In stands for the set of numbers less than or equal
to n:

In = {m ∈ N | 1 ≤ m ≤ n }

A arbitrary set X is finite if X = ∅ or there is number n ∈ N and a bijection

f : In → X.

In the latter case, one says that X has n elements and writes:

|X| = n,

f is said to be a counting function for X. By convention, if X = ∅ then one
says X has zero elements, i.e. |∅| = 0.

It remains to show that the number of elements is a well-defined notion,
that is to say, if there are bijections f : In → X and g : Im → X then n = m.

Theorem 34. Let X ⊆ In. If there is a bijection f : In → X, then X = In.

Proof. The proof is by induction on n. The case n = 1 is obvious, suppose
the result true for n, the proof follows if one can prove the result for n+ 1.

Suppose X ⊆ In+1 and there is a bijection f : In+1 → X. Let a = f(n+1)
and consider the restriction f : In → X − {a}.

If X − {a} ⊆ In then X − {a} = In, a = n+ 1 and X = In+1.
Suppose X − {a} ̸⊆ In, then n + 1 ∈ X − {a} and one can find b such

that f(b) = n + 1. Let g : In+1 → X be the defined by g(m) = f(m) if
m ̸= n + 1, a; g(n + 1) = n + 1; g(b) = a. By construction, the restriction
g : In → X − {n + 1} is a bijection and obviously X − {n + 1} ⊆ In, hence
X − {n+ 1} = In and it follows that X = In+1.

Corollary 35. (Number of elements is well-defined) If there is a bijection
f : In → Im then m = n. Therefore, if f : In → X and g : Im → X are
bijections then n = m.

Proof. The first part follows directly from the theorem. For the second part,
consider the composition (f−1 ◦ g) : Im → In.

Corollary 36. There is no bijection f : X → Y between a finite set X and
a proper subset Y ⊆ X.
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Proof. By definition there is a bijection φ : In → X for some n ∈ N. Since
Y is proper, A := φ−1(Y ) is also proper in In. Let φA : A → Y be the
restriction of φ from In to A. Suppose there is a bijection f : X → Y ,
then the composite function φ−1

A ◦ f ◦ φ : In → A defines a bijection, a
contradiction.

Theorem 37. Let X be a finite set and Y ⊆ X, then Y is finite and |Y | ≤
|X|, the equality occurs only if X = Y .

Proof. It’s enough to prove the result for X = In. If n = 1 the result
is obvious. Suppose the result is valid for In and consider Y ⊆ In+1. If
Y ⊆ In, the induction hypothesis gives the result, so assume n+1 ∈ Y . Then
Y −{n+1} ⊆ In and by induction, there is a bijection f : Ip → Y −{n+1},
where p ≤ n. Let g : Ip+1 → Y be a bijection defined by g(n) = f(n) if
n ∈ In, and g(p + 1) = n + 1. This proves that Y is finite, moreover since
p ≤ n ⇒ p+ 1 ≤ n+ 1, |Y | ≤ n. The last statement says that if Y ⊆ In and
|Y | = n then Y = In, but this is a direct consequence of theorem 34.

The following Corollary is immediate:

Corollary 38. Let Y be finite and f : X → Y be an injective function. Then
X is also finite and |X| ≤ |Y |.

Corollary 39. Let X be finite and f : X → Y be an surjective function.
Then Y is also finite and |Y | ≤ |X|.

Proof. Since f is surjective, by the proof of proposition 22, f has an injective
right-inverse g : Y → X. The result follows by the corollary above.

A set X that is not finite is said to be infinite. More, precisely X is
infinite when it’s not empty and there is no bijection f : In → X for any
n ∈ N.

Example 40. The natural numbers N is an infinite set since there is no
surjection between In and N, because given any function f : In → N, the
number f(1) + f(2) + . . .+ f(n) is not in the range.

Example 41. Z and Q are also infinite sets since they contain N, which is
infinite.

A set X ⊆ N is bounded, if there is a number M ∈ N such that n ≤ M
for all n ∈ X.
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Theorem 42. Let X ⊆ N be nonempty. The following are equivalent:

a. X is finite;

b. X is bounded;

c. X has a greatest element.

Proof. The proof is based on the implications a ⇒ b, b ⇒ c, c ⇒ a.

(a ⇒ b) Let X = {x1, x2, . . . , xn}. Then M = x1 + . . .+ xn satisfies n ≤ M for
all n ∈ X.

(b ⇒ c) Consider the set A = {n ∈ N |n ≥ x,∀x ∈ X }. Since X is bounded,
A ̸= ∅. By the principle of well ordering, A has a minimum element,
say m ∈ A. If m ∈ X then m is the greatest element, so suppose
m /∈ X. By definition, m > n for all n ∈ X, and since X ̸= ∅, m > 1,
that is m = p+1, for some p ∈ N. If p ≥ x for all x ∈ X then p ∈ A, a
contradiction since p < m and m is minimal. If there is a x ∈ X such
that x > p, then x ≥ m a contradiction unless x = m, but m /∈ X by
assumption. It follows that m ∈ X and m is the greatest element.

(c ⇒ a) If X has a greatest element, say M , then X ⊆ IM and it follows that
X is finite.

The Theorem below follows directly from the definitions, the proof will
be omitted.

Theorem 43. Let X and Y be two sets such that |X| = m, |Y | = n and
X ∩ Y = ∅. Then X ∪ Y is finite and |X ∪ Y |=m+ n.

The following corollary is immediate:

Corollary 44. Let X1, X2, . . . , Xn, be a finite collection of sets such that

each Xi is finite and Xi ∩Xj = ∅ if i ̸= j. Then
n⋃

i=1

Xi is finite and

|
n⋃

i=1

Xi| =
n∑

i=1

|Xi|

.
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Corollary 45. Let X1, X2, . . . , Xn, be a finite collection of sets such that

each Xi is finite. Then
n⋃

i=1

Xi is finite and

|
n⋃

i=1

Xi| ≤
n∑

i=1

|Xi|

.

Proof. For each i = 1, . . . , n, set Yi = Xi × {i}. Then the projection

πi :
n⋃

i=1

Yi →
n⋃

i=1

Xi

in the first coordinate is surjective, by Corollaries 39 and 44, the proof is
complete.

Corollary 46. Let X1, X2, . . . , Xn, be a finite collection of sets such that
each Xi is finite. Then X1 × . . .×Xn is finite and

|X1 × . . .×Xn| =
n∏

i=1

|Xi|

.

Proof. It’s enough to prove for n = 2, since the general case follows from this
one. LetX2 = {y1, . . . , ym}, notice thatX1×X2 = X1×{y1}∪. . .∪X2×{ym},
the result follows by Corollary 44.

7 Countable Sets

A set X is countable if it is finite or there is a bijection f : N → X. In the
latter case, it is necessarily an infinite set, since as N is infinite, and we use
the term countably infinite.

Example 47. The set X = { 2n ∈ N |n ∈ N } of all even numbers is count-
able. The function f(x) = 2x defines a bijection between X and N.

Theorem 48. Let X be an infinite set. Then X has a countably infinite
subset.
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Proof. It’s enough to find an injective function f : N → X, since every
injective function is a bijection over its image. Choose an element a1 ∈ X,
set X1 = X − {a1} and f(1) = a1. Since X is infinite, X1 is also infinite,
choose an element a2 in X1, and set f(2) = a2. Proceeding by induction, we
have f(n) = an, an ∈ Xn−1, where Xn−1 = X − {a1, a2, . . . , an−1}.

Suppose f(n) = f(m), with n,m ∈ N, then an = am, which is possible
only if n = m. Therefore, f is injective.

Corollary 49. A set X is infinite ⇐⇒ there is a bijection f : X → Y ,
where Y ⊊ X is a proper subset.

Proof. (⇒) Suppose X infinite, by theorem 48, X has a countably infinite
subset, say Z = {a1, a2, a3, . . .}. Set Y = (X−Z)∪{a2, a4, a6, . . .} and
define f(x) = x if x ∈ X−Z, and f(an) = a2n otherwise. The function
f(x), defined this way, is clearly a bijection.

(⇐) Follows from Corollary 36.

A function f : X → Y is called increasing if x < y ⇒ f(x) < f(y).

Theorem 50. Every subset X of N is countable.

Proof. The proof is very similar to the one in theorem 48. IfX is finite then is
countable, so assume X infinite. We define an increasing bijection f : N → X
by induction. Let X1 = X, a1 = minX (which exists by Theorem 29), and
set f(1) = a1. Now, define X2 = X − {a1} and f(2) = a2 = minX2. By
induction, we define f(n) = an = minXn, whereXn = X−{a1, a2, . . . , an−1}.
The function f(n) is injective by construction, suppose f(n) not surjective.
There is x ∈ X such that x /∈ f(N). So x ∈ Xn for every n, which implies
that x > f(n) for every n, and x is a bound for the infinite set f(N), a
contradiction by Theorem 42.

Corollary 51. Let X be a countable set. Then for any Y ⊆ X, Y is count-
able.

Corollary 52. The set of all prime numbers is countable.

Corollary 53. Let Y be a countable set and f : X → Y an injective function.
Then X is countable.

Corollary 54. The set Z of integers is countable.
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Proof. The function f : Z → N defined by f(0) = 1, f(m) = 2m, if m > 0
and f(m) = −2m+ 1, if m < 0, is bijective.

Corollary 55. Let X be a countable set and f : X → Y a surjective function.
Then Y is countable.

Proposition 56. The set N× N is countable.

Proof. The function defined by f(m,n) = 2m3n is a bijection f : N × N →
N.

Corollary 57. Let X1, X2, . . . be a countable collection of countable sets. Set

X =
∞⋃
i=1

Xi, then X is countable.

Proof. Let fi : N → Xi be a counting function for each i ∈ N. Then
f(i,m) := fi(m) defines a surjection f : N × N → X. By Corollary 55,
X is countable.

Corollary 58. If X, Y are countable sets then X × Y is countable.

Proof. Let f1 : N → X, f2 : N → Y be counting functions. Then f(m,n) :=
(f1(m), f2(n)) defines a bijection, Proposition 56 concludes the proof.

Corollary 59. The set Q of rational numbers is countable.

Proof. Let Z∗ denote the set of nonzero integers. Define the surjective func-
tion f : Z × Z∗ → Q given by f(m,n) = m

n
. By Corollary 55, Q is count-

able.

8 Uncountable sets

A set X is uncountable if it’s not countable. Given two sets X and Y , if
there is a bijection f : X → Y , we say X and Y have the same cardinality,
in symbols:

card(X) = card(Y ).

If we assume f injective only and there is no surjective function g : X → Y ,
then we say

card(X) < card(Y ).

The cardinality of the Natural numbers N is denoted by

card(N) = ℵ0.
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If the set X is finite with n elements, we say card(X) = n. By definition, for
any infinite set X:

ℵ0 ≤ card(X).

Recall that given two sets X and Y , the set F(X, Y ) denotes the set of all
functions betwenn X and Y .

Theorem 60. (Cantor) Let X and Y be sets such that Y has at least two
elements. There is no surjective function ϕ : X → F(X, Y ).

Proof. Suppose a function ϕ : X → F(X, Y ) is given and let ϕx = ϕ(x) :
X → Y be the image of x ∈ X, which itself is a function. We claim that
there is a f : X → Y that is not ϕx for any X. Indeed, for each x ∈ X let
f(x) be an element different than ϕx(x) (this is possible sice |Y | ≥ 2), then
f ̸= ϕx for every x ∈ X and hence, ϕ is not surjective.

Corollary 61. Let X1, X2, . . . be a countable collection of countably infinite

sets. Then the infinite cartesian product X =
∞∏
i=1

Xi is uncountable.

Proof. It’s enough to prove the result for Xi = N. In this case, X = F(N,N)
and the result follows from Theorem 60.

Example 62. The set X = {(a1, a2, a3, a4, . . .} of all sequence of natural
numbers is uncountable.

Example 63. The set of all real numbers R is uncountable. This will be
proved in the next sections.
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II The real numbers R

1 Fields

A field K is a set K together with two operations:

+ : K ×K → K and · : K ×K → K

satisfying the following properties (also called field axioms):
Given x, y, z ∈ K, we have:

1. (x+ y) + z = x+ (y + z);

2. x+ y = y + x;

3. There is an element 0 ∈ K such that ∀x ∈ K, x+ 0 = x;

4. For any x ∈ K there is an element y ∈ K such that x + y = 0. We
define −x := y, and write z − x instead of z + (−x);

5. (x · y) · z = x · (y · z);

6. x · y = y · x;

7. There is an element 1 ∈ K such that 1 ̸= 0 and ∀x ∈ K, x · 1 = x;

8. For any x ̸= 0 there is an element y ∈ K such that x · y = 1. We define
x−1 := y, and write z

x
instead of z · x−1;

9. x · (y + z) = x · y + x · z.

Given two fields K and L, we say a function f : K → L is a homomorphism,
if f(x+y) = f(x)+f(y) and f(c·x) = c·f(x). We say f is an isomorphism if,
in addition, f is bijective and f−1 is also a homomorphism. An automorphism
f : K → K is an isomorphism between K and itself.

Example 1. The set rational numbers Q together with the operations

a

b
+

c

d
=

ad+ bc

db
and

a

b
· c
d
=

ac

bd

is a field. In this case, 0 = 0
1
, 1 = 1

1
and (a

b
)−1 = b

a
.
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Example 2. If p is prime, the set of integers mod p, Zp = {0̄, . . . , p− 1},
with operations ā + b̄ = a+ b and ā · b̄ = a · b, is a field. It easy to see that
0 = 0̄, 1 = 1̄ in this case. Moreover, by Fermat’s little theorem ā · āp−2 = 1̄,
hence ā−1 = āp−2.

Example 3. The set of rational functions, Q(t) = { p(t)
q(t)

; p(t), q(t) ∈ Q[t], q(t) ̸≡
0 }, where Q[t] is the set of polynomials with rational coefficients, with the
usual operations of fractions is a field.

Proposition 4. Let K be a field and x, y ∈ K, then

a. x · 0 = 0;

b. x · z = y · z and z ̸= 0 then x = y;

c. x · y = 0 ⇒ x = 0 or y = 0;

d. x2 = y2 ⇒ x = ±y.

Proof. a. Indeed, x · 0 + x = x · (0 + 1) = x, hence x · 0 = 0.

b. We have x = x · z · z−1 = y · z · z−1 = y.

c. If x ̸= 0 then x · y = 0 · x ⇒ y = 0.

d. Notice that x2 = y2 ⇒ x2 − y2 = 0 ⇒ (x− y)(x+ y) = 0.

2 Ordered Fields

An ordered field is a field K together with a subset P ⊆ K, called the set of
positive elements, such that for any x, y ∈ P the following properties hold:

(I) (Close under addition/multiplication) x+ y ∈ P, x · y ∈ P ;

(II) (Trichotomy) For any x ∈ K, only one of the following occurs: x = 0,
x ∈ P ,−x ∈ P .

If we denote −P = {−p ; p ∈ P }, then K can be written as a disjoint union

K = P ∪ −P ∪ {0}

Notice that in an ordered field if x ̸= 0 then x2 ∈ P . In particular 1 ∈ P in
an ordered field.
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Example 5. The field of rational numbers Q together with the set

P =
{ a

b
∈ Q ; a · b ∈ N

}
is an ordered field.

Example 6. The field Zp can’t be ordered, since if we add 1̄, p times, the
result is 0̄, i.e. 1̄ + · + 1̄ = 0̄, but in an ordered field the sum of positive
elements has to be positive, in particular nonzero.

Example 7. The field Q(t) of example 3 together with the set

P =

{
p(t)

q(t)
; the leading coefficient of p(t) · q(t) is positive

}
is an ordered field.

In an ordered field K, if x − y ∈ P we write x > y (or y < x). In
particular, x > 0 implies x ∈ P and x < 0 implies x ∈ −P . Notice that if
x ∈ P and y ∈ −P then x > y.

We use the notation x ≤ y to indicate x < y or x = y, in a similar way
we can define x ≥ y as well.

Proposition 8. Let K be an ordered field and x, y, z ∈ K, then

(I) (Transitivity) x < y and y < z ⇒ x < z;

(II) (Trichotomy) Only one of the following occurs: x = y, x > y,x < y;

(III) (Sum monotoneity) x < y ⇒ x+ z < y + z;

(IV) (Multiplication monotoneity)If z > 0, then x < y ⇒ x · z < y · z and if
z < 0, then x < y ⇒ x · z > y · z.

Since in an ordered field K, 1 is always positive we have 1 + 1 > 1 > 0
and 1 + 1 + 1 > 1 + 1, so we can easily define an increasing injection

f : N → K

by f(n) =

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1, or more precisely, f(1) = 1 and f(n+1) = f(n)+1.

Therefore, it makes sense to identify N with f(N) ⊆ K, so henceforward we
will simply write

N ⊆ K
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whenever K is an ordered field.
Notice in particular that f(n) is never zero in this case, hence every or-

dered field is infinite. Whenever f(n) is never zero, for f defined above, we
say K has characteristic zero; if f(p) = 0, then we say K has character-
istic p.

Example 9. The field Q clearly has characteristic zero. The field Zp has
characteristic p.

Proceeding as before, we can extend the bijection above to f : Z → K
and view Z ⊆ K as well. Hence, we have N ⊆ Z ⊆ K.

Finally, we can use f : Z → K to define a bijection g : Q → K by
g(a

b
) = f(a) · f(b)−1. So we may identify Q with g(Q) ⊆ K and write

N ⊆ Z ⊆ Q ⊆ K

whenever K is an ordered field.

Example 10. If K = Q in the above discussion, then g : Q → Q is the
identity automorphism. i.e. g(a

b
) = a

b
.

Proposition 11. (Bernoulli’s inequality) Let K be an ordered field and x ∈
K. If x ≥ −1 and n ∈ N, then

(1 + x)n ≥ 1 + n · x

Proof. We use induction on n ∈ N. The case n = 1 is clear, suppose the
result valid for n. Then (1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + n · x)(1 + x) =
1 + x+ n · x+ x2 ≥ 1 + x+ n · x, as expected. (Notice that we used the fact
that x ≥ −1 in the first inequality and proposition 8(IV).)

3 Intervals

Let K be an ordered field and a < b be elements of K. We call any subset
of the following form an interval:

[a, b] = {x ∈ K; a ≤ x ≤ b} (closed interval)

(a, b) = {x ∈ K; a < x < b} (open interval)

[a, b) = {x ∈ K; a ≤ x < b} and (a, b] = {x ∈ K; a < x ≤ b}
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(−∞, b) = {x ∈ K;x < b} and (−∞, b] = {x ∈ K;x ≤ b}

(a,∞) = {x ∈ K; a < x} and [a,∞) = {x ∈ K; a ≤ x}

(−∞,∞) = K

If a = b, then [a, a] = a and (a, a) = ∅. We say the interval [a, a] is degenerate.
Let K be an ordered field and x ∈ K. We define the absolute value of x,

denoted by |x|, by
|x| := max{x,−x},

which is to say, |x| is the greater of the two numbers x or −x. Geometrically,
if the elements of K are put in a straight line, |x| measures the distance
between x and 0, hence |x− a| is the distance between x and a.

Theorem 12. Let x, y be elements of an ordered field K. The following are
equivalent:

(i) −y ≤ x ≤ y

(ii) x ≤ y and −x ≤ y

(iii) |x| ≤ y

Corollary 13. Let x, a, ϵ ∈ K then

|x− a| ≤ ϵ ⇐⇒ a− ϵ ≤ x ≤ a+ ϵ.

Remark 2. The theorem and corollary remains valid if we exchange ≤ by
<.

Theorem 14. Let x, y, z be elements of an ordered field K.

(i) |x+ y| ≤ |x|+ |y|;

(ii) |x · y| = |x| · |y|;

(iii) |x| − |y| ≤ ||x| − |y|| ≤ |x− y|;

(iv) |x− z| ≤ |x− y|+ |y − z|.
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Let K be an ordered field and X ⊆ K. An upper bound of X is an
element M ∈ K such that x ≤ M for every x ∈ X. Similarly, a lower
bound is an element m ∈ K such that m ≤ x for every x ∈ X. We say X is
bounded from above if it has an upper bound, bounded from below if it has a
lower bound, and bounded if it has upper and lower bounds, i.e. X ⊆ [m,M ].

Example 15. The principle of well-ordering guarantees that N is bounded
from below when viewed as a set inside the ordered field Q. N is obviously
not bounded from above in Q, since given any n, n+ 1 > n.

Example 16. Oddly enough, N is bounded from above in the ordered field
Q(t) from example 7. Since given any n ∈ N, the rational function r(t) = t
satisfies r(t) − n > 0. Therefore, r(t) ∈ Q(t) is an upper bound for N and
the latter is bounded from above, hence bounded, in Q(t).

Theorem 17. Let K be an ordered field. The following are equivalent:

1. N is not bounded from above;

2. Given a, b ∈ K, with a > 0, ∃n ∈ N such that n · a > b;

3. Given a > 0 in K, ∃n ∈ N such that 0 < 1
n
< a.

A field K satisfying the above conditions is called Archimedean field.

Proof. The proof is based on the implications 1 ⇒ 2, 2 ⇒ 3, 3 ⇒ 1.

(1 ⇒ 2) Since N is unbounded, b
a
< n for some n ∈ N, hence n · a > b.

(2 ⇒ 3) Take b = 1 in 2.

(3 ⇒ 1) For any a > 0, consider 1
a
, by 3., ∃n ∈ N such that 1

n
< 1

a
⇐⇒ n >

a. Therefore, no positive element is an upper bound. Similarly, no
negative element can be an upper bound since if x is negative −x is
positive and we can apply the same argument.

Example 18. Examples 15 and 16 say that Q is Archimedean but Q(t) isn’t.
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4 The real numbers R
Let K be an ordered field and X ⊆ K be a bounded from above subset. The
supremum of X, denoted supX is the least upper bound of X, in other
words, among all upper bounds M ∈ K of X, i.e. x ≤ M for every x ∈ X,
supX ∈ K is the least of them. Therefore, supX ∈ K has the following
properties:

(i) (upper bound) For every x ∈ X, x ≤ supX.

(ii) (least upper bound) Given any a ∈ K such that x ≤ a for every x ∈ X,
then supX ≤ a. In other words, if a < supX then ∃b ∈ X such that
a < b.

Lemma 19. If the supremum of a set X exists, it is unique.

Proof. Suppos a = supX and b = supX. By (ii) above, a ≤ b since a is
the least upper bound, but for the same reason we also have b ≤ a, hence
a = b.

Lemma 20. If a set X has a maximum element, then maxX = supX.

Proof. Indeed, maxX is obviously an upper bound and any other upper
bound is greater than or equal to the maximum.

Example 21. Consider the set In = {1, 2, . . . , n} ⊆ Q. Then sup In =
max In = n.

Example 22. Consider the set X = {− 1
n
;n ∈ N} ⊆ Q. Then supX = 0.

Indeed, 0 is an upper bound and given any number a < 0 we can find − 1
n

such that a < − 1
n
since Q is an Archimedean field.

Similar to the idea of supremum, the infimum of a bounded from below set
X ⊆ K, denoted infX, is the greatest lower bound. The element infX ∈ K
has the following properties:

(i) (lower bound) For every x ∈ X, x ≥ infX.

(ii) (greatest lower bound) Given any a ∈ K such that x ≥ a for every
x ∈ X, then infX ≥ a.

The lemmas 19 and 20 extend naturally to the notion of infimum, namely,
if X ⊆ K has a minimum element m then m = infX. Additionally, the
infimum is unique. More generally, we easily conclude that:
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Proposition 23. Let X ⊆ K be a bounded subset of an ordered field K.
Then, infX ∈ X ⇐⇒ infX = minX and supX ∈ X ⇐⇒ supX =
maxX. In particular, every finite set has a supremum and infimum.

Example 24. Consider the set X = (a, b), an open interval in a ordered field
K. Then infX = a and supX = b. Indeed, a is a lower bound, by definition
of interval, suppose c > a, we claim c can’t be a lower bound. For instance,
consider d = a+c

2
∈ (a, b). We have d < c if c < b, hence the conclusion.

Example 25. Let X = { 1
2n
;n ∈ N} ⊆ Q. Then infX = 0 and supX = 1

2
.

Notice that maxX = 1
2
, by lemma 20 supX = 1

2
. Now, 0 is obviously a

lower bound. Suppose c > 0, since Q is Archimedean we can find n ∈ N
such that n + 1 > 1

c
. By Bernoulli’s inequality (Proposition 11), we have

2n = (1 + 1)n ≥ 1 + n > 1
c
, hence c > 1

2n
and c can’t be a lower bound, so

infX = 0.

Lemma 26. (Pythagoras) There is no x ∈ Q satisfying x2 = 2.

Proof. Suppose not, then x = p
q
satisfies

(
p
q

)2
= 2, or p2 = 2q2, where

p, q ∈ Z and q ̸= 0. If we decompose p2 in prime factors, it will have an even
number of factors equal to two, the same occurs for q2. Since 2q2 has an odd
number of factors two, we can’t have p2 = 2q2.

Proposition 27. Consider the sets of rational numbers X = {x ∈ Q;x ≥
0 and x2 < 2} and Y = {y ∈ Q; y > 0 and y2 > 2}. There are no rational
numbers a, b ∈ Q such that a = supX and b = inf Y .

Proof. We prove the result concerning the supremum, the result about in-
fimum can be proven similarly. We first claim X doesn’t have a maximum
element. Given x ∈ X, take r < 1 satisfying 0 < r < 2−x2

2x+1
, then x + r ∈ X,

so x ∈ X can’t be the maximum. Indeed, since r < 1 ⇒ r2 < r, and we have

(x+ r)2 = x2 + 2xr + r2 < x2 + 2xr + r = x2 + r(2x+ 1) < x2 + 2− x2 = 2.

By a similar reasoning, given y ∈ Y , it’s possible to find r > 0 such that
y− r ∈ Y , so Y doesn’t have a minimum element. Finally, notice that if x ∈
X, y ∈ Y then x < y, since x2 < 2 < y2 ⇒ 0 < (x− y)(x+ y) ⇒ 0 < (x− y).

Suppose there is a number a ∈ Q such that a = supX. Then a /∈
X, otherwise it would be its maximum. If a ∈ Y , since Y doesn’t have a
minimum, there would be a b ∈ Y such that b < a, then x < b < a, a
contradiction since a is the supremum. We conclude that a /∈ X and a /∈ Y ,
so a has to satisfy a2 = 2, a contradiction by lemma 26.
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Since every ordered field contains Q, in the proposition above, if there is
an ordered field K such that every nonempty bounded from above set has a
supremum, then a = supX is an element of K satisfying a2 = 2.

Example 28. (A bounded set with no supremum) Let K be a non-Archimedean
field. Then, by definition, N ⊆ K is bounded from above. Let M ∈ K be an
upper bound for N. So n + 1 ≤ M for all n ∈ N, but then n ≤ M − 1 and
M − 1 is also an upper bound. We conclude that if M is an upper bound,
M − 1 is one as well, hence supN doesn’t exists in K.

We say that an ordered field K is complete, if every nonempty bounded
from above subset X ⊆ K has a supremum in K. This motivates the follow-
ing axiom (also called the fundamental axiom of mathematical analy-
sis):

Axiom. There is a complete ordered field, represented by R, called the
field of real numbers.

Remark 3. Notice that in a complete ordered field K, if X ⊆ K is bounded
from below then X has an infimum.

Remark 4. From example 28 we conclude that every complete ordered field
is Archimedean.

Proposition 29. If K,L are complete ordered fields, then there is an iso-
morphism f : K → L.

The proposition above says that, in some suitable sense, R is the only
complete ordered field.

Until the end of the semester, every topic we discuss will involve the
complete ordered field R and its properties.

The discussion above leads to the conclusion that despite there is no
number x ∈ Q satisfying x2 = 2, there is a positive number x ∈ R such that
x2 = 2. We denote that number by

√
2. There is nothing special about 2, so

we can generalize the proof above to any n ∈ N that is not a perfect square
and conclude that we can find a positive number, denoted by

√
n, such that

(
√
n)2 = n.
We can generalize even further and talk about the nth-root of m ∈ N,

denote by n
√
m. Namely, a positive number x ∈ R such that xn = m.

We call the elements of the set R − Q, irrational numbers. As we’ve
just seen, there are many of them, namely, numbers of the form n

√
2, for
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n ≥ 2, are all irrational. In fact, we shall see next that irrational numbers
are everywhere, in a precise sense, as a subset of the real numbers.

A subset X ⊆ R is said to be dense in R if for every a, b ∈ R, with a < b,
we can find x ∈ X such that a < x < b. In other words, X is dense in R if
every open non-degenerate interval (a, b) contains a point x ∈ X.

Example 30. Let X = R − Z. Then X is dense in R. Indeed, every open
interval (a, b) is an infinite set (since R is ordered). On the other hand,
Z ∩ (a, b) is finite, hence we can always find a number x /∈ Z with x ∈ (a, b).

Theorem 31. The set of rational numbers, Q, and the set of irrational
numbers, R−Q, are both dense in R.

Proof. Let (a, b) ∈ R be a non-degenerate open interval. The idea of the
proof is that since b − a > 0, there is a natural number n ∈ N such that
1
n
< b−a, hence a multiple of this number, say m

n
eventually will be in (a, b).

More formally, let X = {m ∈ Z; m
n
≥ b}. Since R is Archimedean, X ̸= ∅.

Notice that X is bounded from below by nb ∈ R. By the well ordering
principle, X has a smallest element, say m0 ∈ X. By the smallness of m0,
the number m0 − 1 /∈ X, so m0−1

n
< b. We claim a < m0−1

n
. Suppose not,

then m0−1
n

≤ a < b < m0

n
, which implies that b − a ≤ m0

n
− m0−1

n
= 1

n
, a

contradiction. Therefore, the rational number m0−1
n

satisfies a < m0−1
n

< b
and Q is dense in R. We can apply the same argument mutatis mutandis to
conclude that R − Q is dense. Namely, instead of using 1

n
in our argument,

we use an irrational number, say
√
2
n
.

Theorem 32. (The nested intervals principle) Let I1 ⊇ I2 ⊇ . . . In ⊇ . . .
be a decreasing sequence of closed intervals of the form In = [an, bn]. Then
∞⋂
n=1

In ̸= ∅, or more precisely,

∞⋂
n=1

In = [a, b],

where a = sup an = sup{an;n ∈ N} and b = inf bn = inf{bn;n ∈ N}

Proof. By hypothesis, In ⊇ In+1,∀n ∈ N, which implies:

a1 ≤ a2 ≤ . . . an ≤ . . . ≤ bn ≤ . . . ≤ b2 ≤ b1.

31



Notice that an is bounded from above by b1, hence the supremum of an,
a ∈ R, is well defined. Similarly, the infimum of bn, b ∈ R, is well defined.
Since bn is an upper bound for an, we have a ≤ bn,∀n ∈ N. On the other
hand, a is also an upper bound and we conclude that

an ≤ a ≤ bn,∀n ∈ N.

A similar reasoning can be applied to b, hence

[a, b] ⊆ In,∀n ∈ N.

If x < a, we can find an0 such that x < an0 , so x /∈ In0 ⇒ x /∈
∞⋂
n=1

In.

Similarly, if x > b, then we can find n1 such that bn1 < x, so x /∈ In1 ⇒ x /∈
∞⋂
n=1

In. We conclude that
∞⋂
n=1

In = [a, b].

Theorem 33. R is uncountable.

Proof. Let X = {x1, x2, . . .} ⊆ R be a countable subset of R, which we
know exists by theorem 48. We claim there is always an x ∈ R such that
x /∈ X. Pick a closed interval I1 not containing x1, this is possible since R is
infinite. Proceed by induction, after setting In not containing xn, we select
In+1 ⊆ In as a closed interval which doesn’t contain xn+1. Proceeding this
way, we construct a nested sequence of closed intervals I1 ⊇ I2 ⊇ . . . In ⊇ . . ..
Therefore, by theorem 32, there is at least one x ∈ R that is not in X.

Corollary 34. Any non-degenerate interval (a, b) ⊆ R is uncountable.

Proof. The function f : (0, 1) → (a, b) defined by f(x) = (b−a)x+a is bijec-
tive, so it suffices to prove the result for (0, 1). Suppose (0, 1) is countable,
then (0, 1] is also countable and reasoning as before, (n, n + 1] is countable
for every n ∈ N. Then R =

⋃
n∈Z

(n, n+ 1] is countable, a contradiction.

Corollary 35. The set of irrational numbers R−Q is uncountable.

Proof. Suppose not, then R = Q∪ (R−Q) is countable, a contradiction.
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III Sequences and series

1 Sequences

A sequence of real numbers, denoted by xn := x(n), is a function x : N →
R that associates to each natural number n ∈ N, a real number x(n) ∈ R.
There is no universally defined notation for a sequence xn, but here are
examples of common notation found in the literature:

{xn}n∈N, xn, {x1, x2, . . .}, (xn)

We say that a sequence xn is bounded if there are a, b ∈ R such that

a ≤ xn ≤ b,

this is equivalent of saying that x(N) ⊆ [a, b], i.e. x(n) is bounded as a
function. A sequence is unbounded when is not bounded.

A sequence xn is bounded from above when there is b ∈ R such that
xn ≤ b, and bounded from below if there is an a ∈ R such that a ≤ xn.
Notice that a sequence is bounded if and only if is bounded from above and
below.

Let K ⊆ N be an infinite subset. Then K is countably infinite, let b :
N → K, given by k 7→ nk be a bijection. Given any sequence x : N → R, the
composition xnk

:= x ◦ b : K → R is also a sequence, called a subsequence
of xn.

Example 1. Let K = {n;n is even} ⊆ N and b(k) = 2k. In this case, given
a sequence xn, the sequence xnk

:= x2n is a subsequence of xn. For example,
if xn = (−1)n,i.e. {−1, 1,−1, . . .}, then x2n is the constant subsequence
x2n = {1, 1, 1, . . .}.

Notice that every subsequence xnk
of a bounded sequence xn is itself

bounded by definition. We say a sequence xn is nondecreasing if xn ≤
xn+1,∀n ∈ N, and if the inequality is strict, i.e. xn < xn+1, we call xn

an increasing sequence. We define nonincreasing and decreasing sequences
in a similar way by placing ≥ (>) instead of ≤ (<).

A sequence that is either nondecreasing, nonincreasing, increasing, or
decreasing will be called monotone.

Lemma 2. A monotone sequence xn is bounded ⇐⇒ it has a bounded
subsequence.
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Proof. Only the converse is not obvious. Suppose xnk
is a bounded monotone

subsequence, say xn1 ≤ xn2 ≤ . . . ≤ b. Given any n ∈ N, we can find nk > n,
hence xn ≤ xnk

≤ b.

Example 3. xn = 1, i.e. {1, 1, 1, . . .}, is a constant, bounded, nonincreasing
and nondecreasing sequence.

Example 4. xn = n, i.e. {1, 2, 3, . . .}, is an unbounded increasing sequence.

Example 5. xn = 1
n
, i.e. {1, 1

2
, 1
3
, . . .}, is a bounded decreasing sequence,

since 0 < xn ≤ 1.

Example 6. xn = 1+ (−1)n, i.e. {0, 2, 0, 2, . . .}, is a bounded sequence that
is not monotone.

Example 7. xn = 1 + 1
1!
+ 1

2!
+ . . . + 1

n!
is increasing, and bounded, since

0 < xn < 1+1+ 1
2
+ 1

4
+ . . .+ 1

2n−1 < 3. The sequence yn = (1+ 1
n
)n is related

to this sequence, since by the binomial theorem yn ≤ xn, therefore yn is also
bounded, 0 < yn < 3.

Figure 1: yn = (1 + 1
n)

n

Example 8. Let x1 = 0 and x2 = 1, and consider, by induction, xn+2 =
xn+1+xn. It’s easy to see that 0 ≤ xn ≤ 1, and moreover a quick computation
shows that x2n = 1−

(
1
4
+ 1

16
+ . . .+ 1

4n−1

)
and x2n+1 =

1
2

(
1 + 1

4
+ 1

16
+ . . .+ 1

4n−1

)
.

So xn is a bounded sequence that is not monotone.

Example 9. Let a ∈ R such that 0 < a < 1. The sequence xn = 1+a+a2+
. . .+an = 1−an+1

1−a
is increasing, since a > 0, and bounded since 0 < xn ≤ 1

1−a
.
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Figure 2: xn+2 = xn+1 + xn

Example 10. The sequence {1,
√
2, 3
√
3, 4
√
4, . . .} given by xn = n

√
n, in-

creases for n = 1, 2. We claim that starting at the third term, this sequence
is decreasing. Indeed, xn+1 < xn is equivalent to (n + 1)n < nn+1, which is
equivalent to (1 + 1

n
)n < n, which is true for n ≥ 3 by Example 7. Hence, xn

is bounded.

Figure 3: xn = n
√
n

2 The limit of a sequence

Informally, to say a ∈ R is the limit of the sequence xn is to say that the
terms of the sequence are very close to a, when n is large. More precisely,
we quantify this using the following definition:

lim
n→∞

xn = a := ∀ϵ > 0 ∃n0 ∈ N;n > n0 ⇒ |xn − a| < ϵ

In other words: “The limit of sequence xn is a, if for every positive number
ϵ, no matter how small it is, it’s always possible to find an index n0 such that
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the distance between xn and a is less then ϵ, for n > n0.”
Additionally, the above is the same of saying that any open interval

(a− ϵ, a+ ϵ)

centered at a and with length 2ϵ, contains all the points of the sequence xn

except possibly a finite amount of them.

Remark 5. It’s a common practice to omit “ n → ∞ ”and write limxn only.

When limxn = a, we say xn converges to a, also denoted by xn → a, and
call xn convergent. If xn is not convergent, we call it divergent, i.e. there is
no a ∈ R such that lim xn = a.

Theorem 11. (Uniqueness of the limit) If limxn = a and limxn = b, then
a = b.

Proof. Let limxn = a and b ̸= a, it’s enough to prove that limxn ̸= b. Take
ϵ = |b−a|

2
, then since limxn = a, we can find n0 such that n > n0 ⇒ |xn−a| <

ϵ. Therefore, xn /∈ (b− ϵ, b+ ϵ) if n > n0 and we can’t have limxn = b.

Theorem 12. If limxn = a, then for every subsequence xnk
of xn, we also

have limxnk
= a.

Proof. Indeed, since given ϵ > 0 it’s possible to find n0 such that n > n0 ⇒
|xn−a| < ϵ, the same n0 works for xnk

as well, namely, nk > n0 ⇒ |xnk
−a| <

ϵ.

Corollary 13. Let k ∈ N. If limxn = a then limxn+k = a, since xn+k is a
subsequence of xn.

In other words, Corollary 13 says that the limit of a sequence doesn’t
change if we omit the first k terms.

Theorem 14. Every convergent sequence xn is bounded.

Proof. Suppose limxn = a. Then it’s possible to find n0 such that xn ∈
(a− 1, a+ 1) for n > n0. Let M = max{|x1|, . . . , |xn0|, |a− 1|, |a+ 1|}, then
xn ∈ (−M,M).

Example 15. The sequence {0, 1, 0, 1, 0, 1, . . .} can’t be convergent by theo-
rem 12, since it has two subsequences converging to different values, namely,
x2n = 1 and x2n−1 = 0. Also, this sequence is an example of a bounded
sequence which is not convergent, illustrating the fact that the converse of
theorem 14 is false.
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Theorem 16. Every bounded monotone sequence is convergent.

Proof. Suppose xn ≤ xn+1, the other cases are proved similarly. Since xn is
bounded, supxn is well defined, say a = sup xn. Let ϵ > 0 be given, then
∃n0 ∈ N such that a − ϵ < xn0 , but since xn ≤ xn+1, we must have have
a − ϵ < xn, ∀n ≥ n0. We obviously have xn ≤ a, hence a − ϵ < xn < a + ϵ
for n > n0 and limxn = a.

Corollary 17. If a monotone sequence xn has a convergent subsequence then
xn is convergent.

Example 18. Every constant sequence xn = k ∈ R is convergent and
limxn = k.

Example 19. The sequence {1, 2, 3, 4, . . .} is divergent because it’s unbounded.

Example 20. The sequence {1,−1, 1,−1, . . .} is divergent because it has two
subsequences converging to different values.

Example 21. The sequence xn = 1
n
is convergent and limxn = 0, since R

is Archimedian and given any ϵ > 0 it’s possible to find n0 ∈ N such that
0 < 1

n0
< ϵ. Hence, n > n0 ⇒ 1

n
< ϵ.

Example 22. Let 0 < a < 1. The sequence xn = an is monotone and
bounded, hence convergent. Notice that limxn = 0 in this case.

3 Properties of limits

Theorem 23. Let limxn = 0 and yn a bounded sequence. Then

limxn · yn = 0.

Proof. Let c > 0 be such that |yn| < c. Let ϵ > 0 be given, and n0 ∈ N a
number such that n > n0 ⇒ |xn| < ϵ

c
. Then, n > n0 ⇒ |xnyn| < ϵ

c
·c = ϵ.

Example 24. Using the theorem above we have lim
n→∞

sinn
n

= 0

Theorem 25. Let limxn = a and lim yn = b. Then

1. limxn + yn = a+ b, limxn − yn = a− b;

2. limxn · yn = ab;
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3. If b ̸= 0 then lim xn

yn
= a

b

Example 26. Let a ∈ R be a positive number. The sequence xn = n
√
a is

bounded and monotone, hence converges. We claim

lim n
√
a = 1.

Indeed, let L := lim n
√
a and consider the subsequence yn = xn(n+1) then

L = lim yn = lim a
1

n(n+1) = lim a
1
n
− 1

n+1 =
lim a

1
n

lim a
1

n+1

= 1

Example 27. Similar to the example above is the sequence xn = n
√
n. It is

bounded and monotone (starting from the third term), hence converges. We
claim

lim n
√
n = 1.

Let L := lim n
√
n and consider the subsequence yn = x2n then

L2 = lim yn · yn = lim
n
√
2n = lim

n
√
2 n
√
n = 1 · L = L

Hence, L = 0 or L = 1, but L ̸= 0 since xn ≥ 1.

Theorem 28. If limxn = a and a > 0, then ∃n0 such that xn > 0 for
n > n0. An equivalent statement is valid if a < 0, namely, up to a finite
amount of indexes, xn < 0.

Proof. It’s possible to find n0 such that n > n0 ⇒ |xn−a| < a
2
, in particular,

x > a
2
> 0 if n > n0. The case a < 0 is proved similarly.

Corollary 29. If xn, yn are convergent sequences and xn ≤ yn then limxn ≤
lim yn.

Corollary 30. If xn is convergent and xn ≥ a ∈ R then limxn ≥ a.

Theorem 31. (Squeeze theorem) If xn ≤ yn ≤ zn and limxn = lim zn, then
lim yn = limxn = lim zn.
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4 lim inf xn and lim supxn

A number a ∈ R is an accumulation point of the sequence xn, if there is a
subsequence xnk

such that lim
k→∞

xnk
= a.

Theorem 32. a ∈ R is an accumulation point of the sequence xn if and only
if ∀ϵ > 0, there are infinitely many values of n ∈ N such that xn ∈ (a−ϵ, a+ϵ).

Proof. The implication is clear, we prove the converse only. Take ϵ =
1, 1

2
, 1
3
, . . . , 1

k
, . . ., then it’s possible to find xnk

such that |xnk
− a| < 1

k
for

every k ∈ N and moreover nk < nk+1, in particular, lim
k→∞

xnk
= a.

Example 33. If limxn = a then xn has only one accumulation point, namely
a ∈ R. This follows directly from theorem 12.

Example 34. The sequence {0, 1, 0, 2, 0, 3, . . .} is divergent. However, it
has 0 as an accumulation point, due to the constant subsequence x2n−1 =
0. Similarly, the divergent sequence {1,−1, 1,−1, 1,−1, . . .} has only two
accumulation points: 0 and 1. The divergent sequence {1, 2, 3, 4, 5, 6, . . .}
doesn’t have an accumulation point.

Example 35. By theorem 31, every real number r ∈ R is an accumulation
point of a sequence of rational numbers.

We shall see below that every bounded sequence has at least two accu-
mulation points, and the sequence converges if and only if they coincide.

Let xn be a bounded sequence, say m ≤ xn ≤ M , with m,M ∈ R. Set

Xn = {xn, xn+1, . . .}.

Then Xn ⊆ [m,M ] and Xn+1 ⊆ Xn. Define an := infXn and bn := supXn,
then

m ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ . . . ≤ bn ≤ . . . ≤ b2 ≤ b1 ≤ M,

and the following limits are well defined a = lim an = sup an and b = lim bn =
inf bn. We define the limit inferior of xn as

lim inf xn := a

and the limit superior of xn as

lim supxn := b.

We obviously have
lim inf xn ≤ lim supxn.
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Example 36. Consider the sequence xn = {0, 1, 0, 1, 0, 1, . . .}. Using the no-
tation above, an ≡ 0 and bn ≡ 1. Therefore, lim inf xn = 0 and lim supxn =
1. More generally, we have:

Theorem 37. Let xn be a bounded sequence. Then lim inf xn is the smallest
accumulation point and lim supxn is the greatest one.

Proof. We prove the limit inferior claim, the other part can be proved anal-
ogously. First, we claim that a = lim inf xn is an accumulation point. In-
deed, using the notation above, a = lim an, hence given any ϵ > 0, for
n > n0, we have a − ϵ < an < a + ϵ. In particular, choose n1 > n0, then
a − ϵ < an1 < a + ϵ. Therefore, for n > n1 we have an1 ≤ xn < a + ϵ. We
conclude that a− ϵ < xn < a+ ϵ, by theorem 32, a is an accumulation point.
To prove the minimality, let c < a. We claim c is not an accumulation point.
Since c < a ⇒ c < an0 , for some n0 ∈ N. Hence, c < an0 ≤ xn for n ≥ n0.
Finally, setting ϵ = an0 −c, we conclude that the interval (c− ϵ, c+ ϵ) doesn’t
contain any xn for n > n0, by theorem 32 this concludes the proof.

Corollary 38. (Bolzano–Weierstrass theorem) Every bounded sequence xn

has a convergent subsequence.

Proof. Since xn is bounded, a = lim inf xn is well defined and is an accumu-
lation point. In particular, there’s a subsequence of xn converging to a.

Corollary 39. A sequence xn is convergent if and only if lim inf xn = lim sup xn

(xn has a unique accumulation point)

Proof. If xn is convergent, all subsequences converge to the same limit,
in particular lim inf xn = lim sup xn = limxn. Conversely, suppose a =
lim inf xn = lim sup xn. Then, using the notation above, we can find n0 such
that a − ϵ < an0 ≤ a ≤ bn0 < a + ϵ and n > n0 implies an0 ≤ xn ≤ bn0 . We
conclude that a− ϵ < xn < a+ ϵ.

Corollary 40. If c < lim inf xn then ∃n0 ∈ N such that n > n0 ⇒ c < xn.
Similarly, if c > lim supxn then ∃n1 ∈ N such that n > n1 ⇒ c > xn.

5 Cauchy Sequences

A sequence xn is called a Cauchy sequence if given ϵ > 0 we can find
n0 ∈ N such that for n,m > n0 we have

|xn − xm| < ϵ
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In other words, a Cauchy sequence is a sequence such that its terms xn

are infinitely close for sufficiently large n. It’s reasonable to expect that a
sequence with this property converges, and that is indeed true as the theorem
below shows (for sequences in R, we will see in a few weeks when we talk
about topology, that it’s possible to construct a topological space where no
Cauchy sequence converges.)

Theorem 41. Every Cauchy sequence is convergent.

The proof is a direct consequence of the two lemmas below.

Lemma 42. Every Cauchy sequence is bounded.

Proof. By definition, we can find n0 ∈ N such that m,n > n0 ⇒ |xn − xm| <
1. Fix xm and set M := max{|x1|, |x2|, . . . , |xn0|, |xm − 1|, |xm + 1|}, then
xn ∈ [−M,M ].

Lemma 43. If a Cauchy sequence xn has a convergent subsequence xnk
with

lim
k→∞

xnk
= a then it converges and limxn = a.

Proof. Given ϵ > 0, it’s possible to find n0 such thatm,n > n0 ⇒ |xn−xm| <
ϵ
2
. Additionally, it’s possible to find m0 such that nk > m0 ⇒ |xnk

− a| < ϵ
2
,

take one nk > n0 such that this is true. Then n > n0 ⇒ |xn − a| <
|xn − xnk

|+ |xnk
− a| < ϵ.

Now we prove the converse of the theorem above.

Theorem 44. Every convergent sequence is a Cauchy sequence.

Proof. Suppose a := limxn. Then it’s possible to find n0 and n1 such that
n > n0 ⇒ |xn − a| < ϵ

2
and m > n1 ⇒ |xm − a| < ϵ

2
. We conclude that

|xn − xm| < |xn − a|+ |xm − a| < ϵ,

for m,n > max{n0, n1}.

We conclude that

Corollary 45. A sequence xn of real numbers is a Cauchy sequence if and
only if it converges.
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6 Infinite limits

A divergent sequence xn converges to infinity, denoted by limxn = +∞, if for
any number M > 0, there is n0 > 0 such that n > n0 ⇒ xn > M . Similarly,
A sequence xn converges to negative infinity, denoted by limxn = −∞, if for
any number M > 0, there is n0 > 0 such that n > n0 ⇒ xn < −M .

Example 46. The sequence xn = n converges to infinity, since given any
M > 0, take any natural number n0 > M , then xn = n > M if n > n0. On
the other hand, the sequence xn = (−1)nn is divergent but doesn’t converge
to ∞, nor to −∞, since it is unbounded from above and below, and as a
consequence of the definition a sequence converges, say to +∞, then it’s
bounded from below, and similarly, converges to −∞, then it’s bounded from
above.

The following theorem, similar to theorem 25 gives some properties of
infinite limits. The proof will be omitted.

Theorem 47. (Arithmetic operations with infinite limits)

1. If limxn = +∞ and yn is bounded from below, then lim(xn+yn) = +∞
and lim(xn · yn) = +∞ ;

2. If xn > 0 then limxn = 0 if and only if lim 1
xn

= +∞;

3. Let xn, yn > 0 be positive sequences. Then:

(a) If xn is bounded from below and lim yn = 0 then lim xn

yn
= +∞;

(b) If xn is bounded and lim yn = +∞ then lim xn

yn
= 0.

Example 48. Let xn =
√
n+ 1 and yn = −

√
n. Then limxn = ∞,lim yn =

−∞. We have:

lim(xn+yn) = lim
√
n+ 1−

√
n = lim

(
√
n+ 1−

√
n)(

√
n+ 1 +

√
n)√

n+ 1 +
√
n

= lim
1√

n+ 1 +
√
n
,

which gives lim(xn + yn) = 0. However, it’s not true in general that
lim(xn + yn) = limxn + lim yn if both sequences have infinite limit. For
example, xn = n2 and yn = −n give a counter-example, since limxn = +∞,
lim yn = −∞, but lim(xn + yn) = +∞.
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Example 49. Let xn = [2 + (−1)n]n and yn = n. Then limxn = lim yn =
+∞, but lim xn

yn
= lim[2 + (−1)n] doesn’t exists. So it’s not true in general

that lim xn

yn
= 1 if limxn = lim yn = +∞.

Example 50. Let a > 1. Then lim an

n
= +∞. Indeed, a = 1 + s with s > 0,

so an = (1 + s)n ≥ 1 + ns+ n(n−1)
2

s2 for n ≥ 2, but lim
1+ns+

n(n−1)
2

s2

n
= +∞,

hence lim an

n
= +∞. Arguing by induction, it’s easy to show that for any

m ∈ N, lim an

nm = +∞.

Example 51. Let a > 0. Then lim n!
an

= +∞. Indeed, pick n0 ∈ N such that
n0

a
> 2. Then

n!

an
=

n(n− 1) . . . (n0 + 1)n0!

an0 a . . . a︸ ︷︷ ︸
n−n0

>
n0!

an0
2n−n0 ,

and it follows that lim n!
an

= +∞.

7 Series

Given a sequence of real numbers xn, the purpose of this section if to give
meaning to expressions of the form, x1 + x2 + x3 + . . ., that is, the formal
sum of all the elements of the sequence xn.

A natural way of doing this is to set sn := x1 + . . . + xn, called partial
sums, and define

∞∑
n=1

xn := lim sn

It’s a common practice to write
∑

xn instead of
∞∑
n=1

xn, and to call xn the

general term of the series. In these notes we shall adopt these conventions.
Since we define

∑
xn as a limit, it may or may not exist. In case

∑
xn =

L ∈ R we say that the series
∑

xn converges, otherwise we say
∑

xn diverges.

Theorem 52. If the series
∑

xn converges then limxn = 0.

Proof. Indeed, we have xn = sn− sn−1. Therefore, limxn = lim(sn− sn−1) =
lim sn − lim sn−1 = 0.

The converse of the theorem above is not true. Here’s a counterexample:
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Example 53. (harmonic series) Consider the series
∑

1
n
. We obviously

have lim 1
n
= 0, however, we claim

∑
1
n
diverges. Indeed, in order to prove

that lim sn diverges, it’s enough to find a divergent subsequence. Take for
example s2n:

s2n = 1 +
1

2
+ . . .+

1

2n

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

> 1 +
1

2
+

2

4
+

4

8
+

8

16
+ . . .+

2n−1

2n

= 1 + n · 1
2

Hence, s2n > 1 + n · 1
2
and lim s2n = +∞.

Example 54. (geometric series) The series
∑

an, with a ∈ R, diverges if
|a| ≥ 1, since the general term xn = an doesn’t satisfy limxn = 0. If |a| < 1,
then

∑
an converges. Indeed, we can show by induction that

sn =
1− an+1

1− a
,

and hence
∑

an = lim sn = 1
1−a

, if |a| < 1.

Theorem 55. Given series
∑

an,
∑

bn, we have:

1. If
∑

an and
∑

bn converge, then
∑

(an + bn) converges and
∑

(an +
bn) =

∑
an +

∑
bn.

2. Let c ∈ R. If
∑

an converges, then
∑

c an also converges, and
∑

c an =
c
∑

an.

3. Suppose
∑

an and
∑

bn converge, set cn :=
n∑

i=1

aibn +
n−1∑
j=1

anbj. Then∑
cn converges and

∑
cn = (

∑
an) · (

∑
bn).

Example 56. (telescoping series) The series
∑

1
n(n+1)

is convergent. Since
1

n(n+1)
= 1

n
− 1

n+1
, we easily see that sn = 1− 1

n+1
, so

∑
1

n(n+1)
= 1.

Example 57. The series
∑

(−1)n is divergent since the sequence (−1)n has
two distinct accumulation points, so it’s impossible to have lim(−1)n = 0.
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Theorem 58. Let an ≥ 0 be a nonnegative sequence of real numbers. Then∑
an converges if and only if the partial sum sn is a bounded sequence for

every n ∈ N.

Proof. The implication is clear. The converse follows from the fact that every
bounded monotone sequence converges.

Corollary 59. (Comparison principle) Suppose
∑

an and
∑

bn are series of
nonnegative real numbers, i.e. an, bn ≥ 0. If there are c ∈ R and n0 ∈ N such
that an ≤ c bn for n > n0, then if

∑
bn converges,

∑
an converges. Moreover,

if
∑

an diverges then
∑

bn diverges.

Example 60. If r > 1, the series
∑

1
nr converges. Indeed, the general term

of this series is positive, so the partial sums sn are increasing, hence it’s
enough to prove that a subsequence of sn is bounded. We claim s2n−1 is
bounded. We have:

s2n−1 = 1 +
1

2r
+ . . .+

1

(2n − 1)r

= 1 +

(
1

2r
+

1

3r

)
+

(
1

4r
+

1

5r
+

1

6r
+

1

7r

)
+ . . .+

1

(2n − 1)r

< 1 +
2

2r
+

4

4r
+

8

8r
+ . . .+

2n−1

2(n−1)r

=
n−1∑
j=0

(
2

2r

)j

On the other hand, the geometric series
∞∑
j=0

(
2
2r

)j
converges since 2

2r
< 1. We

conclude that s2n−1 is bounded and the claim follows.

Corollary 61. (Cauchy’s criteria) The series
∑

an is convergent if and only
if given ϵ > 0, there is n0 ∈ N such that |an+1 + . . .+ an+p| < ϵ for n > n0.

Proof. Notice that sn converges if and only if it is a Cauchy sequence (see
Corollary 45).

A series
∑

an is absolutely convergent if
∑

|an| is convergent. A
series with all of its terms positive (or negative) is convergent if and only if
is absolutely convergent. Hence, in this case the two notion coincide. Here’s
a classical counterexample that shows that they don’t coincide in general:
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Example 62. Consider the series
∑ (−1)n

n
. We already know that

∑
1
n
di-

verges, however we claim that
∑ (−1)n

n
converges. Indeed, notice that the

subsequence s2n satisfies

s2 < s4 < s6 < . . . < s2n,

and is a Cauchy sequence, hence convergent. Whereas s2n−1 satisfies

s1 > s3 > s5 > . . . > s2n−1,

so it’s bounded and monotone, hence convergent as well. Set a := lim s2n, b :=
lim s2n−1, then since s2n − s2n−1 = 1

2n
→ 0, we necessarily have a = b. We

conclude that sn has only one accumulation point, hence converges. (We will
see later that a = b = log 2)

A series
∑

an is conditionally convergent if
∑

an is convergent but∑
|an| is divergent. The example above shows that

∑ (−1)n

n
is conditionally

convergent.

Theorem 63. Every absolutely convergent series
∑

an is convergent.

Proof. By hypothesis,
∑

an is Cauchy, so we can find n0 ∈ N such that
n > n0,∀p ∈ N ⇒ |an+1| + . . . + |an+p| < ϵ. In particular, |an+1 + . . . +
an+p| < |an+1|+ . . .+ |an+p| < ϵ, the conclusion follows from Cauchy’s criteria
(Corollary 61).

Corollary 64. Let
∑

bn a convergent series with bn ≥ 0. If there are n0 ∈ N
and c ∈ R such that n > n0 ⇒ |an| ≤ c bn then the series

∑
an is absolutely

convergent.

Corollary 65. (The root test) If there are n0 ∈ N and c ∈ R such that
n > n0 ⇒ n

√
|an| ≤ c < 1, then the series

∑
an is absolutely convergent. In

other words, if lim sup n
√

|an| < 1 then
∑

an is absolutely convergent. On the

other hand, if lim sup n
√

|an| > 1, then
∑

an diverges.

Proof. In this case, we can compare
∑

|an| with
∑

cn, the latter (absolutely)
converges since it’s a geometric series with 0 < c < 1. If n

√
|an| > 1 for n

sufficiently large, then lim an ̸= 0.

Corollary 66. (The root test – second version) If lim n
√

|an| < 1, then the

series
∑

an is absolutely convergent. If lim n
√

|an| > 1, then the series
∑

an
is divergent.
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Example 67. Let a ∈ R and consider the series
∑

nan. Notice that lim n
√

n |a|n =
lim n

√
n lim |a| = |a|. Hence, if |a| < 1 the series

∑
nan is absolutely con-

vergent and if |a| > 1 it diverges. If |a| = 1 the series also diverges, since
limnan ̸= 0 in this case.

Theorem 68. (The ratio test) Let
∑

an and
∑

bn be series of real numbers
such that an ̸= 0, bn > 0,∀n ∈ N and

∑
bn convergent. If there is n0 ∈ N

such that n > n0 ⇒
∣∣∣an+1

an

∣∣∣ ≤ ∣∣∣ bn+1

bn

∣∣∣, then ∑ an is absolutely convergent.

Proof. Consider the inequalities:∣∣∣∣an0+2

an0+1

∣∣∣∣ ≤ ∣∣∣∣bn0+2

bn0+1

∣∣∣∣∣∣∣∣an0+3

an0+2

∣∣∣∣ ≤ ∣∣∣∣bn0+3

bn0+2

∣∣∣∣
. . .∣∣∣∣ an

an−1

∣∣∣∣ ≤ ∣∣∣∣ bn
bn−1

∣∣∣∣
Multiplying them together, we have:∣∣∣∣ an

an0+1

∣∣∣∣ ≤ ∣∣∣∣ bn
bn0+1

∣∣∣∣
Hence, |an| ≤ c bn and the result follows by the comparison principle.

Corollary 69. (The ratio test – second version) If lim sup
∣∣∣an+1

an

∣∣∣ < 1, then

the series
∑

an is absolutely convergent. If lim sup
∣∣∣an+1

an

∣∣∣ > 1, then the series∑
an is divergent.

Proof. For the convergence, take bn = (lim sup
∣∣∣an+1

an

∣∣∣)n in theorem 68. If

lim sup
∣∣∣an+1

an

∣∣∣ > 1 then lim an ̸= 0.

Corollary 70. (The ratio test – third version) If lim
∣∣∣an+1

an

∣∣∣ < 1 then
∑

an

is absolutely convergent, if lim
∣∣∣an+1

an

∣∣∣ > 1 then
∑

an diverges.
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Example 71. Fix x ∈ R and consider the series
∑

xn

n!
, then

∣∣∣an+1

an

∣∣∣ = |x|
n+1

→
0 regardless of x, and the series is absolutely convergent. We will see later
that this series coincides with ex.

Theorem 72. (Root test is stronger than the ratio test) For any bounded
sequence an of positive numbers we have

lim inf
an+1

an
≤ lim inf n

√
an ≤ lim sup n

√
an ≤ lim sup

an+1

an
,

In particular, if lim an+1

an
= c then lim n

√
an = c.

Proof. It’s enough to prove that lim sup n
√
an ≤ lim sup an+1

an
, the first inequal-

ity can be proven mutatis mutandis. We argue by contradiction, suppose
there is a k ∈ R such that

lim sup n
√
an > k > lim sup

an+1

an

Proceeding as in the proof of theorem 68, we can find n0 ∈ N such that
n > n0 ⇒ an < c kn, which implies that n

√
an < c

1
n k and hence:

lim sup n
√
an ≤ k

a contradiction.

Example 73. A nice application of the theorem above is the computation of
lim n

n√
n!
. Set xn = n

n√
n!

and yn = nn

n!
, then xn = n

√
yn. On the other hand,

yn+1

yn
= (1 + 1

n
)n, hence lim yn+1

yn
= e, and it follows that lim n

n√
n!

= e.

Example 74. Given two distinct numbers a, b ∈ R, consider the sequence
xn = {a, ab, a2b, a2b2, a3b2, . . .}, then the ratio xn+1

xn
= b if n is odd, and

xn+1

xn
= a if n is even, hence the sequence xn+1

xn
doesn’t converge and lim xn+1

xn

doesn’t exist. On the other hand, we have lim n
√
xn =

√
ab. This demonstrates

that in the theorem above the inequalities can be strict.

Theorem 75. (Dirichlet) Let bn be a nonincreasing sequence of positive num-
bers with lim bn = 0, and

∑
an be a series such that the partial sum sn is a

bounded sequence. Then the series
∑

anbn converges.
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Proof. Notice that

a1b1 + a2b2 + . . .+ anbn = a1(b1 − b2) + (a1 + a2)(b2 − b3)+

+ (a1 + a2 + a3)(b3 − b4) + . . .+ (a1 + . . .+ an)bn

=
n∑

i=2

si−1(bi−1 − bi) + snbn

Since sn is bounded, say |sn| ≤ k and bn → 0, we have lim snbn = 0.
Moreover, |

∑n
i=2 si−1(bi−1 − bi)| ≤ k|

∑n
i=2(bi−1 − bi)| = k(b1 − bn). So∑n

i=2 si−1(bi−1 − bi) converges, and therefore, by comparison,
∑

anbn con-
verges as well.

We can weaken the hypothesis lim bn = 0 if we take
∑

an convergent.
Indeed, if lim bn = c just take b∗n := bn− c and use this new sequence instead.
We conclude:

Corollary 76. (Abel) If
∑

an is convergent and bn is a nonincreasing se-
quence of positive numbers then

∑
anbn converges.

Corollary 77. (Leibniz) Let bn be a nonincreasing sequence of positive num-
bers with lim bn = 0. Then the series

∑
(−1)nbn converges.

Proof. In this case, an = (−1)n has bounded partial sum, namely |sn| ≤ 1,
and the result follows directly from theorem 75.

Example 78. Some periodic real valued functions can be written as a linear
combination of

∑
cos(nx) and

∑
sin(nx). The properties of such functions

and generalizations are addressed in area of mathematics called Fourier
Analysis. E. Stein’s book on the subject is a wonderful first-read of the
topic.

Take the example of f(x) =
∑ cos(nx)

n
, we claim that if x ̸= 2πk, k ∈ Z

then f(x) is well-defined, i.e.
∑ cos(nx)

n
converges. Indeed, let an = cos(nx)

and bn = 1
n
, then bn is decreasing, so by theorem 75, it’s enough to prove that

the partial sums sn of
∑

an are bounded. In other words, we need to show
that

sn = cos(x) + cos(2x) + cos(3x) + . . .+ cos(nx)
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is bounded. Recall, that eix = cos(x) + i sin(x). Therefore:

1 + sn = Re[1 + eix + e2ix + e3ix + . . .+ enix]

1 + sn = Re[
1− e(n+1)ix

1− eix
]

1 + sn ≤ 2

|1− eix|

It follows that sn is bounded and we conclude that
∑ cos(nx)

n
converges if

x ̸= 2πk.

Given a series
∑

an, we define the positive part of
∑

an as the series∑
pn, where pn = an if an > 0, and pn = 0 if an ≤ 0. Similarly, the negative

part of
∑

an as the series
∑

qn, where qn = −an if an < 0, and qn = 0
if an ≥ 0. It follows immediately from the definition that pn, qn ≥ 0 and
an = pn − qn, |an| = pn + qn ∀n ∈ N.

Proposition 79. The series
∑

an is absolutely convergent if and only if∑
pn and

∑
qn converge.

Proof. Notice that pn ≤ |an| and qn ≤ |an|, hence if
∑

|an| converge then by
comparison

∑
pn and

∑
qn also converge. The converse is obvious.

Example 80. If
∑

an is not absolutely convergent, then the proposition is

false. Take the example of
∑ (−1)n

n
. In this case,

∑
pn =

∑
1
2n

and
∑

qn =∑
1

2n−1
, and both diverge.

Proposition 81. If
∑

an is conditionally convergent then
∑

pn and
∑

qn
diverge.

Proof. Suppose not, say
∑

qn converge. Then
∑

|an| =
∑

pn +
∑

qn =∑
an + 2

∑
qn also converges, a contradiction.

Let f : N → N be a bijection and
∑

an be a series of real numbers. Set
bn = af(n). We say

∑
an is commutatively convergent if

∑
an =

∑
bn

for every bijection f : N → N. We will show below that the notion of
commutative convergence coincides with absolute convergence.

Theorem 82. A series
∑

an is absolutely convergent if and only if is com-
mutatively convergent.
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Proof. Suppose
∑

an absolutely convergent, and let bn = af(n) for some
bijection f : N → N. It’s enough to assume that an ≥ 0, otherwise just use
the fact that an = pn − qn, for pn, qn ≥ 0, and apply the result for pn and

qn. Now, fix n ∈ N and let sn =
n∑

i=1

ai denote the partial sum of
∑

an, and

tn =
n∑

i=1

bi, the partial sum of
∑

bn. If we set m := max{f(x); 1 ≤ x ≤ n}, it

follows that tn =
n∑

i=1

af(i) ≤
m∑
i=1

ai = sm. We conclude that for each n ∈ N it’s

possible to find m ∈ N such that tn ≤ sm, and similarly using f−1(y) instead
of f(x), given m ∈ N it’s possible to find n ∈ N, such that sm ≤ tn, which
implies lim sn = lim tn, hence

∑
an =

∑
bn.

Conversely, we want to show that if
∑

an is commutatively convergent
then it is absolutely convergent. We prove the contra-positive, that is, sup-
pose

∑
an is not absolutely convergent then

∑
an is not commutatively

convergent. Indeed, if
∑

an is divergent, just take bn = an. Otherwise,∑
an is conditionally convergent, say

∑
an = S ∈ R, and by proposition

81, both
∑

pn and
∑

qn diverge. Moreover, since lim an = 0, we have
lim pn = lim qn = 0. Take any number c ̸= S, we will show that we can
reorder an into bn in such a way that

∑
bn = c, hence

∑
an can’t be com-

mutatively convergent. Let n1 be the smallest natural such that

p1 + p2 + . . .+ pn1 > c,

and n2 > n1, be smallest number such that

p1 + . . .+ pn1 − q1 − q2 − . . .− qn2 < c.

Proceeding by induction, we obtain a new series
∑

bn, such that the partial
sums tn approach c. Indeed, for odd i we have tni

− c ≤ pni
, be definition

of ni, and similarly, c − tni+1
≤ qni+1

. Since lim pn = lim qn = 0, we have
lim tni

= c. A similar argument holds for i even.
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IV Topology of R

1 Open sets

Let X ⊆ R. A point p ∈ X is called an interior point if there is an open
interval (a, b), also called a neighborhood, such that p ∈ (a, b) ⊆ X. In other
words, p is an interior point if all points sufficiently close to p remain in X.

It’s easy to see that p ∈ X is an interior point if and only if ∃ϵ > 0 such
that (p−ϵ, p+ϵ) ⊆ X. Equivalently, p is an interior point if and only if∃ϵ > 0
such that |x− p| < ϵ ⇒ x ∈ X.

The set of all interior points of X, denoted by int(X) (also by X◦),
is called the interior of X. Notice that by definition, we necessarily have
int(X) ⊆ X.

A set X ⊆ R is open if X = int(X). That is to say, every point of X is
an interior point.

Example 1. By definition if X has an interior point then it contains an
open interval, in particular it is an infinite set. Hence, if X = {x1, . . . , xn}
is finite then it has no interior points. Moreover, if int(X) ̸= ∅ then X is
uncountable since it contains an interval. Therefore,

int(N) = int(Z) = int(Q) = ∅,

and they can’t be open sets. Similarly, since Q is dense, any open interval
containing an irrational point also contains a rational point, hence

int(R−Q) = ∅,

and it’s not open as well.

Example 2. The open interval (a, b) is open. Indeed, any x ∈ (a, b) is an
interior point because (a, b) itself contains x. On the other hand, the closed
interval [a, b] is not open because int([a, b]) = (a, b) ̸= [a, b]. Indeed, any open
interval containing the endpoints necessarily contain points outside [a, b], so
the endpoints can’t be interior points. Similarly, if X = [a, b) or X = (a, b]
then int(X) = (a, b)

Example 3. The empty set ∅ is open since its interior is also empty, i.e.
int(∅) = ∅.
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Example 4. The union of two open intervals X = (a, b) ∪ (c, d) is open.
Indeed, any interior point of X has to be an interior point of (a, b) or (c, d).

Theorem 5. a) If A,B ⊆ R are open then A ∩B is open

b) Given an arbitrary set L. If {Ai}i∈L is a family of open sets, then
⋃
i∈L

Ai

is open.

Proof. a) Let x ∈ A ∩ B, then we can find a, b, c, d ∈ R such that
x ∈ (a, b) ⊆ A and x ∈ (c, d) ⊆ B. Let m := max{a, c} and
M := min{b, d}, then x ∈ (m,M) ⊆ A ∩B.

b) Let x ∈
⋃
i∈L

Ai, then there is at least one i0 ∈ L such that x ∈ Ai0 .

Since Ai0 is open by definition, we can find a neighborhood (a, b) ∋ x
such that (a, b) ⊆ Ai0 ⊆

⋃
i∈L

Ai. We conclude that every point is an

interior point.

Corollary 6. Every open set X ⊆ R is a union of open intervals.

Proof. For each x ∈ X, take an open interval Ix ∋ x such that Ix ⊆ X. Then
X =

⋃
x∈X

Ix.

Corollary 7. If A1, A2, . . . , An are open sets then A1 ∩ A2 ∩ . . . ∩ An is an
open set.

The corollary above is false for countably infinite intersections, take for

example the open intervals An = (− 1
n
, 1
n
). Then

∞⋂
i=1

Ai = {0}, which is not

open (since it’s finite).

Example 8. Let a ∈ R, then the set X = R − {a} is open. Indeed, set
A = (−∞, a) and B = (a,+∞). Then both A and B are open and X =
A ∪B, hence X is open. More generally, we can use induction to show that
R− {a1, . . . , an} is open.

Before proving the next theorem, we need the following lemma:

Lemma 9. Let {Ij}j∈L be a family of open intervals containing a point x ∈ R.
Then I =

⋃
j∈L

Ij is itself an open interval.
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Proof. Suppose Ij = (aj, bj). By hypothesis,

aj < x < bj, ∀j ∈ L.

Set a := inf aj and b := sup bj (Notice that it’s possible that a = −∞, b =
+∞.) We claim that I = (a, b). The inclusion I ⊆ (a, b) is clear. Conversely,
let y ∈ (a, b). Then by definition of supremum and infimum, we can find aj
and bk such that aj < y < bk, if y < bj then y ∈ Ij. Otherwise, y ≥ bj, and
aj < bj ≤ y, which implies that ak < y < bk, and y ∈ Ik. In conclusion,
(a, b) ⊆ I, hence I = (a, b).

Theorem 10. (Structure of open sets) Every open set X ⊆ R can be written
uniquely as a countable union of pairwise disjoints open intervals, called the
interval components of X.

Proof. Given x ∈ X, let Ix be the union of all open intervals Ij contained
in X such that Ij ∋ x. By lemma 9, Ix is an open interval. We claim that
either Ix ∩ Iy = ∅ or Ix = Iy. Indeed, if Ix ∩ Iy ̸= ∅ then Ix ∩ Iy itself is
an interval containing, say x, hence Ix ∩ Iy ⊆ Ix, and Iy ⊆ Ix. Similarly,
Ix ∩ Iy ⊆ Iy ⇒ Ix ⊆ Iy and it follows that Ix = Iy.

Define L = {x ∈ X;x ∼ y if Ix = Iy}, that is, L is constructed by
identifying elements of X who have the same component. Then X is the
union X =

⋃
x∈L

Ix of pairwise disjoints open intervals. In order to prove that

this union is countable we define a function that associates to each x ∈ L a
random rational number r(x) ∈ Q contained in Ix. Since Ix ̸= Iy ⇒ Ix∩Iy =
∅ ⇒ r(x) ̸= r(y), hence the function r : L → Q is injective and corollary 53
implies that L is countable.

We are left to prove uniqueness. Suppose X =
∞⋃
i=k

Jk, where Jk are open

intervals, say Jk = (ak, bk), pairwise disjoints. We claim the endpoints of Jk
are not in X. Indeed, if ak ∈ X then ∃Jl such that ak ∈ (al, bl), but then
if we set b := min{bk, bl}, we have (ak, b) ⊆ Jk ∩ Jl, a contradiction since
Jk ∩ Jl = ∅. Therefore, for each x ∈ Jk, Jk is the largest open interval
containing x inside X, and we must have Jk = Ix.

Corollary 11. (Connectedness of intervals) Let I ⊆ R be an open interval.
If I = A∪B, where A and B are open and A∩B = ∅, then either A = I or
B = I (B = ∅ or A = ∅.)
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2 Closed sets

We say a point a ∈ R is adherent (or closure point) of the set X ⊆ R if it
is limit of a sequence of points in X. Every point of X is adherent to itself,
since any point x ∈ X is the limit of the constant sequence xn = x.

Example 12. Consider X = (0,+∞). Then 0 /∈ X but 0 is an adherent
point, since 0 = lim xn, where xn = 1

n
∈ X.

Theorem 13. A point a ∈ R is adherent of the set X ⊆ R if and only if for
every ϵ > 0, (a− ϵ, a+ ϵ) ∩X ̸= ∅.

Proof. Suppose a is an adherent point, say limxn = a, where xn ∈ X. Given
any ϵ > 0, we can find n0 ∈ N such that n > n0 ⇒ xn ∈ (a − ϵ, a + ϵ), in
particular, (a− ϵ, a+ ϵ)∩X ̸= ∅. Conversely, suppose (a− ϵ, a+ ϵ)∩X ̸= ∅
for every ϵ > 0. By choosing ϵ = 1

n
for each n ∈ N, we are able to construct

a sequence xn ∈ X such that xn ∈ (a− 1
n
, a+ 1

n
), and hence limxn = a.

Corollary 14. A point a ∈ R is adherent of the set X ⊆ R if and only if
every open interval I ∋ a we have I ∩X ̸= ∅.

Corollary 15. Suppose X ⊆ R is bounded, then supX and infX are adher-
ent points.

The set of all adherent points of X, denoted by X is called the closure
of X. A set X ⊆ R is closed if X = X. In other words, a set X is closed if
and only if it contains all of its adherent points.

Notice that a set X ⊆ R is dense in R if and only if X = R.

Example 16. The closed interval [a, b] is a closed set. Indeed, for any se-
quence xn ∈ [a, b], we must have a ≤ limxn ≤ b, hence [a, b] = [a, b]. Simi-
larly, (a, b) = [a, b], since in this case the endpoints aren’t in (a, b); but still,
we have a = lim(a+ 1

n
) and b = lim(b− 1

n
).

Example 17. Using the density of the rationals in R we have Q = R and
R−Q = R.

Theorem 18. A set X ⊆ R is closed if and only if Xc is open.

Proof. X is closed if and only if Xc doesn’t contain any adherent points,
which is the case if and only if ∀x ∈ Xc,∃ϵ > 0 such that (x− ϵ, x+ ϵ) ⊆ Xc,
that is to say, Xc is open.
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Corollary 19. R itself and ∅ are closed sets.

Corollary 20. If A and B are closed sets then A ∪B is closed.

Proof. Notice that (A ∪B)c = Ac ∩Bc is open.

Corollary 21. Let {Aj}j∈L be a family of closed sets. Then
⋂
j∈L

Aj is closed.

Example 22. Arbitrary union of closed sets need not to be closed. For
example, for each x ∈ (0, 1), the set {x} is closed since it’s finite, but⋃
x∈(0,1)

{x} = (0, 1) is open.

Theorem 23. Let X ⊆ R be an arbitrary set. Then X is closed. (i.e.

X = X)

Proof. Take x ∈ X
c
, then we can find an open interval I ∋ x such that

I ∩X = ∅, hence x in an interior point of X
c
.

Example 24. R itself is closed, and so is ∅. Every finite set {x1, . . . , xn} ⊆ R
is closed, since its complement is open. Similarly, Z is closed.

Example 25. The sets Q, R−Q, (a, b], [a, b) are not open nor closed.

Theorem 26. Every set X ⊆ R has a countable dense subset D, i.e. D = X.

Proof. Notice that, if we fix n ∈ N, we can write R =
⋃
p∈Z

[
p
n
, p+1

n

)
. For each

n ∈ N and p ∈ Z if X ∩
[
p
n
, p+1

n

)
̸= ∅, choose a number xnp ∈ X ∩

[
p
n
, p+1

n

)
,

and let D be the set of all such xnp. By construction, D is countable. We
claim D = X. Indeed, let I be an open interval of length ϵ > 0 containing a
point x ∈ X. For n sufficiently large such that 1

n
< ϵ, we can find a p ∈ Z

such that
[
p
n
, p+1

n

)
⊆ I, and hence xnp ∈ I.

A point a ∈ R is an accumulation point of the set X ⊆ R if a = limxn,
for xn ∈ X and xn is sequence with pairwise disjoint elements. Alternatively,
every open interval containing a contains points of X other than a itself.

The set of all accumulation points of X is called the derived set of X,
denoted by X ′.

We easily see that if X ′ ̸= ∅ then X is infinite.

Example 27. Let X = {1, 1
2
, 1
3
, . . .}. Then X ′ = {0}.
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Example 28. (a, b)′ = [a, b]. Also, Q′ = (R−Q)′ = R′ = R, whereas Z′ = ∅.

Given a point a ∈ R and a set X ⊆ R. We say a is an isolated point of
X if a is not an accumulation point. In other words, a is isolated if we can
find an open interval I ∋ a such that I ∩X = {a}.

Example 29. Every natural number n ∈ N is isolated. More generally, every
n ∈ Z is isolated.

Theorem 30. For every X ⊆ R, we have

X = X ∪X ′.

Proof. Since X ⊆ X and X ′ ⊆ X, we have X ∪ X ′ ⊆ X. Conversely, let
a ∈ X. Then every open interval I containing a also contains points of X,
either a itself or a point different from a, hence a ∈ X ∪X ′.

Corollary 31. A set X is closed if and only if X ′ ⊆ X.

Corollary 32. If all the points of X are isolated then X is countable.

Proof. Let D be a countable dense subset of X, i.e. D = X, and x ∈ X. By
definition, any interval containing x contains points of D, since x is isolated,
that can only happen if x ∈ D. Hence X = D.

We need the following lemma to prove the next theorem.

Lemma 33. Let X ⊆ R be a closed nonempty set with no isolated points.
Then ∀x ∈ R, ∃Ix ⊆ X, a closed bounded nonempty subset with no isolated
points, such that x /∈ Ix.

Proof. Since X is infinite, we can find a point y ∈ X, with y ̸= x. Take a
interval (a, b) ⊆ R such that x /∈ [a, b] and y ∈ (a, b). Set A = (a, b) ∩ X,
then A ⊆ X is bounded and nonempty. The set Ix = A satisfies the desired
properties.

Theorem 34. Let X ⊆ R be a nonempty closed set such that X ′ = X (X
has no isolated points). Then X is uncountable.

Proof. The proof is based on lemma 33 applied inductively in the following
way: Let {x1, x2, . . .} be any countable subset of X. We use the lemma to
find I1 ⊆ X such that x1 /∈ I1, and proceed inductively by finding In ⊆ In−1
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such that xn /∈ In. Choose yn ∈ In for each n. Then the sequence yn is
bounded, by Bolzano-Weierstrass theorem, it has a converging subsequence,
say ynk

→ y. For n sufficiently large we have y ∈ In, hence y ∈ In for every
n ∈ N, since the In are nested, and moreover y ̸= xn by construction. We
conclude that it’s impossible for X to be {x1, x2, . . .}, a countable set.

Corollary 35. (The contrapositive version) If X is a closed countable nonempty
set then X has an isolated point.

3 The Cantor set

The Cantor set is a bounded setK ⊆ [0, 1] defined in the following way: Start
with the interval [0, 1] and remove the middle third open interval (1

3
, 2
3
). We

are left with [0, 1
3
] and [2

3
, 1]. Proceed inductively, removing the middle third

of each interval obtained in the previous interation, what is left is the Cantor
set K.

For example, the numbers 1
3
, 2
3
, 1
9
, 2
9
, . . . which are endpoints of removed inter-

vals in each iteration are elements of the Cantor set K. So K has a countable
subset. Interesting enough, those are not the only points of K, as a matter
of fact most points of K are not endpoints of removed intervals, and it turns
out the K is actually uncountable as we shall see.

Since in each iteration we remove a finite amount of intervals, the number
of intervals removed is countable. If we denote each open interval removed
by Ij, then

K = [0, 1]−
∞⋃
j=1

Ij = [0, 1] ∩

(
R−

∞⋃
j=1

Ij

)
.
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Since K is the union of two closed sets, it is closed.

Lemma 36. K doesn’t have interior points, i.e. int(K) = ∅.

Proof. K doesn’t have any open intervals, because after each interaction the
remaining intervals shrink, so it’s impossible to exists an interval I ⊆ K of
length l, for any l ∈ R. Hence, K doesn’t have interior points.

Lemma 37. Let R be the set of endpoints of removed intervals in each iter-
ation. Then R is dense in K, i.e. R = K.

Proof. We have to show that given any x ∈ K, for every ϵ > 0, we must have
(x− ϵ, x+ ϵ)∩R ̸= ∅. If ϵ > 1

2
, the result is immediate, so let’s assume ϵ ≤ 1

2
.

At least one of intervals, (x− ϵ, x] or [x, x+ ϵ), is entirely contained in [0, 1],
say (x − ϵ, x]. After the n-th iteration, only intervals of length 1

3n
are left,

hence when 1
3n

< ϵ, part of (x−ϵ, x] will be removed (or was removed already
previously), and it can’t be the whole (x − ϵ, x] because x ∈ K. Hence, the
endpoint of the removed interval is the point of R we are looking for.

Corollary 38. K is uncountable.

Proof. It follows directly from lemma 37 and theorem 34.

4 Compact Sets

A open cover of a set X ⊆ R is a collection C = {Uj}j∈L (not necessarily
countable) of open sets Uj ⊆ R, such that X ⊆

⋃
j∈L

Uj. A subcover C ′ of C is

a collection formed by sub-indexes L′ ⊆ L, that is, C ′ = {Uj}j∈L′ , such that
X ⊆

⋃
j∈L′

Uj.

A set X ⊆ R is called compact, if every open cover has a finite subcover,
that is to say, we can take L′ a finite set in the definition above.

Example 39. Let X = ( 7
24
, 1). The sets U1 = (0, 1

3
), U2 = (1

4
, 3
4
), U3 = (2

3
, 1)

form a (finite) open cover of X, since X ⊆ U1 ∪ U2 ∪ U3. Also, U2 = (1
4
, 3
4
)

and U3 = (2
3
, 1) form a subcover, since it is still true that X ⊆ U2 ∪ U3

0 0.25 0.50 0.75 1.00
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Example 40. Consider the set X = {1, 1
2
, 1
3
, . . .}, which has all of its points

isolated, so it’s possible to find an open interval In around each point 1
n
∈ X,

such that In ∩ { 1
n
} = { 1

n
}. Therefore, C = {In}n∈N forms an open cover of

X, and moreover, C doesn’t have any open subcover, since if we remove at
least one In of C, it ceases to be a cover in the first place.

Theorem 41. (Borel-Lebesgue Theorem – simple version) Any closed inter-
val [a, b] ⊆ R is compact.

Proof. We need to prove that any open cover C = {Ij}j∈L of [a, b] has a finite
subcover. We may assume that Ij are open intervals, since each Ij is open,
so it has to contain an interval around each point.

Let X be the set of all points x ∈ [a, b] such that [a, x] can be cover be
finitely many Ij. Notice that X ̸= ∅, since a ∈ X. Set c = supX, we claim
c = b. First, we prove c ∈ X. Indeed, c ≤ b, so we can find Ij0 = (a0, b0)
covering c. Since c > a0, we can find a0 < x ≤ c such that [a, x] ⊆ I1∪. . .∪In,
but then [a, c] ⊆ I1 ∪ . . . ∪ In ∪ Ij0 , hence c ∈ X. If c < b, then we can find
c′ ∈ Ij0 such that c < c′ < b. But then [a, c′] would still be covered by
I1 ∪ . . . ∪ In ∪ Ij0 , and c isn’t an upper bound, a contradiction.

Corollary 42. (Borel-Lebesgue Theorem – classical version) Any bounded
and closed set X ⊆ R is compact.

Proof. Since X is closed, its complement Xc = R−X is open. Moreover, we
can find [a, b] ⊇ X, because X is also bounded. Let C = {Ij}j∈L be a open
cover of X, then C ∪Xc is an open cover of [a, b], by the theorem above we
can extract Ij1 ∪ . . .∪ Ijn ∪Xc, a finite subcover of [a, b]. Thus Ij1 ∪ . . .∪ Ijn
is a finite subcover of X.

Example 43. The real line R is not compact. Indeed, consider the cover

R =
∞⋃
n=1

(−n, n). Any finite subcover would be equal to the largest interval

since they are nested, and hence can’t cover the whole line. Similarly, (0, 1]

is not compact either, if we consider the nested cover
∞⋃
n=1

( 1
n
, 2), we can argue

like before.
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Theorem 44. (Heine–Borel theorem) Let K ⊆ R. The following are equiv-
alent:

1. K is closed and bounded;

2. K is compact;

3. Every infinite subset of K has an accumulation point in K;

4. (Sequential compactness) Every sequence xn ∈ K has a convergent sub-
sequence with limit in K.

Proof. We already know that 1 ⇒ 2. We first prove 2 ⇒ 3. It’s easy to show
the contrapositive of 3, namely, if X ⊆ K doesn’t have accumulation points
in K then X is finite. Indeed, we can find for each x ∈ K an interval Ix such
that Ix ∩X = ∅ if x /∈ X, and Ix ∩X = {x} if x ∈ X. Then

⋃
Ix is a cover

of K, by compactness, we extract a finite subcover, say Ix1 ∪ . . . Ixn , but this
would force X = {x1, . . . , xn},i.e. X is finite.

We now show 3 ⇒ 4. Consider the set X = {x1, x2, . . .} formed by
elements of the sequence xn ∈ K. If X is finite then at least one member
of the sequence repeat itself infinitely many times, hence forms a constant
(convergent) subsequence. Otherwise, by hypothesis we have some a ∈ X ′

that is also in K. Equivalently, every neighborhood of a ∈ K contains point
of the sequence xn, hence a subsequence of xn converges to a.

Finally, we show 4 ⇒ 1. The proof is by contradiction, namely, suppose
K is not bounded or not closed. If K is not closed, at least one sequence xn

converges to a point outside K, so any subsequence of this sequence would
also converge to point not in K, a contradiction. If K is not bounded we can
easily construct an unbounded sequence, say K is unbounded from above,
then construct a sequence satisfying xn + 1 < xn+1, and any subsequence
would also be increasing and unbounded, hence can’t converge.

Corollary 45. (Bolzano-Weierstrass alternative version) Every infinite bounded
set X ⊆ R has an accumulation point.

Proof. Apply theorem 44 to X.

Corollary 46. Let K1 ⊇ K2 ⊇ . . . be a nested sequence of nonempty compact

sets. Then
∞⋂
j=1

Kj is compact and nonempty.
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Example 47. The Cantor set K is compact since it’s closed and bounded.
Every finite set is compact. Z is not compact because it’s unbounded, nor is
R itself. Q ∩ [0, 1] is bounded but it’s not compact because it’s not closed.
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V Limits

1 The limit of a function

Let f : X ⊆ R → R be a function of a real variable, and a ∈ X ′. We say the
number L ∈ R is the limit of f(x) as x approaches a, denoted by

lim
x→a

f(x) = L,

if given ϵ > 0, we can find δ > 0, such that for every x ∈ X:

0 < |x− a| < δ ⇒ |f(x)− L| < ϵ.

In other words, f(x) can be made arbritarily close to L by choosing x ̸= a in
a sufficiently small neighborhood (a− δ, a+ δ) of a.

Notice that a ∈ X ′ is an accumulation point, so the definition makes
sense even if a /∈ X. In fact, most interesting cases are when a /∈ X. If a is
not an accumulation point, i.e. an isolated point, then the same definition
would imply that every number L ∈ R is a limit! Hence, the definition only
makes sense if a ∈ X ′.

Theorem 1. (Uniqueness of limits) Let X ⊆ R, f : X → R and a ∈ X ′. If
lim
x→a

f(x) = L and lim
x→a

f(x) = M , then L = M .

Proof. Given any ϵ > 0, we can find δ, γ such that

|x− a| < δ ⇒ |f(x)− L| < ϵ

2
, and |x− a| < γ ⇒ |f(x)−M | < ϵ

2

Let α = min{δ, γ} then

|x− a| < α ⇒ |L−M | ≤ |L− f(x)|+ |f(x)−M | < ϵ

2
+

ϵ

2
= ϵ.

This is only possible if L−M = 0 ⇒ L = M .

Theorem 2. (Restriction of limits) Let Y ⊆ X ⊆ R, f : X → R, a ∈ X ′∩Y ′.
Consider the restriction g : Y → R given by g(x) = f(x) (Also written as
f|Y (x)). If limx→a

f(x) = L then lim
x→a

g(x) = L.

Proof. Self-evident.
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Theorem 3. (Local boundedness) If lim
x→a

f(x) = L, then ∃M > 0, δ > 0 such

that 0 < |x− a| < δ ⇒ |f(x)| < M .

Proof. Take ϵ = 1 in the definition. Then we can find δ > 0 such that
0 < |x− a| < δ ⇒ |f(x)− L| < 1 ⇒ |f(x)| < |L|+ 1 =: M .

Theorem 4. (Squeeze-theorem) Let X ⊆ R, f, g, h : X → R and a ∈ X ′. If
for every x ̸= a:

f(x) ≤ g(x) ≤ h(x),

then
lim
x→a

f(x) = lim
x→a

h(x) = L ⇒ lim
x→a

g(x) = L

Proof. We can find δ, g > 0 such that 0 < |x − a| < δ ⇒ |f(x) − L| < ϵ ⇒
L− ϵ < f(x), and 0 < |x− a| < γ ⇒ |h(x)− L| < ϵ ⇒ h(x) < L+ ϵ.

Hence, if we set α = min{δ, γ} then 0 < |x − a| < α ⇒ L − ϵ < f(x) ≤
g(x) ≤ h(x) < L+ ϵ ⇒ |g(x)− a| < ϵ.

Theorem 5. (Monotonicity preservation) Let X ⊆ R, f, g : X → R and
a ∈ X ′. If lim

x→a
f(x) = L and lim

x→a
g(x) = M and L < M then there exists

δ > 0, such that 0 < |x− a| < δ ⇒ f(x) < g(x).

Proof. Set ϵ := M−L
2

. There exists δ > 0 such that 0 < |x − a| < δ ⇒
|f(x)−L| < ϵ and |g(x)−M | < ϵ. It follows that, f(x) < ϵ+L < g(x).

Corollary 6. If lim
x→a

f(x) > 0, then there exists δ > 0 such that 0 < |x−a| <
δ ⇒ f(x) > 0.

Corollary 7. If f(x) ≤ g(x) for every x, then lim
x→a

f(x) ≤ lim
x→a

g(x).

Theorem 8. (Equivalent definition of limit) Let X ⊆ R, f : X → R and
a ∈ X ′. Then lim

x→a
f(x) = L if and only if for every sequence xn ∈ X − {a},

with xn → a, we have lim
x→a

f(xn) = L.

Proof. Suppose lim
x→a

f(x) = L and xn → a. Given ϵ > 0, there exists δ > 0

and n0 ∈ N such that 0 < |x − a| < δ ⇒ |f(x) − L| < ϵ and n > n0 ⇒ 0 <
|xn − a| < δ. Therefore, n > n0 ⇒ |f(xn)− L| < ϵ.

Conversely, suppose f(xn) → L for every xn → a but lim
x→a

f(x) ̸= L.

There exists ϵ > 0, such that we can find a sequence xn ∈ X −{a} satisfying
0 < |xn − a| < 1

n
⇒ |f(xn)− L| ≥ ϵ, but then this sequence converges to a,

yet it’s not true that f(xn) → L, a contradiction.

64



Corollary 9. (Properties of limits) Let X ⊆ R, f, g : X → R and a ∈ X ′.

1. lim
x→a

[f(x)± g(x)] = lim
x→a

f(x)± lim
x→a

g(x)

2. lim
x→a

[f(x) · g(x)] = lim
x→a

f(x) · lim
x→a

g(x)

3. Suppose lim
x→a

g(x) ̸= 0 then lim
x→a

f(x)
g(x)

=
lim
x→a

f(x)

lim
x→a

g(x)

4. Suppose lim
x→a

f(x) = 0 and |g(x)| ≤ M then lim
x→a

[f(x) · g(x)] = 0.

Proof. We proved the equivalent result for sequences, the result then follows
by theorem 8.

Example 10. It follows from the definition of limit that lim
x→a

x = a. Similarly,

using the properties of limits (Corollary 9), we obtain lim
x→a

x2 = a2. Proceeding

by induction, we conclude that lim
x→a

xn = an, and hence for every polynomial

p(x) ∈ R[x], lim
x→a

p(x) = p(a). Similarly, for any rational function r(x) =

p(x)
q(x)

, if q(a) ̸= 0 then lim
x→a

p(x)
q(x)

= p(a)
q(a)

.

Example 11. Consider the function:

f(x) =

{
1, if x ∈ Q
0, if x ∈ R−Q

Then for any a ∈ R, the limit lim
x→a

f(x) doesn’t exist. Indeed, given any real

number a we can construct two sequences xn ∈ Q and yn ∈ R − Q, with
xn → a and yn → a. Therefore, f(xn) → 1 but f(yn) → 0, so lim

x→a
f(x)

doesn’t exist.

Example 12. Consider the function f : R−{0} → R given by f(x) = sin( 1
x
).

We claim lim
x→0

f(x) doesn’t exist. It’s enough to find two sequences xn → 0

and yn → 0 such that f(xn) and f(yn) converge to different limits. Take
xn = 1

nπ
and yn = (π

2
+ 2nπ)−1, then f(xn) → 0 but f(yn) → 1.
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2 One sided and infinite limits

Let X ⊆ R and a ∈ R. We say a is accumulation point to the right (or one-
sided right accumulation point) if for every ϵ > 0, (a, a+ϵ)∩X ̸= ∅. Similarly,
a is accumulation point to the left if for every ϵ > 0, (a− ϵ, a) ∩X ̸= ∅.

We denote X ′
+(X

′
−) , the set of all accumulation points to the right (left)

of X. The definition of limit can be extended in this scenario as well. For
example, let X ⊆ R, f : X → R and a ∈ X ′

+, then we write

lim
x→a+

f(x) = L

If ∀ϵ > 0,∃δ > 0, 0 < x− a < δ ⇒ |f(x)− L| < ϵ. We define lim
x→a−

f(x) = L

analogously.

Theorem 13. Let X ⊆ R, f : X → R and a ∈ X ′. Then lim
x→a

f(x) = L if

and only if lim
x→a+

f(x) = lim
x→a−

f(x) = L.

Proof. The conditional implication is trivial, we prove the converse. Suppose
lim
x→a+

f(x) = lim
x→a−

f(x) = L. Then we can find δ, γ > 0 such that given ϵ > 0,

0 < x− a < δ ⇒ |f(x)− L| < ϵ and 0 < a− x < γ ⇒ |f(x)− L| < ϵ. If we
set α = min{δ, γ}, then 0 < |x− a| < α ⇒ |f(x)− L| < ϵ.

Example 14. Consider the function sign : R− {0} → R given by

sign(x) =
x

|x|
.

Then lim
x→0−

sign(x) = −1 but lim
x→0+

sign(x) = 1, so lim
x→0

sign(x) doesn’t exist.

Example 15. Consider the function f(x) : R → R given by f(x) = e−
1
x .
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Then lim
x→0+

f(x) = 0 but lim
x→0−

f(x) doesn’t exist.

Recall that a function is increasing if x < y ⇒ f(x) < f(y), nondecreasing
if x ≤ y ⇒ f(x) ≤ f(y). We define decreasing, nonincreasing in a similar
way. Finally we say a function is monotone if satisfies any of the above
conditions.

Theorem 16. Let X ⊆ R and f : X → R a bounded monotone function.
Given a ∈ X ′

+, b ∈ X ′
−, the one sided limits lim

x→a+
f(x) and lim

x→b−
f(x) exist.

Proof. Without loss of generality, suppose f(x) increasing. We prove lim
x→a+

f(x)

exist, the other limit is analogous. Set L := inf{f(x);x > a}. We claim
lim
x→a+

f(x) = L. Indeed, given ϵ > 0 the number ϵ + L is not a lower bound,

hence we can find δ > 0 such that L ≤ f(a + δ) < L + ϵ. Since f(x) is
increasing, it follows that a < x < a + δ ⇒ L ≤ f(x) < L + ϵ, as required.

Let X ⊆ R be a set unbounded from above. Given f : X → R we write

lim
x→+∞

f(x) = L,

if there is a number L ∈ R such that

∀ϵ > 0,∃M > 0, M < x ⇒ |f(x)− L| < ϵ.

The limit lim
x→−∞

f(x) is defined analogously. Notice that both infinite

limits are, in a way, one sided limits. In particular, the limit of a sequence xn

is an infinite limit when we consider the sequence as a function x : N → R,
i.e. limxn = lim

n→+∞
x(n).

Example 17. We have lim
x→−∞

1
n

= lim
x→+∞

1
n

= 0. Also, lim
x→−∞

ex = 0 but

lim
x→+∞

ex doesn’t exist.

Let X ⊆ R, f : X → R and a ∈ X ′. We write

lim
x→a

f(x) = +∞,

if ∀M > 0, ∃δ > 0, 0 < |x− a| < ϵ ⇒ f(x) > M.
The definition of lim

x→a
f(x) = −∞, lim

x→±∞
f(x) = ±∞, and lim

x→a±
f(x) =

±∞ can be given mutatis mutandis.
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Example 18. With the definitions above we have, for example, lim
x→+∞

ex =

+∞, lim
x→−∞

x2 = +∞, lim
x→2−

(
1

x−2

)
= −∞, lim

x→2+

(
1

x−2

)
= +∞.

The theorem below can be proven using the same arguments we used to
prove their finite counterpart, so the proof will be ommitted.

Theorem 19. (Properties of infinite limits) Let X ⊆ R, f : X → R and
a ∈ X ′.

- (Uniqueness) If lim
x→a

f(x) = +∞ then it’s impossible to have lim
x→a

f(x) =

L for L ∈ R or L = −∞.

- (Restriction) If lim
x→a

f(x) = +∞, then for every Y ⊆ X, if we set

g(x) = f|Y (x), we still have lim
x→a

g(x) = +∞.

- (Unboundedness) If lim
x→a

f(x) = +∞, then f(x) is not bounded in any

neighborhood of a ∈ X.

- (Monotonicity) If f(x) ≤ h(x) and lim
x→a

f(x) = +∞, then lim
x→a

h(x) =

+∞.

- (Preservation of the sign) If lim
x→a

f(x) = L and lim
x→a

h(x) = +∞, then

∃δ > 0 such that 0 < |x− a| < δ ⇒ f(x) < h(x).

- (Equivalent definition) lim
x→a

f(x) = +∞ if and only if for every sequence

xn ∈ X − {a} with limxn = a, we have lim
n→∞

f(xn) = +∞.

3 Limit superior and inferior of functions

Let X ⊆ R, f : X → R and a ∈ X ′. We say f is bounded in a neighborhood
of a, if there is k, δ > 0 such that

0 < |x− a| < δ ⇒ |f(x)| ≤ k

A number c ∈ R is an adherent value of f at a if there exists a sequence
xn ∈ X such that limxn = a and lim f(xn) = c. In particular, if a function
has a limit lim

x→a
f(x) = L, then L is the only adherent value.

Given a ∈ X ′ and δ > 0, we denote by Iδ the δ−neighborhood around a
given by Iδ = X − {a} ∩ (a− δ, a+ δ).
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Theorem 20. A number c ∈ R is an adherent value of f at a if and only if
for every δ > 0 we have c ∈ f(Iδ).

Proof. Suppose c ∈ R is an adherent value. Then a = limxn and c =
lim f(xn). Since Iδ ∋ a, xn ∈ Iδ for n sufficiently large, so f(xn) ∈ f(Iδ).
Conversely, suppose c ∈ f(Iδ) for every δ > 0. We can take δ of the form
δ = 1

n
, for n ∈ N, to obtain a sequence xn ∈ I 1

n
, such that |f(xn) − c| < 1

n
.

We conclude that lim xn = a and lim f(xn) = c.

Let’s denote the set of all adherent values at a of a function f by AV (f, a).

Corollary 21. AV (f, a) =
⋂
δ>0

f(Iδ)

Corollary 22. AV (f, a) is a closed set. If f is bounded in a neighborhood
of a, then AV (f, a) is compact and nonempty.

Example 23. Let f(x) =
sin( 1

x)
x

, whose graph is shown below.

Every c ∈ R is an adherent value of f at 0, that is, AV (f, 0) = R. Indeed,
given any c ∈ R and an open intervals (c− ϵ, c+ ϵ) ∋ c and Iδ := (−δ, δ) ∋ 0,

we claim (c − ϵ, c + ϵ) ∩ f(Iδ) ̸= ∅, or equivalently, c − ϵ <
sin( 1

a)
a

< c + ϵ
for some a ∈ (−δ, δ), which is easily true by the periodicity of sin(x) and the
behavior of 1

x
.

Example 24. Let f(x) = 1
x
, then AV (f, 0) = ∅.

According to corollary 22, if f is bounded in a neighborhood of a, the set
AV (f, a) ̸= ∅ is compact, hence has a maximum and minimum value.
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We call the maximum value of AV (f, a) the limit superior of f at a and
denote it by

lim
x→a

sup f(x).

Similarly, the minimum value of AV (f, a) is called the limit inferior of f at
a and denote it by

lim
x→a

inf f(x).

We use the convention that when f is not bounded around a, we write
lim
x→a

sup f(x) = +∞ and lim
x→a

inf f(x) = −∞.

Example 25. Let f(x) = sin
(
1
x

)
then AV (f, 0) = [−1, 1]. Indeed, for a

fixed a ∈ [−1, 1] consider xn = (a + 2πn)−1, then f(xn) = a. Therefore,
lim
x→a

inf f(x) = −1 and lim
x→a

sup f(x) = 1.

Theorem 26. Let f be a bounded function in a neighborhood of a. Then
given ϵ > 0, there exists δ > 0 such that

0 < |x− a| < δ ⇒ lim
x→a

inf f(x)− ϵ < f(x) < lim
x→a

sup f(x) + ϵ.

Corollary 27. lim
x→a

f(x) = L if and only if f has only one adherent value at

a, namely L itself.

4 Continuity

Intuitively, a continuous function is a function whose graph has no gaps or
holes. More precisely, let f : X → R be a real valued function and a ∈ X.
We say f is continuous at a if

∀ϵ > 0,∃δ > 0; |x− a| < δ ⇒ |f(x)− f(a)| < ϵ

If f is continuous for every a ∈ X we simply say f is continuous.
Notice that if a ∈ X is an isolated point then any function f : X → R

is continuous at a. In particular, if X ′ = ∅ then any function f : X → R is
continuous.

Example 28. Any function f : Z → R is continuous, since Z′ = ∅.

Theorem 29. If a ∈ X ′, then f is continuous at a if and only if lim
x→a

f(x) =

f(a).
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Proof. Self-evident.

By using the already proven properties of limits we conclude:

Theorem 30. If f : X → R is continuous then for any Y ⊆ X the restriction
f|Y is also continuous. Conversely, if Y = I ∩ X for some open interval I
containing a point a ∈ X, then if f|Y is continuous at a, f is also continuous
at a.

In other words, theorem 30 says that continuity is a local property. More
precisely, if f coincides with a continuous function in a neighborhood of
a ∈ X, then f itself is continuous at a.

Corollary 31. If f is continuous at a ∈ X, then f is bounded in a neigh-
borhood of a.

Corollary 32. If f, g are continuous at a ∈ X and f(a) < g(a), then f(x) <
g(x) in a neighborhood of a.

Corollary 33. If f is continuous at a ∈ X and f(a) < k (f(a) > k), for
some k ∈ R, then f(x) < k (f(x) > k) in a neighborhood of a.

Using the alternate definition of limit we can prove:

Theorem 34. f is continuous at a ∈ X if and only if for every sequence
xn → a, we have f(xn) → f(a).

Theorem 35. f, g are continuous at a ∈ X, them f + g,f − g, and f · g are
also continuous at a. If g(a) ̸= 0 then f/g is also continuous at a. Moreover,
the composition of continuous function is also continuous.

Example 36. The function f(x) = x is clearly continuous, hence its self-
product xn is also continuous, and so is any polynomial p(x) = anx

n + . . .+
a1x+a0. A rational function p(x)/q(x) is continuous at points where q(x) ̸=
0.

Example 37. The function f(x) = |x| is continuous on the open interval
(0,+∞) since it is constant there, for the same reason it’s also continuous
in (−∞, 0). Finally, it’s continuous at 0, since lim

x→0−
|x| = lim

x→0+
|x| = 0. On

the other hand, the function defined by g(x) = x
|x| , if x ̸= 0, and g(0) = 1, is

not continuous at the origin since lim
x→0−

g(x) = −1 ̸= lim
x→0+

g(x) = 1.
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Theorem 38. Suppose X ⊆ A ∪ B, where A,B ⊆ R are closed sets. If the
function f : X → R satisfies f|X∩A

is continuous and f|X∩B
is continuous,

then f itself is continuous.

Proof. Let a ∈ X and ϵ > 0 be given. Suppose first a ∈ A ∩ B. Then there
are δ, γ > 0 such that ∀x ∈ X ∩ A, |x − a| < δ ⇒ |f(x) − f(a)| < ϵ and
∀x ∈ X ∩ B, |x − a| < γ ⇒ |f(x) − f(a)| < ϵ. Set α = min{δ, γ}, then
∀x ∈ X, |x− a| < α ⇒ |f(x)− f(a)| < ϵ, which implies f is continuous at a.

Now suppose a ∈ A but a /∈ B. There exists δ > 0, such that ∀x ∈
X∩A, |x−a| < δ ⇒ |f(x)−f(a)| < ϵ. Since B is closed, B = B, and we can
find γ > 0 such that |x−a| < γ ⇒ x /∈ B. As before, if we set α = min{δ, γ},
then ∀x ∈ X, |x − a| < α ⇒ |f(x) − f(a)| < ϵ, as desired. The case a /∈ A
but a ∈ B can be proven analogously.

Corollary 39. Suppose X = A ∪ B, where A,B ⊆ R are closed sets. If the
restrictions f|A , f|B of a function f : X → R are continuous, then f itself is
continuous.

We can generalize the result above if we take the cover A∪B to be open.
In fact, a stronger result is valid. (The proof follows directly from theorem
30 and will be omitted.)

Theorem 40. (Sheaf property) Let X ⊆
⋃
λ∈L

Aλ be an open cover of X. If

the restrictions f|X∩Aλ
of a function f : X → R are continuous, then f itself

is continuous

Corollary 41. Suppose X =
⋃
λ∈L

Aλ, where each Aλ is open. If the restric-

tions f|Aλ
of a function f : X → R are continuous, then f itself is continuous

Example 42. Consider again f(x) = x
|x| but this time with domain X =

(−∞, 0) ∪ (0,+∞). Then f is continuous by the corollary above.

Let f : X → R be a real valued function and a ∈ X. If f is not continuous
at a, we say it is discontinuous at a.

Example 43. (Thomae’s function)The function f : R → R given by:

f(x) =

{
1
q
, if x ∈ Q and x = p

q
, p ∈ Z, q ∈ N, gcd(p, q) = 1

0, if x ∈ R−Q

The graph of f(x) on the interval (0, 1) is shown below.
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Notice that f(x) is periodic, since f(x + 1) = f(x). We claim that f is

discontinuous at any a ∈ Q. Indeed, we can find a sequence, say xn = a+
√
2
n
,

of irrational numbers, with xn → a but f(xn) → 0, since f(a) ̸= 0 in this
case, f can’t be continuous at a.

Surprisingly enough, f is continuous at every a /∈ Q. Equivalently, we
must have lim

x→a
f(x) = 0. Since f is periodic, it’s enough to prove the conti-

nuity for a ∈ (0, 1) ∩ (R−Q).
Suppose ϵ > 0 is given. Using the Archimedean property of R, there is

n ∈ N such that 1
n
< ϵ. Decompose (0, 1) into k subintervals of length 1

k
, for

k = 1, 2, . . . , n. Then ‘a’ will be in one of these intervals, for each k, say
a ∈ (mk

k
, mk+1

k
). Let δk = min

{
|a− mk

k
|, |a− mk+1

k
|
}
, the minimum distance

between a and the endpoints of (mk

k
, mk+1

k
), and define δ := min

1≤k≤n
δk.

Given x ∈ (a − δ, a + δ) if x /∈ Q then f(x) = 0 < ϵ. Otherwise, x = p
q

and by minimality of δ, we must have q > n, hence f(x) = 1
q
< 1

n
< ϵ and

we conclude that lim
x→a

f(x) = f(a) = 0.

It’s impossible to have a function which is discontinuous at every irra-
tional number, see the exercises.

Example 44. If f : R → R is given by:

f(x) =

{
1, if x ∈ Q
0, if x ∈ R−Q

Then f is discontinuous at every a ∈ R, since the limit lim
x→a

f(x) doesn’t exist.

Example 45. Consider f : R → R given by f(0) = 1 and f(x) = x3 − x
|x| if

x ̸= 0. Then f is discontinuous at 0 only.

73



Example 46. Let K be the Cantor set. Consider the function f : [0, 1] → R
given by

f(x) =

{
0, if x ∈ K

1, if x /∈ K

Then f is discontinuous at every point a ∈ K and continuous at the open set
Kc. Indeed, f is constant, hence continuous, at every a ∈ Kc.

Suppose now a ∈ K. Since every point of K is an accumulation point, it’s
possible to find a sequence xn /∈ K such that xn → a, hence f(xn) → 1 ̸= 0,
so f is discontinuous at a.

Example 47. The function f(0) = a and f(x) = sin 1
x
if x ̸= 0 is discontin-

uous at 0, regardless of a ∈ R, since lim
x→0

f(x) doesn’t exist.

Example 48. The function f(0) = 0 and f(x) =
sin 1

x

1+e
1
x

if x ̸= 0 is dis-

continuous at 0, since lim
x→0−

f(x) doesn’t exist. In this case, lim
x→0+

f(x) = 0

however.
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Example 49. The function f(0) = 0 and f(x) = 1

1+e
1
x
if x ̸= 0 is discontin-

uous at 0, since lim
x→0−

f(x) = 1 but lim
x→0+

f(x) = 0.

Let f : X → R, a ∈ X and suppose f is discontinuous at a. Then we
say a ∈ X is a jump discontinuity, if both one sided limits lim

x→a+
f(x) and

lim
x→a−

f(x) exists but are different. If at least one of the one sided limits

doesn’t exist, then we say a ∈ X is an essential discontinuity.

Theorem 50. A monotone function f : X → R can’t have essential discon-
tinuities.

Proof. Suppose f nondecreasing and a ∈ X. If x+ δ ∈ X then f is bounded
in [x, x+ δ] ∩X. The result then follows from theorem 16.

Theorem 51. Let f : X → R be a function having only jump discontinuities.
Then the set of discontinuities of f is countable.

Proof. Define the jump function j(x) : X → R of f by:

j(a) =



0, if a is isolated.

|f(a)− lim
x→a+

f(x)|, if a ∈ X ′
+ only.

|f(a)− lim
x→a−

f(x)|, if a ∈ X ′
− only.

max{|f(a)− lim
x→a+

f(x)|, |f(a)− lim
x→a−

f(x)|}, if a ∈ X ′
+ ∩X ′

−.

Intuitively, j(x) measures the length of the ‘jump’ of f(x). Consider the set

Cn := {x ∈ X; j(x) ≥ 1

n
}.
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The set of discontinuities of f(x) is the set
⋃
n=1

Cn, hence if we can prove

that each Cn is countable then we’re done. We claim that for each n ∈ N,
the set Cn has only isolated points, hence it’s countable (see corollary 32).

Let a ∈ Cn and suppose a ∈ X ′
+. By using the definition of one sided

limit, if we set L := lim
x→a+

f(x) we can find δ > 0 such that 0 < x− a < δ ⇒
|f(x) − L| < 1

4n
⇒ L − 1

4n
< f(x) < L + 1

4n
, hence if x ∈ (a, a + δ) then

j(x) ≤ 1
2n
, which is to say (a, a+ δ)∩Cn = ∅. If a /∈ X ′

+, we can just choose
δ > 0 such that (a, a+ δ) ∩X = ∅. In any case, we can find δ > 0 such that
(a, a+ δ) ∩ Cn = ∅. A similar argument implies we can find γ > 0 such that
(a− γ, a) ∩ Cn = ∅. We conclude that a ∈ Cn is isolated.

Corollary 52. The set of discontinuities of a monotone function f is count-
able.

5 Continuous functions defined on intervals

The next result highlights the fact that continuous functions can’t have gaps,
in other words, if two numbers a ̸= b are in the range, then [a, b] is also in
the range.

Theorem 53. (Intermediate Value Theorem) Let f : [a, b] → R be a contin-
uous function and d ∈ R be a number such that f(a) < d < f(b). Then there
is c ∈ [a, b] such that d = f(c).

Proof. Define X = {x ∈ [a, b]; f(x) < d}. This set is nonempty because
f(a) < f(d), and due to the continuity of f(x), X doesn’t have a maximum
element. Set c = supX, then c /∈ X. However, since c is an adherent value,
there is a sequence xn → c, which implies f(c) ≤ d. We conclude that
f(c) = d.

Corollary 54. Let f : I → R be a continuous function, where I is an interval
(not necessarily bounded). If a, b ∈ I and f(a) < d < f(b), then there exists
c ∈ I such that f(c) = d.

Corollary 55. Let f : I → R be a continuous function, where I is an
interval. Then f(I) is an interval.

Proof. If we set c = inf f(x) and d = sup f(x) then f(I) is an interval with
endpoints c and d (not necessarily bounded, nor open/closed).
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Example 56. Let f : I → R be a continuous function such that f(I) ⊆ Y ,
where Y has empty interior. Then f is constant. Indeed, it follows by 55
that f(I) is an interval, so it must be of the form [c, c], otherwise, f(I) would
have an interior point. In particular, every continuous function f : I → Z is
constant.

Example 57. Every polynomial p(x) = a2n−1x
2n−1 + . . . + a0 of odd degree

has at least one real root. Indeed, in this case p(x) is a continuous func-
tion defined on the interval (−∞,+∞), so its image is an interval. Since
lim

x→±∞
p(x) = ±∞, that interval has to be (−∞,+∞), hence p(x) is surjec-

tive.

A function f : X → Y is a homeomorphism, if f is a continuous bijection
having a continuous inverse f−1.

Theorem 58. Let f : I → R be a continuous injective function defined on a
interval I. Then f is monotone, and if we set J = f(I), then f : I → J is a
homeomorphism.

Proof. It’s enough to prove the result for I = [a, b]. Suppose f(a) < f(b),
we claim f is increasing. Suppose not, that is, we can find c, d ∈ [a, b]
such that c < d but f(c) > f(d). Either f(a) < f(d) or f(a) > f(d).
If f(a) < f(d) < f(c), by theorem 53, we can find p ∈ (a, c) such that
f(p) = f(d), a contradiction by the injectivity of f . For the same reason we
can’t have f(d) < f(a) < f(b). Hence, f has to be increasing.

Using corollary 55, we see that J is an interval, hence f−1 : J → I is an
increasing function (since f is) whose image is an interval. Suppose f−1 is
not continuous at a point y ∈ J , say M := lim

x→y+
f−1(x) ̸= L := lim

x→y−
f−1(x).

Then f−1(c) ∈ (L,M) and (L,M) ∩ I = {f−1(c)}, which implies I has an
isolated point, a contradiction.

Theorem 59. Let f : X → R be a continuous function. If X is compact
then f(X) is compact.

Proof. We claim f(X) is sequentially compact, which is equivalent to com-
pactness by theorem 44. Let yn = f(xn) be a sequence in f(X), we claim
it has a converging subsequence. By the compactness of X, there is a con-
verging subsequence xnk

→ x ∈ X. If we set ynk
= f(xnk

), then ynk
→ f(x),

since f is continuous.
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Corollary 60. (Weierstrass Extreme Value Theorem) Let X ⊆ R be compact
and f : X → R be a continuous function. Then f achieves its maximum and
minimum value, that is to say, there are a, b ∈ X such that f(a) ≤ f(x) ≤
f(b) for every x ∈ X.

Theorem 61. Let X ⊆ R be compact and f : X → R be a continuous injec-
tive function. If we set Y := f(X), then f : X → Y is a homeomorphism.

Proof. Let y ∈ Y , we claim f−1 is continuous at y = f(x). Suppose yn =
f(xn) is a sequence of points in Y such that yn → y = f(x), we claim xn → x.
It’s enough to prove that any converging subsequence of xn converges to x.
Let xnk

be a converging subsequence, say xnk
→ a ∈ X. Then ynk

→
f(a), but since ynk

is a subsequence of yn, it also converges to f(x), by the
injectivity of f we deduce that a = x.

We say a function f : X → R is uniformly continuous if

∀ϵ > 0,∃δ > 0 : ∀x, y ∈ X, |x− y| < δ ⇒ |f(x)− f(y)| < ϵ

It follows that every uniformly continuous function is continuous. The con-
verse is false, as the example below illustrates.

Example 62. The function f(x) = 1
x
is continuous on (0,+∞) but is not

uniformly continuous. Indeed, given ϵ, δ > 0, take a point 0 < x < min{δ, 1
3ϵ
}

and y = x+ δ
2
. Then |x− y| < δ but

|f(x)− f(y)| =

∣∣∣∣∣1x − 1

x+ δ
2

∣∣∣∣∣ =
∣∣∣∣ δ

x(2x+ δ)

∣∣∣∣ > ∣∣∣∣ δ

3δx

∣∣∣∣ > ϵ.

Example 63. Linear functions f(x) = mx+b are continuous. Indeed, given
ϵ > 0 just take δ = ϵ

|m| , so that |x − y| < δ ⇒ |f(x) − f(y)| = |m(x − y)| ≤
|m| ϵ

|m| = ϵ.

Example 64. A function f : X → R is called Lipschitz if there exists a
constant C > 0 such that |f(x)−f(y)| ≤ C|x− y|. Any Lipschitz function is
obviously uniformly continuous. For example, linear functions f(x) = mx+b
are Lipschitz, and if X is bounded, f(x) = xn is Lipschitz.

Theorem 65. If f : X → R is uniformly continuous and xn is a Cauchy
sequence then f(xn) is also Cauchy.
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Corollary 66. If f : X → R is uniformly continuous and a ∈ X ′ then
lim
x→a

f(x) exists.

Example 67. The functions f(x) = sin 1
x
and g(x) = 1

x
can’t be uniformly

continuous because the limit when when x approaches 0 doesn’t exist.

Theorem 68. Let X ⊆ R be compact and f : X → R continuous then f is
uniformly continuous.
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VI Derivatives

1 Definition and first properties

Let X ⊆ R, a ∈ X ∩X ′, and f : X → R be a real valued function. We say
f is differentiable at a ∈ X if the following limit exists:

f ′(a) := lim
x→a

f(x)− f(a)

x− a
(1)

The number f ′(a) is called the derivative of f at a. If f is differentiable at
every a ∈ X, we simply say f is differentiable (in X).

Intuitively speaking, for x ̸= a, the number f(x)−f(a)
x−a

is the slope of the
secant line connecting the points (x, f(x)) and (a, f(a)), hence when x → a,
this number becomes the slope of the tangent line.

Similarly to one-sided limits, we can define one-sided derivatives, f ′
+(a) :=

lim
x→a+

f(x)−f(a)
x−a

, if a ∈ X ∩X ′
+, and f ′

−(a) := lim
x→a−

f(x)−f(a)
x−a

if X ∩X ′
−. We can

easily see that f ′(a) exists for some a ∈ X∩X ′
+∩X ′

− if and only if f ′
+(a) and

f ′
−(a) exist and f ′

−(a) = f ′
+(a). In particular, a function is not differentiable

if its graph has sharp corners, since this implies f ′
−(a) ̸= f ′

+(a) at the corner.
If we set h := x − a in equation 1, then we can see that f ′(a) can be

equivalently defined by

f ′(a) := lim
h→0

f(a+ h)− f(a)

h
. (2)

Sometimes the latter definition is more convenient for computational pur-
poses.

If a ∈ X ′
+ but a /∈ X ′

−, and f ′
+(a) exists, we can set f ′(a) := f ′

+(a)
and consider f to be differentiable at a. A similar convention holds for
a ∈ X ′

−. According to this convention, the function f : [a, b) → [a, b), given
by f(x) = x, is differentiable.

Example 1. Let f : R → R be linear, f(x) = mx + b. Then f ′(x) = m. In
particular, if m = 0 and f(x) = b is constant, then f ′(x) = 0.

Example 2. Consider f(x) = |x|. Using the definition of one-sided deriva-
tives we obtain f ′

+(0) = 1 and f ′
−(0) = −1. Therefore, f is not differen-

tiable at 0. On the other hand, we easily see that f ′(x) = 1, if x > 0, and
f ′(x) = −1, if x < 0.
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Example 3. Let f : [0,+∞) → R be defined by f(x) =
√
x. Using equation

2, for x > 0, we obtain:

f ′(x) = lim
h→0

√
x+ h−

√
x

h
= lim

h→0

h

h(
√
x+ h+

√
x)

=
1

2x

On the other hand, at x = 0 the quotient
√
h
h

= 1√
h
→ +∞ as h → 0+, hence

f ′(0) doesn’t exits. Intuitively, this is clear since the tangent line being a
vertical line has ‘infinite’ slope.

Example 4. (Sawtooth function)Let f : R → R be defined by

f(x) = inf{|x− n|;n ∈ Z}

.

Notice that the graph of f has sharp corners at every n, n
2
, for n ∈ Z, hence

it’s not differentiable at those points. Otherwise, the function is differentiable
with f ′(x) = ±1, depending whether or not the fractional part of f(x) is less
than 0.5.
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Example 5. Let f : R → R be defined by f(0) = 0 and f(x) = x +
2x2 sin(1/x), if x ̸= 0. Despite this seemly complicated definition, this func-
tion is indeed differentiable everywhere and f ′(x) = 1−2 cos(1/x)+4x sin(1/x)

Example 6. (Weierstrass function) Given 0 < a < 1 and b ∈ N, such that

ab > 1 + 3
2
π. Let f : R → R be defined by f(x) =

∞∑
n=1

an cos(bnπx). The

figure below is the graph of f(x). It is an example of a continuous function
that is nowhere differentiable.

Moreover, the graph of f(x) is self-similar if we zoom in, in the sense, that
if we restrict the the domain of f(x) to [− 1

n
, 1
n
] and take n bigger and bigger,

the shape of the graph doesn’t change. We will prove these claims later, when
we discuss series of functions.

Theorem 7. A real valued function f : X → R is differentiable at a ∈ X if
and only if there is number C ∈ R and a real valued function r(x), such that
if a+ h ∈ X:

f(a+ h) = f(a) + Ch+ r(h), (3)

and r(x) satisfies lim
h→0

r(h)
h

= 0. Moreover, C = f ′(a).
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Proof. The implication is clear. We prove the converse. Suppose that there
is C ∈ R satisfying (3). Then

f(a+ h)− f(a)− r(h) = Ch (4)

Dividing both sides by h and taking the limit when h → 0 we obtain

lim
h→0

f(a+ h)− f(a)

h
= C ∈ R,

as required.

The theorem above says that f is differentiable at a if and only if in a
neighborhood of a, f can be approximated by the linear function p(x) =
f ′(a)x + f(a) with error r(x) that goes to zero faster than g(x) = x. We
will see soon that the more derivatives f has, the better we can make this
approximation using a polynomial p(x) whose degree is equal to the number
of derivatives of f .

If f : X → R differentiable at a ∈ X ∩X ′, we define the differential at a,
denoted by dfa : R → R, as the linear transformation given by

dfa(h) = f ′(a)h. (5)

In this notation, equation 3 becomes

f(a+ h) = f(a) + dfa(h) + r(h). (6)

Theorem 8. If the f : X → R is differentiable at a ∈ X then f is continuous
at a ∈ X.

Proof. Indeed, we have

lim
x→a

[f(x)− f(a)] = lim
x→a

[
f(x)− f(a)

x− a
(x− a)

]
= lim

x→a

[
f(x)− f(a)

x− a

]
· lim
x→a

(x− a)

= f ′(a) · 0 = 0.

(7)

∴ f is continuous at a.

The theorem below follows directly from the definition of derivative and
the properties of limits we have already proved.
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Theorem 9. (Properties of derivatives) If f, g : X → R are differentiable at
a ∈ X ∩X ′ then f ± g, f · g, f/g (if g′(a) ̸= 0) are also differentiable at a.
Moreover,

(f ± g)′(a) = f ′(a)± g′(a)

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a)(
f

g

)′

(a) =
f ′(a)g(a)− f(a)g′(a)

g(a)2
.

(8)

Theorem 10. (The Chain Rule) Let f : X → R and g : Y → R be real
valued functions, such that f(X) ⊆ Y . If f is differentiable at a ∈ X, and
g is differentiable at b := f(a), then g ◦ f : X → R is differentiable at a,
moreover (g ◦ f)′(a) = g′(b)f ′(a).

Proof. By hypothesis, we have

(g ◦ f)(a+ h) = g[f(a+ h)] = g[f(a) + f ′(a)h+ r(h)]

= g[f(a)] + g′[f(a)][f ′(a)h+ r(h)] + s(f ′(a)h+ r(h))

= g(b) + g′(b)[f ′(a)h] + g′(b)[r(h)] + s(f(a+ h)− f(a)).

Since

lim
h→0

g′(b)[r(h)] + s(f(a+ h)− f(a))

h
= g′(b) lim

h→0

r(h)

h
+lim

h→0

s(f(a+ h)− f(a))

h
= 0

The proof is complete by theorem 7.

Corollary 11. Let f : X → Y ⊆ R be a bijective real valued functions. If
f is differentiable at a ∈ X, and f−1 : Y → X is continuous at b := f(a),
then f−1 is differentiable at b if and only if f ′(a) ̸= 0, moreover, if that’s the
case, then (f−1)′(b) = 1

f ′(a)
.

Proof. If f−1 is differentiable at b, we can apply the Chain rule to 1 = (f−1 ◦
f)′(a) = (f−1)′(b)f ′(a). Conversely, suppose f ′(a) ̸= 0, set g(y) := f−1(y).
Then

lim
y→b

g(y)− g(b)

y − b
= lim

y→b

g(y)− a

f [g(y)]− f(a)
= lim

y→b

(
f [g(y)]− f(a)

g(y)− a

)−1

=
1

f ′(a)
(9)

∴ g′(b) = 1
f ′(a)

and the theorem is proved.
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Example 12. (The Sigmoid function) Consider the function f : R → R
given by f(x) = 1

1+e−x , whose graph is shown below.

Using the chain rule, we have that

f ′(x) = − 1

(1 + e−x)2
(−e−x) =

e−x

(1 + e−x)2

2 Maximum and minimum points

The derivative of f : X → R at point a ∈ X tells us crucial information
about the behavior of the function in a neighborhood of a.

Let f : X → R be a real valued function and a ∈ X. We say f has a local
maximum at a if there exists δ > 0, such that x ∈ (a − δ, a + δ) ⇒ f(x) ≤
f(a). If the strict inequality f(x) < f(a) is true, then a is called strict local
maximum. Similar definitions are given to local minimum and strict local
minimum.

Example 13. The function cos : R → R has (strict) local maxima at points
of the form a = 2πn, n ∈ Z.
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Similarly, cosx has (strict) local minima at points of the form (2n−1)π, n ∈
Z.

Example 14. The constant function given by f(x) = C has (non-strict)
local maxima and minima at every point of its domain.

Example 15. Consider the function f : R → R given by f(0) = 0 and
f(x) = x2(1 + sin 1

x
), whose graph is shown below.

By definition, f(x) ≥ 0, ∀x ∈ R. Moreover, any neighborhood of 0 contains
points whose image is 0. Hence, the point 0 is a (non-strict) local minimum.

Theorem 16. Let f : X → R be differentiable from the right at a ∈ X∩X ′
+,

i.e. f ′
+(a) exists. If f ′

+(a) > 0 then we can find δ > 0 such that x ∈
(a, a + δ) ⇒ f(x) > f(a). Similarly, if f ′

+(a) < 0 then ∃δ > 0 : x ∈
(a, a+ δ) ⇒ f(x) < f(a).

Proof. Follows directly from Corollary 6.

A similar result is valid in the case f ′
−(a) > 0 or f ′

−(a) < 0.

Corollary 17. Let f : X → R be differentiable at a ∈ X ∩ X ′
+ ∩ X ′

−.
If f ′(a) > 0 then we can find δ > 0 such that for all x, y ∈ X, we have
a− δ < x < a < y < a+ δ ⇒ f(x) < f(a) < f(y).

Notice that the corollary above is not saying that f is locally increasing.

Corollary 18. Let f : X → R be differentiable at a ∈ X ∩ X ′
+ ∩ X ′

−. If f
has a local maximum or minimum at a ∈ X then f ′(a) = 0.

Example 19. The converse of Corollary 18 is false. The function f(x) = x3

and a = 0 gives a counter-example.
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Example 20. Consider the continuous function f(x) = x2 sin 1
x
+ x

2
if x ̸= 0

and f(0) = 0.

We have f ′(0) = 1
2
> 0, but f is not increasing in any neighborhood I of 0.

Indeed, f ′(x) = 2x sin 1
x
− cos 1

x
+ 1

2
, so we can pick x ∈ I sufficiently small

such that sin 1
x
= 0 and cos 1

x
= 1, for this x ∈ I we have f ′(x) = −1

2
< 0, so

f can’t be increasing in I.

3 Derivative as a function

Let f : I → R be a differentiable function defined on a interval I. We
associate to f its derivative function f ′ : I → R, whose value at each x ∈ I
is f ′(x).

When f ′ is continuous, we say f is continuously differentiable. The set of
all continuously differentiable functions on a interval I is denoted by C1(I).
In case I = (−∞,+∞), we simply write f ∈ C1 and say f is of class C1.

Example 21. The function defined by f(x) = x2 sin 1
x
if x ̸= 0 and f(0) = 0

is differentiable but f /∈ C1.
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At x = 0 we have f ′(0) = 0. However, f ′(x) = 2x sin 1
x
− cos 1

x
and lim

x→0
f ′(x)

doesn’t exists. Therefore, f ′ is not continuous at 0.

If f : I → R is of class C1, then we can apply the Intermediate Value
Theorem to f ′ to conclude that: Given a, b ∈ I such that f ′(a) < y < f ′(b)
for some y ∈ R, then there exists c ∈ I such that y = f ′(c).

The following theorem strengthens the above by removing the continuity
assumption of f ′.

Theorem 22. (Darboux’s theorem) Let f : [a, b] → R be differentiable. If
f ′(a) < y < f ′(b), then there exists c ∈ I such that y = f ′(c).

Proof. It suffices to prove the result when y = 0 and then consider g(x) =
f(x)−yx. From the fact that f ′(a) < 0 < f ′(b), we know that f(x) < f(a) in
a neighborhood of a, and f(x) < f(b) in a neighborhood of b. That implies
that f achieves its minimum (see corollary 60) at a point c ∈ (a, b), by 18 we
must have f ′(c) = 0.

Example 23. The corollary above says that the Dirichlet function f(x) = 1,
if x ∈ Q ∩ [0, 1], f(x) = 0 if x ∈ (R−Q) ∩ [0, 1] can’t be the derivative of a
function defined on [0, 1].

Corollary 24. Let f : I → R be a differentiable function on an interval I.
Then f ′ doesn’t have jump discontinuities.

Proof. We claim that given a point a ∈ I, if the one sided limits lim
x→a+

f ′(x), lim
x→a−

f ′(x)

exist, then f ′(x) is continuous at a. Suppose R = lim
x→a+

f ′(x) exists but

R ̸= f ′(a), say R > f ′(a). Take y ∈ R such that f ′(a) < y < R. Then
there exists δ > 0 such that x ∈ (a, a + δ) ⇒ f ′(x) > y. In particular,
f ′(a) < R < f ′(a + δ

2
) but there is no c ∈ (a, a + δ

2
) such that f ′(c) = R, a

contradiction. Using a similar argument, we conclude the equivalent result
if lim

x→a−
f ′(x) exists.

Example 25. The corollary above says that the floor function f(x) = ⌊x⌋,
can’t be the derivative of a function defined on R.
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Theorem 26. (Rolle) Let f : [a, b] → R be continuous satisfying f(a) = f(b).
If f is differentiable on (a, b) then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. If f is constant then f ′(x) = 0, so suppose f not constant. Since f
is continuous on [a, b], it achieves its maximum and minimum in [a, b]. Since
f(a) = f(b), the maximum/minimum can’t be at an endpoint, otherwise the
function would be constant. Hence, the function has at least one maximum
or minimum in the interior (a, b), at that point the derivative must be zero
by Corollary 18.

Notice that we didn’t use f ′(a) or f ′(b) in the proof, hence the requirement
that f be differentiable in (a, b) and not in [a, b].

Example 27. The absolute value function f(x) = |x| when defined on [−1, 1]
is continuous and satisfies f(−1) = f(1), but there is no point c ∈ [−1, 1]
such that f ′(c) = 0. This is not a counter-example to Theorem 26, because
f is not differentiable at 0 ∈ [−1, 1].

Example 28. The function f(x) =
√
1− x2 is continuous on [0, 1] but it’s

differentiable only in (0, 1), since it’s derivative f ′(x) = − x√
1−x2 is discontin-

uous at ±1, as the picture below suggests.
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Still, Rolle’s theorem guarantees the existence of a point c ∈ [0, 1] with f ′(c) =
0. Indeed, c = 0 in this case.

Example 29. (The headphone function) The function f : [−1, 1] → R de-
fined by

f(x) =

{
0, if |x| = 1

(1− x2) sin 1
1−x2 , if |x| ≠ 1

is another example of function continuous on [−1, 1] but differentiable only
in (−1, 1).

Theorem 30. (Lagrange’s Mean Value Theorem) Let f : [a, b] → R be
continuous. If f is differentiable on (a, b) then there exists c ∈ (a, b) such
that

f ′(c) =
f(b)− f(a)

b− a
.

Proof. Set g(x) = f(b)−f(a)
b−a

(x − a) + f(a). Then g satisfies g(a) = f(a) and
g(b) = f(b). If we set h(x) = f(x)−g(x), the function h satisfies h(a) = h(b),
hence by Rolle’s theorem h′(c) = 0 for some c ∈ (a, b). The result follows.

Corollary 31. Let f : [a, b] → R be continuous such that f ′(x) = 0 for every
x ∈ (a, b). Then f is constant.

Corollary 32. Let f, g : [a, b] → R be continuous functions such that f ′(x) =
g′(x) for every x ∈ (a, b). Then f(x) = g(x) + C, for some constant c ∈ R.

Corollary 33. Any function f : I → R defined on a interval such that
x ∈ I ⇒ |f ′(x)| ≤ C for some C ∈ R, is Lipschitz.
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Corollary 34. Let f : I → R be differentiable in an interval I. Then
f ′(x) ≥ 0 if and only if f is nondecreasing in I. In case f ′(x) > 0, then f is
increasing. Equivalent statements are true if f ′(x) ≤ 0 and f nonincreasing.

Proof. Suppose f ′(x) ≥ 0 and x, y ∈ I such that x ≤ y. By the Mean Value
Theorem, f(y)−f(x) = f ′(c)(y−x) ≥ 0, and we conclude that f(x) ≤ f(y).
Conversely, if f is nondecreasing then for every x ∈ I such that x + h ∈ I,
we have that the ratio f(x+h)−f(x)

h
is always nonnegative, hence its limit when

h → 0 is also nonnegative. The same argument mutatis mutandis applies in
the strict inequality.

Example 35. As a nice application of the Mean Value theorem we show that
lim(

√
n+ 1 −

√
n) = 0. Consider the function f : [n, n + 1] → R given by

f(x) =
√
x. Using the Mean Value Theorem we can find c ∈ (n, n+ 1) such

that

f ′(c) =

√
n+ 1−

√
n

(n+ 1)− n
,

or equivalently
√
n+ 1−

√
n =

1

2c
≤ 1

2n
.

Using the Squeeze theorem we conclude that lim(
√
n+ 1−

√
n) = 0.

4 Taylor’s Theorem

Let f : I → R be a real valued function defined on an interval I. The n-th
derivative of f , if exists, is defined inductively by setting f ′′(x) = (f ′)′(x)
and f (n)(x) = (f (n−1))′(x) for n ∈ N. By convention, we set f 0(x) = f(x).

We say that f is of class Ck in I, denoted by f ∈ Ck(I), if f (k) exists
and is continuous in I. When I = R, we simply write f ∈ Ck. Recall that
f ∈ C0, means f is continuous, so the definition makes sense even if k is
zero.

In case f ∈ Ck(I) for every k ∈ N, we say that f is smooth and write
f ∈ C∞(I). Equivalently, a function f is smooth if f (n) exists for every
n ∈ N.

The following example generalizes example 21.
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Example 36. The function f : R → R given by f(x) = |x|x is C1 but it’s
not C2. Indeed, we can easily check that its derivative is given by

f ′(x) =

{
2x, x ≥ 0

−2x, x < 0

which is continuous everywhere. Whereas, f ′′ has a jump discontinuity at
zero, so f /∈ C2. More generally, the function g(x) = |x|xn is in Cn but
g /∈ Cn+1.

Example 37. (Standard Mollifier) Consider the function defined by:

f(x) =

{
e
− 1

1−|x|2 , |x| < 1

0, |x| ≥ 1

We can easily see that f ∈ C∞ and the set where f ̸= 0 is bounded, hence
has compact closure. This type of function and its higher dimensional gen-
eralization are extensively used in the field of differential equations.

Example 38. Since sin′ x = cosx and cos′ x = − sinx, we deduce that
sinx, cosx ∈ C∞. Similarly, ex, log x and any polynomial are examples of
smooth functions.

Let f : I → R be a real valued function defined on an interval I ⊆ R
having derivatives up to order n at a ∈ I, i.e. f (n)(a) exists. The polynomial
p(x) defined by

p(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + . . .

f (n)(a)

n!
(x− a)n (10)

is called the Taylor polynomial of order n of f at a.
Equivalently, the n-th order Taylor polynomial of f at a is the unique

polynomial p(x) of degree n, such that f (k)(a) = p(k)(a) for k = 1, 2, . . . , n.
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Theorem 39. (Taylor’s Theorem) Let f : I → R be a real valued function
having derivatives up to order n at a ∈ I, and p(x) be the n-th order Taylor
polynomial at a. Then the function r : I → R, defined by r(x) = f(x)−p(x),
i.e.

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + . . .+

f (n)(a)

n!
(x− a)n + r(x),

satisfies lim
x→a

r(x)
(x−a)n

= 0.

Proof. Recall that the case n = 1 was proved in theorem 7. Suppose n = 2,
we use the Mean Value Theorem to obtain c between x and a such that:

r(x)

(x− a)2
=

r(x)− r(a)

(x− a)2
=

r′(c)(x− a)

(x− a)2
=

r′(c)

x− a
=

[r′(c)− r′(a)](c− a)

(c− a)(x− a)

∴ lim
x→a

r(x)
(x−a)2

= 0, since r(2)(a) = 0 and
∣∣ c−a
x−a

∣∣ ≤ 1. Using the same argument,

we can prove the result for any value n.

Corollary 40. (L’Hôpital’s rule) Let f, g : I → R be real valued functions
having derivatives up to order n at a ∈ I, such that f (k)(a) = g(k)(a) = 0,
for k = 0, 1, 2, . . . , n− 1, but f (n)(a) and g(n)(a) are non-zero. Then

lim
x→a

f(x)

g(x)
=

f (n)(a)

g(n)(a)
.

Proof. By Taylor’s formula and the hypothesis of the corollary, we have:

f(x)

g(x)
=

f (n)(a)
n!

+ r(x)
(x−a)n

g(n)(a)
n!

+ s(x)
(x−a)n

,

for some r(x), s(x), satisfying r(x)
(x−a)n

→ 0 and s(x)
(x−a)n

→ 0, when x → a. The
corollary is then immediate.

Corollary 41. Let f : I → R be real valued function having derivative up
to order n at a ∈ int(I), such that f (k)(a) = 0, for k = 1, 2, . . . , n − 1,
but f (n)(a) ̸= 0. Then if n is odd, the point a is not a local maximum or
minimum, and if n is even, two outcomes are possible: f (n)(a) > 0 implies
the point a is a strict local minimum; f (n)(a) < 0 implies the point a is a
strict local maximum.
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Proof. Notice that in this case Taylor’s formula can be written as

f(a+ h)− f(a) = hn

[
f (n)(a)

n!
+

r(a+ h)

hn

]
for h ∈ R such that a+h ∈ I. Since r(a+h)

hn → 0 when h → 0, for h sufficiently
small, say 0 < |h| < δ, the expression in the square brackets has the same
sign as f (n)(a). Hence, if n is odd, we can always find h1, h2 ∈ I such that
f(a+h1)−f(a) > 0 and f(a+h2)−f(a) < 0, so a can’t be a local maximum
or minimum.

Now, suppose n is even. Then if f (n)(a) > 0, the above discussion implies
f(a+h)− f(a) > 0 for 0 < |h| < δ, hence a is a local minimum. Similarly, if
f (n)(a) < 0 we must have f(a+h)−f(a) < 0, and a is a local maximum.

We can enhance Taylor’s Theorem if we require f to be of Class Cn and
having the f (n+1) derivative, instead of just having the fn derivative, which
is not necessarily continuous.

Theorem 42. (Taylor’s Theorem with Lagrange Remainder) Let f : [a, b] →
R be a real valued function such that f ∈ Cn and f (n+1)(x) exists in (a, b).
Then there exists c ∈ (a, b) such that

f(b) = f(a) + f ′(a)(b− a) + . . .+
f (n)(a)

n!
(b− a)n +

f (n+1)(c)

(n+ 1)!
(b− a)n+1.

Proof. Define g : [a, b] → R by

g(x) = f(b)−f(x)−f ′(x)(b−x)+ . . .+
f (n)(x)

n!
(b−x)n+

C

(n+ 1)!
(b−x)n+1,

where C is the unique number such that g(a) = 0.
The function g is continuous on [a, b], differentiable in (a, b), and satisfies

g(a) = g(b). Therefore, by Rolle’s Theorem, there exists c ∈ (a, b) such that
g′(c) = 0. On the other hand, a quick computation gives:

g′(x) =
C − f (n+1)(x)

n!
(b− x)n,

We conclude that C = f (n+1)(c), and the theorem becomes the statement
g(a) = 0.
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Let f : I → R be a smooth function, i.e. f ∈ C∞, and a ∈ I◦. Using
Taylor’s Theorem with Lagrange remainder, for each n ∈ N we have:

f(x) = f(a) + f ′(a)(x− a) + . . .+
f (n−1)(a)

(n− 1)!
(x− a)n−1 + rn(x), (11)

where rn(x) =
f (n)(c)

n!
(x− a)n and c is between x and a. It is then natural to

ask what happens when we let n → +∞ in (11).

The series f(a)+f ′(a)(x−a)+. . .+ f (n)(a)
n!

(x−a)n+. . . =
∞∑
n=0

f (n)(a)
n!

(x−a)n,

is called the Taylor Series of f at a ∈ I. Notice that it’s not entirely clear
that the Taylor Series of f at a has to coincide with f(x), in fact, it’s possible
for the Taylor Series to diverge and even if it converges, it could converge to
a number other than f(x).

A function f : I → R is called Analytic if for every a ∈ I, there exists
δ > 0 such that

|x− a| < δ ⇒ f(x) =
∞∑
n=0

f (n)(a)

n!
(x− a)n,

In other words, a function is analytic if it coincides with its Taylor series
in a neighborhood of every point of its domain. Notice that it follows from
(11) that a function is analytic if and only if for every x ∈ I, we have
lim
n→∞

rn(x) = 0.

Example 43. Any polynomial p(x) is clearly analytic, since p(n)(x) vanishes
for sufficiently large n ∈ N.

Example 44. The exponential function f(x) = ex is perhaps one of the most
famous analytic functions. We use Taylor’s theorem (with a = 0), to obtain:

ex = 1 + x+
x2

2
+ . . .+

xn

n!
+ ecn

xn

n!

with |cn| < |x|. Since lim xn

n!
= 0, the Taylor series for ex at 0 converges to ex.

Moreover, notice that ex+a = exea, hence the Taylor series for ex converges
at any point a ∈ R, and ex is analytic.

Example 45. Let x ∈ R, then

1 + x+ x2 + . . .+ xn−1 +
xn

1− x
=

1

1− x
.
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Consider the function f : (0, 1) → R given by f(x) = 1
1−x

. Then using

Taylor’s Theorem we obtain rn(x) = xn

1−x
in this case, so lim

n→∞
rn(x) = 0,

which implies f(x) =
∞∑
n=0

xn. Hence, f(x) agrees with its Taylor Series at 0.

Example 46. Let f : R → R be defined by f(x) = cosx. Using Taylor’s
theorem around the origin (with a = 0), we can write

cosx = 1− x2

2!
+

x4

4!
− . . .+ (−1)n

x2n

(2n)!
+ r2n+1(x)

where rn(x) = [cos x(n)](c)x
n

n!
. Notice that

0 ≤ |rn(x)| ≤
|x|2n+1

(2n+ 1)!
,

and recall that by example 51, lim
n→∞

|x|2n+1

(2n+1)!
= 0. We conclude that lim

n→∞
rn(x) =

0 and it follows that

cosx = 1− x2

2!
+

x4

4!
− . . .+ (−1)n

x2n

(2n)!
+ . . . .

Hence, the Taylor series of cosx at 0 converges to cosx at every point x ∈ R.
The same argument can be applied if if the Taylor series is not centered at
zero (a ̸= 0). In conclusion, the function cosx is analytic.

Example 47. Consider the function f : R → R defined by

f(x) =

{
e−

1
x2 , x ̸= 0

0, x = 0
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Using the fact that lim
x→0

e
− 1

x2

xn = 0 for any n ≥ 0, we can see that f (n)(0) = 0,

and the function f is smooth. However, the Taylor series at 0 is identically

zero, since
∞∑
n=0

f (n)(0)
n!

xn = 0. In particular, since x ̸= 0 ⇒ f(x) ̸= 0, it’s

impossible for f(x) to be analytic on R.
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VII Integrals

1 Definition and first properties

Let [a, b] ⊆ R be a closed interval. A partition of [a, b] is a finite subset
P = {x0, x1, . . . , xn} of [a, b], such that x0 = a and xn = b.

By convention, the elements of a partition are written in increasing order,
P = {a = x0 < x1 < x2 < . . . < xn = b}.

Let P,Q be partitions of [a, b]. We say that the partition Q is a refinement
of the partition P if P ⊆ Q. More precisely, Q is obtained from P by adding
a finite number of points.

Let f : [a, b] → R be a bounded function. Set m = inf f and M = sup f ,
then:

m ≤ f(x) ≤ M, ∀x ∈ [a, b].

If P = {x0, x1, . . . , xn} is a partition of [a, b], we denote

mi := inf{f(x);xi−1 ≤ x ≤ xi} and Mi := sup{f(x);xi−1 ≤ x ≤ xi},

and define the oscillation of f at [xi−1, xi] by

ωi := Mi −mi.

If f is continuous, the values mi,Mi, ωi are achieved by Weierstrass Extreme
Value Theorem.

We define the lower sum of f with respect to P by

s(f ;P ) = m1(x1 − x0) + · · ·+mn(xn − xn−1) =
n∑

i=1

mi(xi − xi−1),

and likewise, the upper sum of f with respect to P by

S(f ;P ) = M1(x1 − x0) + · · ·+Mn(xn − xn−1) =
n∑

i=1

Mi(xi − xi−1).
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By definition, we have

m(b−a) ≤ s(f ;P ) ≤ S(f ;P ) ≤ M(b−a) and S(f ;P )−s(f ;P ) =
n∑

i=1

ωi(xi−xi−1).

When f ≥ 0, the number s(f ;P ) represents an approximation of the area
under the graph of f using rectangles that are below the graph, whereas
S(f ;P ) represents an approximation using rectangles above the graph of f .

Let P = {P ;P is a partition of [a, b]} and f : [a, b] → R be a bounded
function. The lower integral and upper integral are defined respectively by:∫ b

a

f(x)dx := sup
P∈P

s(f ;P ) and

∫ b

a

f(x)dx := inf
P∈P

S(f ;P ),

Theorem 1. Let P,Q ∈ P. Then

P ⊆ Q ⇒ s(f ;P ) ≤ s(f ;Q) and S(f ;Q) ≤ S(f ;P )

Proof. It’s enough to prove the result when Q = P ∪ {a}. Suppose P =
{x0 < x1 < . . . < xn} and xk−1 < a < xk for some k ≤ n. Define

m′ := inf
x∈[xk−1,a]

f(x) and m′′ := inf
x∈[a,xk]

f(x).

Notice that mk is less than or equal to m′,m′′. We have:

s(f ;Q)− s(f ;P ) = m′(a− xk−1) +m′′(xk − a)−mk(xk − xk−1)

= (m′′ −mk)(xk − a) + (m′ −mk)(a− xk−1)

≥ 0

(12)

A similar argument shows that S(f ;Q) ≤ S(f ;P ).
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The figure below illustrates theorem 1 for a partition P and a refinement
Q ⊇ P , when f(x) = 1

x
. The sum of the highlighted rectangles represent

s(f ;P ) and s(f ;Q) respectively. It’s easy to see that s(f ;Q) ≥ s(f ;P ).

Corollary 2. For any partitions P,Q ∈ P we have

s(f ;P ) ≤ S(f ;Q)

Proof. Apply Theorem 1 to P and P ∪Q (Q and P ∪Q).

Lemma 3. Let X, Y ⊆ R be sets satisfing

x ≤ y, ∀x ∈ X, ∀y ∈ Y,

then supX ≤ inf Y . Moreover, the equality supX = inf Y holds if and only
if given ϵ > 0, there are x ∈ X, y ∈ Y such that y − x < ϵ.

Proof. By definition, every y ∈ Y is an upper bound for X hence supX ≤ y,
for every y ∈ Y . On the other hand, supX is a lower bound for Y , thus
supX ≤ inf Y . Suppose supX = inf Y and ϵ > 0 is given. Then supX − ϵ

2

is not an upper bound, so ∃x ∈ X such that supX − ϵ
2
< x ≤ supX.

Similarly, we can find y ∈ Y such that inf Y ≤ y < inf Y + ϵ
2
. Therefore,

y − x < inf Y + ϵ
2
− supX + ϵ

2
= ϵ. Conversely, suppose supX < inf Y . If

we set ϵ = inf Y − supX, then y − x ≥ ϵ.

Theorem 4. Let f : [a, b] → R be a bounded function, say m ≤ f(x) ≤ M ,
then:

m(b− a) ≤
∫ b

a

f(x)dx ≤
∫ b

a

f(x)dx ≤ M(b− a)

Proof. The proof of the middle inequality follows directly from lemma 3. The
other two inequalities are obvious.
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A bounded function f : [a, b] → R is (Riemann) integrable if∫ b

a

f(x)dx =

∫ b

a

f(x)dx,

and we denote this common value by
∫ b

a
f(x)dx, or simply, by

∫ b

a
f .

Example 5. The constant function f : [a, b] → R given by f(x) = C is
clearly integrable since s(f ;P ) = S(f ;P ) = C(b− a) for any partition P .

Example 6. The Dirichlet function f : [0, 1] → R given by f(x) = 1 if
x ∈ Q, and 0 otherwise, is not integrable since s(f ;P ) = 0 and s(f ;P ) = b−a
for any partition P .

Theorem 7. Let f : [a, b] → R be a bounded function. The following are
equivalent:

(1) f is integrable,

(2) For every ϵ > 0, there are partitions P and Q of [a, b] such that
S(f ;Q)− s(f ;P ) < ϵ,

(3) For every ϵ > 0, there is a partition R = {x0 < x1 < . . . < xn} of [a, b]

such that S(f ;R)− s(f ;R) =
n∑

k=1

ωk(xk − xk−1) < ϵ.

Proof. The fact that (1) ⇒ (2) and (3) ⇒ (1) follows directly from lemma 3.
Suppose (2) is true and set R = P ∪Q, then

s(f ;P ) ≤ s(f ;R) ≤ S(f ;R) ≤ S(f ;Q),

∴ S(f ;R)− s(f ;R) < ϵ, and (2) ⇒ (3).

2 Properties of Integrals

Let f : [a, b] → R be a bounded function. For simplicity, we adopt the
following conventions: ∫ a

a

f = 0 and

∫ a

b

f = −
∫ b

a

f
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Theorem 8. Let a < c < b. Then f : [a, b] → R is integrable if and only if
f|[a,c] and f|[c,b] are integrable. In the affirmative case, we have∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

Proof. Consider the sets

A = {s(f|[a,c] ;P );P is a partition of [a, c]},
B = {s(f|[c,b] ;P );P is a partition of [c, b]},
C = {s(f ;P );P is a partition of [a, b] and c ∈ P}.

Notice that by Theorem 1,
∫ b

a
f = supC. It follows that∫ b

a

f = sup(A+B) = supA+ supB =

∫ c

a

f +

∫ b

c

f,

and similarly, ∫ b

a

f =

∫ c

a

f +

∫ b

c

f.

∴
∫ b

a

f −
∫ b

a

f =

(∫ c

a

f −
∫ c

a

f

)
+

(∫ b

c

f −
∫ b

c

f

)
.

We conclude that
∫ b

a
f =

∫ b

a
f if and only if

∫ c

a
f =

∫ c

a
f and

∫ b

c
f =

∫ b

c
f .

Example 9. (Step functions) Given a set X ⊆ R, consider the function
χA : R → R defined by

χA(x) =

{
1, if x ∈ A

0, if x /∈ A

χA is called the characteristic function of A ⊆ R. Let P = {x0 < x1 <
. . . < xn} be a partition of [a, b], and c1, c2, . . . , cn ∈ R. The function f(x) =
n∑

j=1

cjχIj , where Ij = [xj−1, xj], is called a Step function. Since f is constant,

in particular integrable, on Ij, theorem 8 guarantees that f is integrable.

Theorem 10. Let f, g : [a, b] → R be integrable. Then
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(1) f + g is integrable and
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g,

(2) f · g is integrable,

(3) If ∃k > 0 such that 0 < k ≤ |g(x)| for every x ∈ [a, b], then f/g is
integrable,

(4) If f ≤ g then
∫ b

a
f ≤

∫ b

a
g,

(5) |f | is integrable and
∣∣∣∫ b

a
f
∣∣∣ ≤ ∫ b

a
|f |.

Proof. Notice that for P,Q partitions of [a, b] we have:

s(f ;P )+ s(g;Q) ≤ s(f ;P ∪Q)+ s(g;P ∪Q) ≤ s(f + g;P ∪Q) ≤
∫ b

a

(f + g),

and hence: ∫ b

a

f +

∫ b

a

g ≤
∫ b

a

(f + g).

Similarly, we can show that
∫ b

a
f +

∫ b

a
g ≥

∫ b

a
(f + g). We conclude from the

inequalities∫ b

a

f +

∫ b

a

g ≤
∫ b

a

(f + g) ≤
∫ b

a

(f + g) ≤
∫ b

a

f +

∫ b

a

g,

that (1) is true.
To prove (2), choose K > 0 big enough such that max{|f(x)|, |g(x)|} ≤

K. Let P = {xi; i = 0, . . . , n} be a partition of [a, b], and ω′
i, ω

′′
i , ωi the

oscillations of f ,g and fg respectively, on the interval [xi, xi−1]. For x, y ∈
[xi, xi−1] we have:

|f(y)g(y)− f(x)g(x)| = |[f(y)− f(x)]g(y) + [g(y)− g(x)]f(x)|
≤ ω′

iK + ω′′
i K = (ω′

i + ω′′
i )K

It follows that:

n∑
k=1

ωi(xi − xi−1) ≤
n∑

k=1

(ω′
i + ω′′

i )K(xi − xi−1),

and (2) is a direct consequence of Theorem 7(3).
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Item (3) follows from (2), if we can show that 1
g
is integrable. Let P =

{xi; i = 0, . . . , n} be a partition of [a, b], and x, y ∈ [xi, xi−1]. By hypothesis:∣∣∣∣ 1

g(x)
− 1

g(y)

∣∣∣∣ ≤ |g(y)− g(x)|
k2

.

Once more, the result follows from Theorem 7(3).
Item (4) is trivial, since in this case s(f ;P ) ≤ s(g;P ) for every partition,

hence
∫ b

a
f ≤

∫ b

a
g. Finally, to see why (5) is true, consider the inequality:

||f(x)| − |f(y)|| ≤ |f(x)− f(y)|

Which tell us that the oscillation of |f | is always bounded by the oscillation
of |f |, hence by Theorem 7(3) again, |f | is integrable. The last part follows
from the inequality −|f(x)| ≤ f(x) ≤ |f(x)|.

Corollary 11. Let f : [a, b] → R integrable and bounded, say |f(x)| ≤ K.
Then ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ K(b− a).

Theorem 12. Let f : [a, b] → R be continuous. Then f is integrable.

Proof. By Theorem 68, f is uniformly continuous. Let ϵ > 0 be given,
and take δ > 0 such that |x− y| < δ ⇒ |f(x)− f(y)| < ϵ

b−a
. Now, choose a

partition P = {xi; i = 0, . . . , n} such that xi−xi−1 < δ for every i = 1, . . . , n.
If ωi is the oscillation of f at [xi−1, xi] then ωi <

ϵ
b−a

and it follows that

n∑
k=1

ωi(xi − xi−1) <
ϵ

b− a

n∑
k=1

(xi − xi−1) = ϵ.

The proof is complete by Theorem 7(3).

Theorem 13. Let f : [a, b] → R be monotone. Then f is integrable.

Proof. The argument is similar to the above theorem, namely it uses Theorem
7(3). Without loss of generality, suppose f increasing. Let ϵ > 0 be given,
choose a partition P = {xi; i = 0, . . . , n} such that xi − xi−1 <

ϵ
f(b)−f(a)

. We
have:

n∑
k=1

ωi(xi − xi−1) <
ϵ

f(b)− f(a)

n∑
k=1

ωi = ϵ.
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Recall that given an interval I ⊆ R with end-points a and b, the length
of I, denoted by |I|, is given by |I| = b− a.

A set X ⊆ R has measure zero if given ϵ > 0, it’s possible to find a

countable open cover of X ⊆
∞⋃
n=1

In by open intervals In, such that
∞∑
n=1

|In| <
ϵ.

Example 14. Any countable set X ⊆ R has measure zero. Indeed, given any
ϵ > 0, take an open interval of length ϵ

2n
around the n-th number xn ∈ X,

then
∞∑
n=1

|In| < ϵ. In particular, the set of Rational numbers Q has measure

zero.

Example 15. The Cantor set K has measure zero since after the n-th it-
eration, K is contained in the union of 2n intervals of length 3−n. Hence,
given any ϵ > 0, if we take n sufficiently large, K can be covered by open sets
whose length add to a number less than ϵ.

Theorem 16. Let f : [a, b] → R be bounded function. If the set of disconti-
nuities D of f has measure zero then f is integrable

Proof. Let ω := sup f − inf f , be the oscillation of f in [a, b]. Let ϵ > 0

be given, and suppose D ⊆
∞⋃
n=1

In, where In are open intervals such that

∞∑
n=1

|In| < ϵ
2ω
. For each x ∈ [a, b] − D, take an interval Jx ∋ x, such that

the oscillation of f in Jx is less than ϵ
2(b−a)

, this is possible because f is
continuous at x.

Now, [a, b] ⊆
(

∞⋃
n=1

In

)
∪
( ⋃

x/∈D
Jx

)
, and by Borel-Lebesgue Theorem,

there is a finite subcover, say In1 ∪ . . . Ink
∪ Jx1 ∪ . . . Jxl

of [a, b]. Form a
partition P of [a, b] whose elements are a, b, and each endpoint of Inp and
Jxq , for p = 1, . . . k, q = 1, . . . , l. We write [yj−1, yj] for an interval associated
to P which is contained in Inp , for some p, and [yt−1, yt], otherwise. Let ωj

denote the oscillation of f in the j-th interval of P . We have:

S(f ;P )− s(f ;P ) =
∑

ωj(yj − yj−1) +
∑

ωt(yt − yt−1)

<
∑

ω(yj − yj−1) +
∑ ϵ

2(b− a)
(yt − yt−1)

< ω
ϵ

2ω
+

ϵ

2(b− a)
(b− a) = ϵ
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By Theorem Theorem 7(3), f is integrable.

Example 17. The Cantor function f : [0, 1] → R given by

f(x) =

{
1, if x ∈ K

0, if x /∈ K,

is integrable. Indeed, f is continuous in [0, 1]−K because it’s constant there,
but it’s discontinuous at every point a of K, since we can find a sequence
xn ∈ [0, 1]−K such that xn → a. By Theorem 16, f is integrable.
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