
Exercises

1. Let f : R → R be continuous. Show that the zero set of f

Z(f) = {x; f(x) = 0}

is a closed set. Conclude that if f, g : R → R are continuous then the zero set
{x; f(x) = g(x)} is closed.

2. Let f : X → R be continuous. Show that for every k ∈ R, the set of all x ∈ X such
that f(x) ≤ k is of the form C ∩X, where C is closed.

3. Let f : X → R be a function and X ⊆ R an open set. Show that f is continuous if
and only if the sets {x; f(x) < c} and {x; f(x) > c} are open for every c ∈ R.

4. Let f : X → R be a function and X ⊆ R an open set. Show that f is continuous if
and only if the set f−1(A) is open for every open A ⊆ R.

5. Let f : X → R be a function and X ⊆ R a closed set. Show that f is continuous if
and only if the set f−1(C) is closed for every closed set C ⊆ R.

6. Let S ⊆ R be nonempty. Consider the function f : R → R given by

f(x) = inf{|x− s|; s ∈ S}

Show that f is Lipschitz : ∀x, y ∈ R ⇒ |f(x)− f(y)| ≤ |x− y|.

7. Let X ⊆ R be a closed set and f : X → R continuous. Show that there exist a
continuous function g : R → R such that g|X = f .

8. Give an example of a bijective function f : R → R which is discontinuous at every
a ∈ R.

9. Show that there is no continuous function f : R → R that takes every rational number
to an irrational number, and vice-versa.

Solution. Suppose there is such a function. We know that if f is continuous, it takes
intervals to intervals. In particular, f(R) should be an interval, since R = (−∞,+∞).
However, f(R) = f(Q∪Qc) = f(Q)∪f(Qc) ⊆ f(Q)∪Q, a contradiction since f(Q)∪Q
is countable, hence can’t contain an interval (which is uncountable).

10. Let A be the set of all nonnegative algebraic numbers, and B be the set of negative
transcendental numbers. Let f : A∪B → [0,+∞) be a function defined by f(x) = x2.
Show that f is a continuous bijection, whose inverse f−1 is discontinuous at every
point, except zero.

11. (Brouwer Fixed Point Theorem) Let f : [a, b] → [a, b] be a continuous function. Show
that there exists a point x ∈ [a, b] such that f(x) = x. [We call such point a ‘fixed
point’.]
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Solution. Set g(x) = f(x) − x. Then since f(a) ≥ a, we have g(a) ≥ 0. Similarly,
f(b) ≤ b ⇒ g(b) ≤ 0. The result follows from the intermediate value theorem.

12. Let f : R → R be continuous. If for every open set A ⊆ R, the image f(A) is open,
then f is injective, hence monotone.

13. Fix X ⊆ R. If every function defined on X is bounded then X is compact.

14. Let f : R → R be continuous. Suppose lim
x→−∞

f(x) = lim
x→+∞

f(x) = +∞. Then f

achieves its minimum value, i.e. there is a ∈ R such that f(a) ≤ f(x),∀x ∈ R.

15. Show that f : (−1, 1) → R given by f(x) = 1
1−|x| is a homeomorphism.

16. Classify all intervals of R up to homeomorphism. For example, all open intervals,
whether or not bounded, are homeomorphic, hence should represent the same object.

Solution. Let X be the set of all intervals I in R up to homeomorphism, we claim

X = {(0, 1), [0, 1], [0, 1)}.

Indeed, if I is open then it is homeomorphic to (0, 1). If I is closed and bounded then
it is homeomorphic to [0, 1]. If I is closed and unbounded or I is half-open then it is
homeomorphic to [0, 1).

17. Show that the inverse of f given in exercise 15, is uniformly continuous. (Notice that
f isn’t)

18. Show that f : R → R given by f(x) = sinx is uniformly continuous, but g(x) = sinx2

isn’t.

19. Show that a polynomial p : R → R is uniformly continuous if and only if has degree at
most one.

20. Show that f(x) = xn is Lipschitz in any bounded set. Moreover, prove that if n > 1
and f is defined on an unbounded interval, then f is not even uniformly continuous.

21. Give an example of sets A,B open and a continuous function f : A∪B → R such that
f|A , f|B are uniformly continuous but f is not.

22. Given a function f : X → R. Suppose that for every ϵ > 0, there exists g : X → R
continuous, such that ∀x ∈ X, |f(x)− g(x)| < ϵ. Show that f is continuous.
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