Exercises

- 1. Let $f, g, h : X \to \mathbb{R}$ be functions such that, for every $x \in X$ we have $f(x) \leq g(x) \leq h(x)$. Show that if there is a point $a \in X \cap X'$ such that f(a) = h(a) and f'(a) = h'(a) then g'(a) exists and g'(a) = f'(a) = h'(a).
- 2. Let $p : \mathbb{R} \to \mathbb{R}$ be an odd degree polynomial. Then there exists $c \in \mathbb{R}$ such that p''(c) = 0.
- 3. Let $f: X \to \mathbb{R}$ be differentiable at $a \in X \cap X'$. If x_n and y_n are sequences in X such that $\lim x_n = \lim y_n = a$ and $x_n < a < y_n$ for every $n \in \mathbb{N}$, show that

$$\lim \frac{f(y_n) - f(x_n)}{y_n - x_n} = f'(a).$$

- 4. Show that the function given by f(0) = 0, $f(x) = x^2 \sin \frac{1}{x}$ if $x \neq 0$, is differentiable. Find sequences x_n and y_n such that $x_n \neq y_n$, $\lim x_n = \lim y_n = 0$ but $\lim \frac{f(y_n) - f(x_n)}{y_n - x_n}$ doesn't exist.
- 5. Let $f: I \to \mathbb{R}$ be differentiable on an interval $I \subseteq \mathbb{R}$. We call $a \in I$ a critical point if f'(a) = 0. We say a critical point a is non-degenerate if $f''(a) \neq 0$.
 - 5.1 If $f \in C^1$, show that the set of all critical points contained in a closed interval $[c, d] \subseteq I$ is closed.
 - 5.2 Show that local maximum and minimum points of f are critical points. Moreover, any critical non-degenerate point is a maximum or minimum.
 - 5.3 Show that there are C^{∞} functions with isolated degenerate local maximum/minimums. Moreover, there are critical points of C^{∞} functions that are not local maximum/minimum points.
 - 5.4 Show that every non-degenerate critical point of f is isolated.
 - 5.5 Let $f \in C^1$, suppose that the critical points of f contained in a closed interval $[c, d] \subseteq I$ are non-degenerate. Show that there are finitely many of them. Conclude that f has at most a countable number of non-degenerate critical points in I.
 - 5.6 The function f(0) = 0, $f(x) = x^4 \sin \frac{1}{x}$ if $x \neq 0$ has infinitely many non-degenerate critical points in [0, 1]. Wouldn't this be a contradiction to 5.4? Why/why not?
- 6. Let $f: I \to \mathbb{R}$ be a function defined on interval $I \subseteq \mathbb{R}$. If there is $C, \alpha > 0$ such that $\forall x, y \in I \Rightarrow |f(x) f(y)| \leq C|x y|^{\alpha}$, we say f is Holder continuous. Show that if $\alpha > 1$ then f is constant.
- 7. Let $f: I \to \mathbb{R}$ be differentiable on an interval $I \subseteq \mathbb{R}$. Show that if f'(x) = 0 for every $x \in I$ then f is constant.
- 8. Show that a differentiable function $f: I \to \mathbb{R}$ is Lipschitz, i.e. $|f(x) f(y)| \le C|x y|$, if and only if $|f'(x)| \le C$.

- 9. Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ such that $f \in C^{\infty}$, $f(x) \neq x$, $\forall x \in \mathbb{R}$ and |f'(x)| < 1.
- 10. Let $f: [0,\pi] \to \mathbb{R}$ be defined by $f(x) = \cos(\cos(x))$. Show that $|f'(x)| \le c < 1$ for some $c \in \mathbb{R}$.
- 11. Let $f: (a, +\infty) \to \mathbb{R}$ be differentiable. Show that if $\lim_{x \to +\infty} f(x) = b$ and $\lim_{x \to +\infty} f'(x) = c$, then c = 0. [Hint: Apply the Mean Value theorem on [n, n+1] and let $n \to +\infty$.]
- 12. Let $f : [a,b] \to \mathbb{R}$ be continuous, differentiable on (a,b), satisfying f(a) = f(b). Given $k \in \mathbb{R}$, show that $\exists c \in (a,b)$ such that f'(c) = kf(c). [Hint: Apply Rolle's theorem to $g(x) = f(x)e^{-kx}$.]
- 13. Let $f: I \to \mathbb{R}$ be differentiable on an interval $I \subseteq \mathbb{R}$. A root of f is a number $c \in I$ such that f(c) = 0. Show that between two consecutives roots of f', there is at most one root of f.
- 14. Let $f: [0, +\infty) \to \mathbb{R}$ be twice differentiable. Show that if f'' is bounded and $\lim_{x \to +\infty} f(x)$ exists, then $\lim_{x \to +\infty} f'(x) = 0$.
- 15. Show that the composition of C^k functions is still a C^k function.
- 16. Given $a, b \in \mathbb{R}$ with a < b, consider $\varphi : \mathbb{R} \to \mathbb{R}$ given by

$$\varphi(x) = \begin{cases} e^{\frac{1}{(x-a)(x-b)}}, & \text{if } x \in (a,b), \\ 0, & \text{if } x \notin (a,b). \end{cases}$$

Show that $\varphi \in C^{\infty}$ and φ has exactly one maximum point.

17. Let $f: I \to \mathbb{R}$ be twice differentiable at $a \in I^{\circ}$. Show that

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) + f(a-h) - 2f(a)}{h^2}$$

Given a example where the limit above exists but f'(a) doesn't.

18. Show that the function $f(x) = |x|^{2n+1}$ is of class C^{2n} but $f^{(2n+1)}(x)$ doesn't exist in every $a \in \mathbb{R}$.