Real Analysis: Functions of a real variable

Genival da Silva*

October 11, 2024

Contents

1	Sets	2
2	Operation with sets	4
3	Functions	6
4	The natural numbers \mathbb{N}	10
5	Well-ordering principle	12
6	Finite and Infinite sets	14
7	Countable Sets	17
8	Uncountable sets	19
9	Fields	20
10	Ordered Fields	22
11	Intervals	24
12	The real numbers $\mathbb R$	26

^{*}email: gdasilva@tamusa.edu, website: www.gdasilvajr.com

13 Sequences	31
14 The limit of a sequence	34
15 Properties of limits	36
16 $\lim \inf x_n$ and $\lim \sup x_n$	38
17 Cauchy Sequences	39
18 Infinite limits	41
19 Series	42

1 Sets

A set X is a collection of objects, also called the *elements* of the set. If 'a' is an element of X, we write $a \in X$. On the other hand, if 'a' isn't an element of X, we write $a \notin X$.

A set X is well defined when there is a rule that allows us to say if an arbitrary element 'a' is or isn't an element of X.

Example 1. The set X of all right triangles is well-defined. Indeed, given any object 'a', if 'a' is not a triangle or doesn't have a right angle then $a \notin X$. If 'a' is a right triangle then $a \in X$.

Example 2. The set X of all tall people is not well-defined. The notion of 'tall' is not universally defined, hence given any element a we can't say if $a \in X$ or $a \notin X$.

Usually one uses the notation

$$X = \{a, b, c, \ldots\}$$

to represent the set X whose elements are a, b, c, \ldots , and if a set has no elements we denote it by \emptyset and call it the **empty set**.

The set of *natural numbers* $1, 2, 3, \ldots$ will be represented by

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

The set of *integers* will be represented by

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

The set of rational numbers, that is, fractions $\frac{a}{b}$, where $a, b \in \mathbb{Z}$ and $b \neq 0$, will be denoted by

 $\mathbb{Q} = \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}$

The vast majority of sets in mathematics are not defined by specifying its elements one by one. What usually happens is a set being defined by some property its elements satisfy, i.e. if a has property P than $a \in X$, whereas if a doesn't have property P then $a \notin X$. One writes

$$X = \{a \mid a \text{ has property } P\}$$

For example, the set

$$X = \{ a \in \mathbb{N} \mid a > 10 \},$$

consists of all natural numbers bigger than 10.

Given two sets A, B, one says that A is a **subset** of B or that A is included in B (B contains A), represented by $A \subseteq B$, if every element of A is an element of B.

Example 3. We have the obvious inclusion of sets:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{O}$$
.

Example 4. Let X be the set of all squares and Y be the set of all rectangles. Then $X \subseteq Y$, since every square is a rectangle.

When one writes $X \subseteq Y$, it's possible that X = Y. In case $X \neq Y$, we say X is a *proper subset*, the notation $X \subseteq Y$ is sometimes used to indicate that X is a proper subset of Y.

Notice that to write $a \in X$ is equivalent to say $\{a\} \subseteq X$. Also, by definition, it's always true that $\emptyset \subseteq X$ for every set X.

It's easy to see that the inclusion of sets has the following properties:

- 1. Reflexive, $X \subseteq X$ for every set X;
- 2. Anti-symmetric, if $X \subseteq Y$ and $Y \subseteq X$ then X = Y;
- 3. Transitive, if $X \subseteq Y$ and $Y \subseteq Z$ then $X \subseteq Z$.

It follows that two sets X and Y are the same if and only if $X \subseteq Y$ and $Y \subseteq X$, that is to say, they have the same elements.

Given a set X, we define the power set of X, $\mathcal{P}(X)$ as

$$\mathcal{P}(X) = \{ A \mid A \subseteq X \}.$$

The set $\mathcal{P}(X)$ is the set of all subsets of X, in particular it's never empty, it has at least \emptyset and X itself as elements.

Example 5. Let $X = \{1, 2, 3\}$ then

$$\mathcal{P}(X) = \{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\} \}.$$

Notice that by using the Fundamental Counting Principle, any set with n elements has 2^n subsets. Therefore, the number of elements of $\mathcal{P}(X)$ is 2^n .

2 Operation with sets

We given two sets X and Y, one can build many other sets. For example, the **union** of X and Y, denoted by $X \cup Y$ is the of elements that are in X or Y, more precisely:

$$X \cup Y = \{ a \mid a \in X \text{ or } a \in Y \}.$$

Similarly, the **intersection** of X and Y, denoted by $X \cap Y$ is the of elements that are common to both X and Y:

$$X \cap Y = \{ a \mid a \in X \text{ and } a \in Y \}.$$

If $X \cap Y = \emptyset$, then X and Y are said to be disjoint.

Example 6. Let $X = \{a \in \mathbb{N} \mid a \le 100\}$ and $Y = \{a \in \mathbb{N} \mid a > 50\}$ then

$$X \cup Y = \mathbb{N} \ and \ X \cap Y = \{a \in \mathbb{N} \,|\, 50 < a \le 100\}$$

Example 7. The sets $X = \{a \in \mathbb{N} \mid a > 1\}$ and $Y = \{a \in \mathbb{N} \mid a < 2\}$ are disjoint, i.e. $X \cap Y = \emptyset$ since there is no natural number between 1 and 2.

The **difference** between X and Y, denoted by X-Y is the set of elements that are in X but not in Y, more precisely:

$$X-Y=\{\,a\,|\,a\in X\text{ and }a\notin Y\,\}.$$

Given an inclusion of sets $X \subseteq Y$, the **complement** of X in Y is the set Y - X, the notation X^c sometimes is used if there is no confusion about who the set Y is.

Example 8. Consider the sets $X = \{a \in \mathbb{N} \mid a \text{ is even}\}$ and $Y = \mathbb{N}$. Then $X \subseteq Y$ and $X^c = \{a \in \mathbb{N} \mid a \text{ is odd}\}.$

Proposition 9. Given sets A, B, C, D the following properties are true:

- 1. $A \cup \emptyset = A$; $A \cap \emptyset = \emptyset$
- 2. $A \cup A = A$; $A \cap A = A$
- 3. $A \cup B = B \cup A$; $A \cap B = B \cap A$
- 4. $A \cup (B \cup C) = (A \cup B) \cup C$; $A \cap (B \cap C) = (A \cap B) \cap C$
- 5. $A \cup B = A \Leftrightarrow B \subseteq A$; $A \cap B = A \Leftrightarrow A \subseteq B$
- 6. if $A \subseteq B$ and $C \subseteq D$ then $A \cup C \subseteq B \cup D$ and $A \cap C \subseteq B \cap D$
- 7. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C); A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- 8. $(A^c)^c = A$
- 9. $(A \cup B)^c = A^c \cap B^c$; $(A \cap B)^c = A^c \cup B^c$

Proof. The last property, $(A \cup B)^c = A^c \cap B^c$, will be demonstrated below, the others are trivial or can be proved in a similar way.

We prove that $(A \cup B)^c \subseteq A^c \cap B^c$. Let $a \in (A \cup B)^c$, then $a \notin A \cup B$, in particular, $a \notin A$ and $a \notin B$, hence $a \in A^c \cap B^c$.

Conversely, take $a \in A^c \cap B^c$. Then $a \notin A$ and $a \notin B$, so $a \notin A \cup B$ and it follows that $a \in (A \cup B)^c$.

An ordered pair (a, b) is formed by two objects a and b, such that for any other such pair (c, d):

$$(a,b) = (c,d) \Leftrightarrow a = c \text{ and } b = d.$$

The elements a and b are called *coordinates* of (a, b), a is the first coordinate and b the second one.

The **cartesian product** $X \times Y$ of two sets X and Y is the set of all ordered pairs (x, y) such that $x \in X$ and $y \in Y$:

$$X\times Y=\{\,(x,y)\,|\,x\in X\text{ and }y\in Y\,\}.$$

Remark 1. An ordered pair is not the same as a set, i.e. $(a,b) \neq \{a,b\}$. Notice that $\{a,b\} = \{b,a\}$ but $(a,b) \neq (b,a)$ in general.

Example 10. Consider the sets $X = \{1, 2, 3\}$ and $Y = \{a, b\}$, then

$$X \times Y = \{ (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) \}.$$

3 Functions

A function $f: X \to Y$ consists of three components: a set X, the domain, a set Y, the co-domain, and a rule that associates each element $a \in X$ an unique element in $f(a) \in Y$, f(a) is called the value of f(x) at a, or the image of a under f(x).

Another common notation to denote a function is $x \mapsto f(x)$. In this case the domain and codomain can be identified by the context.

Example 11. The function $f : \mathbb{N} \to \mathbb{N}$ given by f(n) = n + 1 is called the successor function.

Example 12. Let X be the set of all triangles. One can define a function $f: X \to \mathbb{R}$ by f(x) = area of x.

Example 13. (Relation that is not a function) The correspondence that associates to each real number x, all y satisfying $y^2 = x$ is not a function because any $x \neq 0$ will be associated to two values, namely $\pm \sqrt{x}$, and in order to be a function every x has to have exactly one image y = f(x).

The graph of a function $f: X \to Y$ is a subset of $X \times Y$ defined by

$$\Gamma(f) = \{ (x, f(x)) | x \in X \}.$$

Example 14. Consider the function $f(x) = e^{-x^2}$, its graph is given below:

A function $f: X \to Y$ is said to be *injective or one-to-one* if for every x, y such that f(x) = f(y) then x = y. Suppose $X \subseteq Y$, then inclusion $i: X \to Y$ given by i(x) = x is a typical example of injective function.

A function $f: X \to Y$ is said to be *surjective or onto* if for every $y \in Y$ there is $x \in X$ such that y = f(x). The projection $p: X \times Y \to X$ in the first coordinate, given by p(x, y) = x is a typical example of surjection.

Finally, a function $f:X\to Y$ is bijective or a bijection if it is both surjective and injective.

Example 15. The function given by $f(x) = x^3$ is injective.

Example 16. The step function $f(x) = \max\{n \in \mathbb{Z} \mid n \leq x\}$ is not injective.

Example 17. The function $f(x) = \sin x$ is a bijection if we consider $f: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$.

Given a function $f: X \to Y$, the image of a set $A \subseteq X$ is defined by

$$f(A) = \{ y \in Y \mid y = f(a), a \in A \}.$$

Conversely, the *inverse image of a set* (sometimes called *pre-image*) $B \subseteq Y$ is given by

$$f^{-1}(B) = \{ x \in X \mid f(x) \in B \}.$$

Proposition 18. Given $f: X \to Y$ and subsets $A, B \subseteq X$, we have:

1.
$$f(A \cup B) = f(A) \cup f(B)$$
; $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$

2.
$$f(A \cap B) \subseteq f(A) \cap f(B)$$
; $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$

3. if
$$A \subseteq B$$
 then $f(A) \subseteq f(B)$ and $f^{-1}(A) \subseteq f^{-1}(B)$

4.
$$f(\emptyset) = \emptyset$$
; $f^{-1}(\emptyset) = \emptyset$

5.
$$f^{-1}(Y) = X$$

6.
$$f^{-1}(A^c) = (f^{-1}(A))^c$$

Example 19. Consider the function $f(x,y) = x^2 + y^2$, the inverse image $f^{-1}(\{1\})$ is a circle of radius 1. Similarly, any line ax + by = c can be seen as $g^{-1}(\{c\})$, where g(x,y) = ax + by.

Given two functions $f: X \to Y$ and $g: Y \to Z$, the composition $g \circ f$ of g and f is defined as the function:

$$(g \circ f)(x) = g(f(x))$$

Example 20. The composition of the functions $g(x) = \sin x$ and $f(x) = e^x$ is the function $(g \circ f)(x) = \sin e^x$ depicted below.

Given a function $f: X \to Y$ and a subset $A \subseteq X$, the restriction of f(x) to A, denoted by $f|_A: A \to Y$, is defined by $f|_A(x) = f(x)$. Similarly, if $X \subseteq Z$, a extension of f(x) to Z is any function $g: Z \to Y$ such that $g|_X(x) = f(x)$.

Example 21. Consider again the function $f(x,y) = x^2 + y^2$, and the unit circle $\mathbb{S}^1 = \{(x,y) | x^2 + y^2 = 1\}$. Then the restriction $f|_{\mathbb{S}^1}$ is the constant function g(x) = 1.

Given functions $f: X \to Y$, and $g: Y \to X$, the function g(x) is called *left-inverse* of f(x) if

$$(g \circ f)(x) = x.$$

Similarly, the function g(x) is called *right-inverse* of f(x) if

$$(f \circ g)(x) = x.$$

Finally, if there is a function $f^{-1}(x)$ such that

$$(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x,$$

 $f^{-1}(x)$ is called the *inverse* of f(x). Notice that any inverse, if exists, is unique. If g(x) and h(x) are both inverses of f(x) then

$$g(x) = g(f(h(x))) = (g \circ f)(h(x)) = h(x).$$

Proposition 22. A function $f: X \to Y$ has an inverse $f^{-1}: Y \to X \Leftrightarrow f$ is bijective.

Proof. Suppose f has an inverse f^{-1} and f(x) = f(y) for some x, y. Taking the inverse on both sides, we conclude that x = y and f is injective. Similarly, take $y \in Y$ and set $x = f^{-1}(y)$, then f(x) = y and it follows that f is surjective.

Conversely, suppose f bijective. If f(x) = y, set $f^{-1}(y) = x$. One can easily check that $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$.

Example 23. Consider the function $f:(0,+\infty)\to(0,+\infty)$ given by $f(x)=\frac{1}{x}$, then the f is its own inverse, i.e. $(f\circ f)(x)=x$.

4 The natural numbers \mathbb{N}

The natural numbers are built axiomatically. Start with a set \mathbb{N} , whose elements are called *natural numbers*, and a function $s : \mathbb{N} \to \mathbb{N}$, called the successor function. For any $n \in \mathbb{N}$, s(n) is called the successor of n.

The function s(n) satisfies the following axioms:

- **Axiom 1.** s(n) is injective, i.e. every number has a unique successor.
- **Axiom 2.** The set $\mathbb{N} s(\mathbb{N})$ has only one element, which will be denoted by 1, i.e. every number has a successor and 1 is not a successor of any number.
- **Axiom 3.** (Principle of induction) Let $X \subseteq \mathbb{N}$ be a subset with the following property: $1 \in X$ and given $n \in X$, $s(n) \in X$ as well. Then $X = \mathbb{N}$.

Whenever axiom 3 is used to prove a result, the result is said to be proved by induction.

Proposition 24. For any $n \in \mathbb{N}$, $s(n) \neq n$.

Proof. The proof is by induction. Let $X \in \mathbb{N}$ be a subset defined by:

$$X = \{ n \in \mathbb{N} \mid s(n) \neq n \}.$$

By Axiom 2, $1 \in X$. Let $n \in X$, then $s(n) \neq n$. By Axiom 1, $s(s(n)) \neq s(n)$, hence $s(n) \in X$. The proof follows by Axiom 3.

Given a function $f: X \to X$, its power f^n is defined inductively. More precisely, if one sets $f^1 = f$ then f^n is defined by:

$$f^{s(n)} = f \circ f^n.$$

In particular, if one sets $2 = s(1), 3 = s(2), \ldots$, then $f^2 = f \circ f, f^3 = f \circ f \circ f, \ldots$

Now, given two natural numbers $m, n \in \mathbb{N}$, their sum $m+n \in \mathbb{N}$ is defined by:

$$m + n = s^n(m).$$

It follows that m + 1 = s(m) and m + s(n) = s(m + n), in particular:

$$m + (n+1) = (m+n) + 1$$

More generally, the following can be proved using induction:

Proposition 25. For any $m, n, p \in \mathbb{N}$:

- 1. (Associativity) m + (n+p) = (m+n) + p;
- 2. (Commutativity) m + n = n + m;
- 3. (Cancellation Law) $m + n = m + p \Rightarrow n = p$;
- 4. (Trichotomy) Only one of the following can occur: m = n, or $\exists q \in \mathbb{N}$ such that m = n + q, or $\exists r \in \mathbb{N}$ such that n = m + r.

The notion of order among natural numbers can be defined in terms of addition. Namely, one writes

$$m < n$$
,

if $\exists q \in \mathbb{N}$ such that n = m + q; in the same situation, one also writes n > m. Notice in particular that for every $m \in \mathbb{N}$:

$$m < s(m)$$
.

Finally, one writes $m \ge n$ if m > n or m = n and a similar definition applies to \le .

Proposition 26. For any $m, n, p \in \mathbb{N}$:

- (I) (Transitivity) $m < n, n < p \Rightarrow m < p$;
- (II) (Trichotomy) Only one of the following can occur: m = n, m < n or m > n.
- (III) $m < n \Rightarrow m + p < n + p$.

The multiplication operation $m \cdot n$ will be defined in a similar way as m+n was defined. Let $a_m : \mathbb{N} \to \mathbb{N}$ be the 'add m' function, $a_m(n) = n+m$. Then multiplication of two natural numbers $m \cdot n$ is defined as:

$$m \cdot 1 := m,$$

 $m \cdot (n+1) := (a_m)^n (m).$

So $m \cdot 2 = a_m(m) = m + m, m \cdot 3 = (a_m)^2(m) = m + m + m, \dots$, and it follows that:

$$m \cdot (n+1) := m \cdot n + m.$$

More generally, the following is true:

Proposition 27. For any $m, n, p \in \mathbb{N}$:

$$a. m \cdot (n \cdot p) = (m \cdot n) \cdot p;$$

b.
$$m \cdot n = n \cdot m$$
;

c.
$$m \cdot n = p \cdot n \Rightarrow m = p$$
;

$$d. m \cdot (n+p) := m \cdot n + m \cdot p;$$

$$e. \ m < n \Rightarrow m \cdot p < n \cdot p.$$

5 Well-ordering principle

Let $X \subseteq \mathbb{N}$. A number $m \in X$ is called **the minimum element** of X, denoted $m = \min X$, if $m \le n$ for every $n \in X$. For example, 1 is the minimum of \mathbb{N} ; 100 is the minimum of $\{100, 1000, 10000\}$.

Lemma 28. If $m = \min X$ and $n = \min X$ then m = n.

Proof. Since $m \leq p$ for every $p \in X$, $m \leq n$ in particular. Similarly, $n \leq m$ and hence m = n.

The maximum element is defined similarly: $m = \max X$ if $m \ge n$, $\forall n \in X$. Notice that not all subsets $X \subseteq \mathbb{N}$ have a maximum. In fact, \mathbb{N} itself doesn't have a maximum, since m < m+1 for every $m \in \mathbb{N}$. The lemma above remains valid if we exchange 'minimum' by 'maximum'.

Despite not all subsets of \mathbb{N} having a maximum, they do have a minimum if they are non-empty.

Theorem 29. (Well-ordering principle) Let $X \subseteq \mathbb{N}$ be non-empty. Then X has a minimum.

Proof. If $1 \in X$ then 1 is the minimum, so suppose $1 \notin X$. Let

$$I_n = \{ m \in \mathbb{N} \mid 1 \le m \le n \},\$$

and consider the set

$$L = \{ n \in \mathbb{N} \mid I_n \subseteq X^c \}.$$

Since $1 \notin X \Rightarrow 1 \in L$. If $n \in L \Rightarrow n+1 \in L$ then induction would imply $L = \mathbb{N}$, but $L \neq \mathbb{N}$ since $L \subseteq X^c = \mathbb{N} - X$, and $X \neq \emptyset$. We conclude that there is a m_0 such that $m_0 \in L$ but $m_0 + 1 \notin L$. It follows than $m_0 + 1$ is the minimum element of X.

Corollary 30. (Strong induction) Let $X \subseteq \mathbb{N}$ be a set with the following property:

$$\forall n \in \mathbb{N}, \text{ if } X \text{ contains all } m < n \Rightarrow n \in X.$$

Then $X = \mathbb{N}$.

Proof. Set $Y = X^c$, the claim is that $Y = \emptyset$. Suppose not, that is, $Y \neq \emptyset$. By the theorem above, Y has a minimum element, say $p \in Y$. But then by hypothesis $p \in X$, a contradiction.

Example 31. Strong induction can be used to prove the **Fundamental theorem of Arithmetic**, which says that every number greater than 1 can written as a product of primes (a number p is **prime** if $p \neq m \cdot n$, with m < p and n < p). Indeed, Let $X = \{m \in \mathbb{N} \mid m \text{ is a product of primes}\}$ and $n \in \mathbb{N}$ a given number. If X contains all numbers m such that m < n, then if n is prime, $n \in X$; if n is not a prime then $n = p \cdot q$ with p < n, q < n, again it follows that $n \in X$. Therefore, strong induction implies $X = \mathbb{N}$.

Let X be any set. A common way of defining a function $f: \mathbb{N} \to X$ is **by recurrence** (sometimes 'by induction' is used), namely, f(1) is given and also a rule that allows one to obtain f(m) knowing f(n) for all n < m. Technically, more than one function f could exist satisfying these conditions, however it is know that such a function is unique, the proof of this fact is left as an exercise.

Example 32. (Factorial) The factorial function $f: n \mapsto n!$ can be defined using induction. Set f(1) = 1 and $f(n+1) = (n+1) \cdot f(n)$. Then $f(2) = 2 \cdot 1$, $f(3) = 3 \cdot 2 \cdot 1$, ..., f(n) = n!.

Example 33. (Arbitrary sums/products) So far the definition of m + n was used, what about m + n + p or $m_1 + \ldots + m_n$? In order to define arbitrary sums (or products), one can use induction. Namely,

$$m_1 + \ldots + m_n = (m_1 + \ldots + m_{n-1}) + m_n;$$

and similarly, for products:

$$m_1 \cdot \ldots \cdot m_n = (m_1 \cdot \ldots \cdot m_{n-1}) \cdot m_n.$$

6 Finite and Infinite sets

Throughout this section, I_n stands for the set of numbers less than or equal to n:

$$I_n = \{ m \in \mathbb{N} \mid 1 \le m \le n \}$$

A arbitrary set X is **finite** if $X = \emptyset$ or there is number $n \in \mathbb{N}$ and a bijection

$$f:I_n\to X.$$

In the latter case, one says that X has n elements and writes:

$$|X| = n,$$

f is said to be a counting function for X. By convention, if $X = \emptyset$ then one says X has zero elements, i.e. $|\emptyset| = 0$.

It remains to show that the number of elements is a well-defined notion, that is to say, if there are bijections $f: I_n \to X$ and $g: I_m \to X$ then n = m.

Theorem 34. Let $X \subseteq I_n$. If there is a bijection $f: I_n \to X$, then $X = I_n$.

Proof. The proof is by induction on n. The case n = 1 is obvious, suppose the result true for n, the proof follows if one can prove the result for n + 1.

Suppose $X \subseteq I_{n+1}$ and there is a bijection $f: I_{n+1} \to X$. Let a = f(n+1) and consider the restriction $f: I_n \to X - \{a\}$.

If $X - \{a\} \subseteq I_n$ then $X - \{a\} = I_n$, a = n + 1 and $X = I_{n+1}$.

Suppose $X - \{a\} \not\subseteq I_n$, then $n+1 \in X - \{a\}$ and one can find b such that f(b) = n+1. Let $g: I_{n+1} \to X$ be the defined by g(m) = f(m) if $m \neq n+1, a; g(n+1) = n+1; g(b) = a$. By construction, the restriction $g: I_n \to X - \{n+1\}$ is a bijection and obviously $X - \{n+1\} \subseteq I_n$, hence $X - \{n+1\} = I_n$ and it follows that $X = I_{n+1}$.

Corollary 35. (Number of elements is well-defined) If there is a bijection $f: I_n \to I_m$ then m = n. Therefore, if $f: I_n \to X$ and $g: I_m \to X$ are bijections then n = m.

Proof. The first part follows directly from the theorem. For the second part, consider the composition $(f^{-1} \circ g) : I_m \to I_n$.

Corollary 36. There is no bijection $f: X \to Y$ between a finite set X and a proper subset $Y \subseteq X$.

Proof. By definition there is a bijection $\varphi: I_n \to X$ for some $n \in \mathbb{N}$. Since Y is proper, $A := \varphi^{-1}(Y)$ is also proper in I_n . Let $\varphi_A : A \to Y$ be the restriction of φ from I_n to A. Suppose there is a bijection $f: X \to Y$, then the composite function $\varphi_A^{-1} \circ f \circ \varphi: I_n \to A$ defines a bijection, a contradiction.

Theorem 37. Let X be a finite set and $Y \subseteq X$, then Y is finite and $|Y| \le |X|$, the equality occurs only if X = Y.

Proof. It's enough to prove the result for $X=I_n$. If n=1 the result is obvious. Suppose the result is valid for I_n and consider $Y\subseteq I_{n+1}$. If $Y\subseteq I_n$, the induction hypothesis gives the result, so assume $n+1\in Y$. Then $Y-\{n+1\}\subseteq I_n$ and by induction, there is a bijection $f:I_p\to Y-\{n+1\}$, where $p\le n$. Let $g:I_{p+1}\to Y$ be a bijection defined by g(n)=f(n) if $n\in I_n$, and g(p+1)=n+1. This proves that Y is finite, moreover since $p\le n\Rightarrow p+1\le n+1$, $|Y|\le n$. The last statement says that if $Y\subseteq I_n$ and |Y|=n then $Y=I_n$, but this is a direct consequence of theorem 34.

The following Corollary is immediate:

Corollary 38. Let Y be finite and $f: X \to Y$ be an injective function. Then X is also finite and $|X| \leq |Y|$.

Corollary 39. Let X be finite and $f: X \to Y$ be an surjective function. Then Y is also finite and $|Y| \leq |X|$.

Proof. Since f is surjective, by the proof of proposition 22, f has an injective right-inverse $g: Y \to X$. The result follows by the corollary above.

A set X that is not finite is said to be **infinite**. More, precisely X is infinite when it's not empty and there is no bijection $f: I_n \to X$ for any $n \in \mathbb{N}$.

Example 40. The natural numbers \mathbb{N} is an infinite set since there is no surjection between I_n and \mathbb{N} , because given any function $f: I_n \to \mathbb{N}$, the number $f(1) + f(2) + \ldots + f(n)$ is not in the range.

Example 41. \mathbb{Z} and \mathbb{Q} are also infinite sets since they contain \mathbb{N} , which is infinite.

A set $X \subseteq \mathbb{N}$ is **bounded**, if there is a number $M \in \mathbb{N}$ such that $n \leq M$ for all $n \in X$.

Theorem 42. Let $X \subseteq \mathbb{N}$ be nonempty. The following are equivalent:

- a. X is finite;
- b. X is bounded;
- c. X has a greatest element.

Proof. The proof is based on the implications $a \Rightarrow b$, $b \Rightarrow c$, $c \Rightarrow a$.

- (a \Rightarrow b) Let $X = \{x_1, x_2, \dots, x_n\}$. Then $M = x_1 + \dots + x_n$ satisfies $n \leq M$ for all $n \in X$.
- (b \Rightarrow c) Consider the set $A = \{ n \in \mathbb{N} \mid n \geq x, \forall x \in X \}$. Since X is bounded, $A \neq \emptyset$. By the principle of well ordering, A has a minimum element, say $m \in A$. If $m \in X$ then m is the greatest element, so suppose $m \notin X$. By definition, m > n for all $n \in X$, and since $X \neq \emptyset$, m > 1, that is m = p + 1, for some $p \in \mathbb{N}$. If $p \geq x$ for all $x \in X$ then $p \in A$, a contradiction since p < m and m is minimal. If there is a $x \in X$ such that x > p, then $x \geq m$ a contradiction unless x = m, but $m \notin X$ by assumption. It follows that $m \in X$ and m is the greatest element.
- (c \Rightarrow a) If X has a greatest element, say M, then $X \subseteq I_M$ and it follows that X is finite.

The Theorem below follows directly from the definitions, the proof will be omitted.

Theorem 43. Let X and Y be two sets such that |X| = m, |Y| = n and $X \cap Y = \emptyset$. Then $X \cup Y$ is finite and $|X \cup Y| = m + n$.

The following corollary is immediate:

Corollary 44. Let $X_1, X_2, ..., X_n$, be a finite collection of sets such that each X_i is finite and $X_i \cap X_j = \emptyset$ if $i \neq j$. Then $\bigcup_{i=1}^n X_i$ is finite and

$$|\bigcup_{i=1}^{n} X_i| = \sum_{i=1}^{n} |X_i|$$

.

Corollary 45. Let X_1, X_2, \ldots, X_n , be a finite collection of sets such that each X_i is finite. Then $\bigcup_{i=1}^n X_i$ is finite and

$$\left| \bigcup_{i=1}^{n} X_i \right| \le \sum_{i=1}^{n} |X_i|$$

.

Proof. For each i = 1, ..., n, set $Y_i = X_i \times \{i\}$. Then the projection

$$\pi_i: \bigcup_{i=1}^n Y_i \to \bigcup_{i=1}^n X_i$$

in the first coordinate is surjective, by Corollaries 39 and 44, the proof is complete. $\hfill\Box$

Corollary 46. Let $X_1, X_2, ..., X_n$, be a finite collection of sets such that each X_i is finite. Then $X_1 \times ... \times X_n$ is finite and

$$|X_1 \times \ldots \times X_n| = \prod_{i=1}^n |X_i|$$

.

Proof. It's enough to prove for n=2, since the general case follows from this one. Let $X_2=\{y_1,\ldots,y_m\}$, notice that $X_1\times X_2=X_1\times \{y_1\}\cup\ldots\cup X_2\times \{y_m\}$, the result follows by Corollary 44.

7 Countable Sets

A set X is **countable** if it is finite or there is a bijection $f: \mathbb{N} \to X$. In the latter case, it is necessarily an infinite set, since as \mathbb{N} is infinite, and we use the term **countably infinite**.

Example 47. The set $X = \{ 2n \in \mathbb{N} \mid n \in \mathbb{N} \}$ of all even numbers is countable. The function f(x) = 2x defines a bijection between X and \mathbb{N} .

Theorem 48. Let X be an infinite set. Then X has a countably infinite subset.

Proof. It's enough to find an injective function $f: \mathbb{N} \to X$, since every injective function is a bijection over its image. Choose an element $a_1 \in X$, set $X_1 = X - \{a_1\}$ and $f(1) = a_1$. Since X is infinite, X_1 is also infinite, choose an element a_2 in X_1 , and set $f(2) = a_2$. Proceeding by induction, we have $f(n) = a_n$, $a_n \in X_{n-1}$, where $X_{n-1} = X - \{a_1, a_2, \dots, a_{n-1}\}$.

Suppose f(n) = f(m), with $n, m \in \mathbb{N}$, then $a_n = a_m$, which is possible only if n = m. Therefore, f is injective.

Corollary 49. A set X is infinite \iff there is a bijection $f: X \to Y$, where $Y \subsetneq X$ is a proper subset.

Proof. (\Rightarrow) Suppose X infinite, by theorem 48, X has a countably infinite subset, say $Z = \{a_1, a_2, a_3, \ldots\}$. Set $Y = (X - Z) \cup \{a_2, a_4, a_6, \ldots\}$ and define f(x) = x if $x \in X - Z$, and $f(a_n) = a_{2n}$ otherwise. The function f(x), defined this way, is clearly a bijection.

 (\Leftarrow) Follows from Corollary 36.

A function $f: X \to Y$ is called *increasing* if $x < y \Rightarrow f(x) < f(y)$.

Theorem 50. Every subset X of \mathbb{N} is countable.

Proof. The proof is very similar to the one in theorem 48. If X is finite then is countable, so assume X infinite. We define an increasing bijection $f: \mathbb{N} \to X$ by induction. Let $X_1 = X$, $a_1 = \min X$ (which exists by Theorem 29), and set $f(1) = a_1$. Now, define $X_2 = X - \{a_1\}$ and $f(2) = a_2 = \min X_2$. By induction, we define $f(n) = a_n = \min X_n$, where $X_n = X - \{a_1, a_2, \dots, a_{n-1}\}$. The function f(n) is injective by construction, suppose f(n) not surjective. There is $x \in X$ such that $x \notin f(\mathbb{N})$. So $x \in X_n$ for every n, which implies that x > f(n) for every n, and x is a bound for the infinite set $f(\mathbb{N})$, a contradiction by Theorem 42.

Corollary 51. Let X be a countable set. Then for any $Y \subseteq X$, Y is countable.

Corollary 52. The set of all prime numbers is countable.

Corollary 53. Let Y be a countable set and $f: X \to Y$ an injective function. Then X is countable.

Corollary 54. The set \mathbb{Z} of integers is countable.

Proof. The function $f: \mathbb{Z} \to \mathbb{N}$ defined by f(0) = 1, f(m) = 2m, if m > 0 and f(m) = -2m + 1, if m < 0, is bijective.

Corollary 55. Let X be a countable set and $f: X \to Y$ a surjective function. Then Y is countable.

Proposition 56. The set $\mathbb{N} \times \mathbb{N}$ is countable.

Proof. The function defined by $f(m,n) = 2^m 3^n$ is a bijection $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

Corollary 57. Let $X_1, X_2, ...$ be a countable collection of countable sets. Set $X = \bigcup_{i=1}^{\infty} X_i$, then X is countable.

Proof. Let $f_i : \mathbb{N} \to X_i$ be a counting function for each $i \in \mathbb{N}$. Then $f(i,m) := f_i(m)$ defines a surjection $f : \mathbb{N} \times \mathbb{N} \to X$. By Corollary 55, X is countable.

Corollary 58. If X, Y are countable sets then $X \times Y$ is countable.

Proof. Let $f_1: \mathbb{N} \to X$, $f_2: \mathbb{N} \to Y$ be counting functions. Then $f(m,n) := (f_1(m), f_2(n))$ defines a bijection, Proposition 56 concludes the proof.

Corollary 59. The set \mathbb{Q} of rational numbers is countable.

Proof. Let \mathbb{Z}^* denote the set of nonzero integers. Define the surjective function $f: \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q}$ given by $f(m,n) = \frac{m}{n}$. By Corollary 55, \mathbb{Q} is countable.

8 Uncountable sets

A set X is **uncountable** if it's not countable. Given two sets X and Y, if there is a bijection $f: X \to Y$, we say X and Y have the same **cardinality**, in symbols:

$$card(X) = card(Y).$$

If we assume f injective only and there is no surjective function $g: X \to Y$, then we say

$$\operatorname{card}(X) < \operatorname{card}(Y)$$
.

The cardinality of the Natural numbers \mathbb{N} is denoted by

$$\operatorname{card}(\mathbb{N}) = \aleph_0.$$

If the set X is finite with n elements, we say card(X) = n. By definition, for any infinite set X:

$$\aleph_0 < \operatorname{card}(X)$$
.

Recall that given two sets X and Y, the set $\mathcal{F}(X,Y)$ denotes the set of all functions betwenn X and Y.

Theorem 60. (Cantor) Let X and Y be sets such that Y has at least two elements. There is no surjective function $\phi: X \to \mathcal{F}(X,Y)$.

Proof. Suppose a function $\phi: X \to \mathcal{F}(X,Y)$ is given and let $\phi_x = \phi(x): X \to Y$ be the image of $x \in X$, which itself is a function. We claim that there is a $f: X \to Y$ that is not ϕ_x for any X. Indeed, for each $x \in X$ let f(x) be an element different than $\phi_x(x)$ (this is possible sice $|Y| \geq 2$), then $f \neq \phi_x$ for every $x \in X$ and hence, ϕ is not surjective.

Corollary 61. Let $X_1, X_2, ...$ be a countable collection of countably infinite sets. Then the infinite cartesian product $X = \prod_{i=1}^{\infty} X_i$ is uncountable.

Proof. It's enough to prove the result for $X_i = \mathbb{N}$. In this case, $X = \mathcal{F}(\mathbb{N}, \mathbb{N})$ and the result follows from Theorem 60.

Example 62. The set $X = \{(a_1, a_2, a_3, a_4, \ldots)\}$ of all sequence of natural numbers is uncountable.

Example 63. The set of all real numbers \mathbb{R} is uncountable. This will be proved in the next sections.

9 Fields

A field K is a set K together with two operations:

$$+: K \times K \to K \text{ and } \cdot : K \times K \to K$$

satisfying the following properties (also called *field axioms*):

Given $x, y, z \in K$, we have:

- 1. (x + y) + z = x + (y + z);
- 2. x + y = y + x;
- 3. There is an element $0 \in K$ such that $\forall x \in K$, x + 0 = x;
- 4. For any $x \in K$ there is an element $y \in K$ such that x + y = 0. We define -x := y, and write z x instead of z + (-x);
- 5. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$;
- 6. $x \cdot y = y \cdot x$;
- 7. There is an element $1 \in K$ such that $1 \neq 0$ and $\forall x \in K$, $x \cdot 1 = x$;
- 8. For any $x \neq 0$ there is an element $y \in K$ such that $x \cdot y = 1$. We define $x^{-1} := y$, and write $\frac{z}{x}$ instead of $z \cdot x^{-1}$;
- 9. $x \cdot (y+z) = x \cdot y + x \cdot z$.

Given two fields K and L, we say a function $f: K \to L$ is a homomorphism, if f(x+y) = f(x) + f(y) and $f(c \cdot x) = c \cdot f(x)$. We say f is an isomorphism if, in addition, f is bijective and f^{-1} is also a homomorphism. An automorphism $f: K \to K$ is an isomorphism between K and itself.

Example 64. The set rational numbers \mathbb{Q} together with the operations

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{db}$$
 and $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$

is a field. In this case, $0 = \frac{0}{1}$, $1 = \frac{1}{1}$ and $(\frac{a}{b})^{-1} = \frac{b}{a}$.

Example 65. If p is prime, the set of integers mod p, $\mathbb{Z}_p = \{\bar{0}, \dots, \overline{p-1}\}$, with operations $\bar{a} + \bar{b} = \overline{a+b}$ and $\bar{a} \cdot \bar{b} = \overline{a \cdot b}$, is a field. It easy to see that $0 = \bar{0}, 1 = \bar{1}$ in this case. Moreover, by Fermat's little theorem $\bar{a} \cdot \bar{a}^{p-2} = \bar{1}$, hence $\bar{a}^{-1} = \bar{a}^{p-2}$.

Example 66. The set of rational functions, $\mathbb{Q}(t) = \{\frac{p(t)}{q(t)}; p(t), q(t) \in \mathbb{Q}[t], q(t) \not\equiv 0\}$, where $\mathbb{Q}[t]$ is the set of polynomials with rational coefficients, with the usual operations of fractions is a field.

Proposition 67. Let K be a field and $x, y \in K$, then

a.
$$x \cdot 0 = 0$$
;

b.
$$x \cdot z = y \cdot z$$
 and $z \neq 0$ then $x = y$;

c.
$$x \cdot y = 0 \Rightarrow x = 0$$
 or $y = 0$;

$$d. \ x^2 = y^2 \Rightarrow x = \pm y.$$

Proof. a. Indeed, $x \cdot 0 + x = x \cdot (0+1) = x$, hence $x \cdot 0 = 0$.

b. We have
$$x = x \cdot z \cdot z^{-1} = y \cdot z \cdot z^{-1} = y$$
.

c. If
$$x \neq 0$$
 then $x \cdot y = 0 \cdot x \Rightarrow y = 0$.

d. Notice that
$$x^2 = y^2 \Rightarrow x^2 - y^2 = 0 \Rightarrow (x - y)(x + y) = 0$$
.

10 Ordered Fields

An ordered field is a field K together with a subset $P \subseteq K$, called the set of positive elements, such that for any $x, y \in P$ the following properties hold:

- $({\bf I}) \ \ (Close \ under \ addition/multiplication) \ x+y \in P, x \cdot y \in P;$
- (II) (Trichotomy) For any $x \in K$, only one of the following occurs: x = 0, $x \in P, -x \in P$.

If we denote $-P = \{-p; p \in P\}$, then K can be written as a disjoint union

$$K = P \cup -P \cup \{0\}$$

Notice that in an ordered field if $x \neq 0$ then $x^2 \in P$. In particular $1 \in P$ in an ordered field.

Example 68. The field of rational numbers $\mathbb Q$ together with the set

$$P = \left\{ \frac{a}{b} \in \mathbb{Q} \, ; \, a \cdot b \in \mathbb{N} \, \right\}$$

is an ordered field.

Example 69. The field \mathbb{Z}_p can't be ordered, since if we add $\bar{1}$, p times, the result is $\bar{0}$, i.e. $\bar{1} + \cdot + \bar{1} = \bar{0}$, but in an ordered field the sum of positive elements has to be positive, in particular nonzero.

Example 70. The field $\mathbb{Q}(t)$ of example 66 together with the set

$$P = \left\{ \frac{p(t)}{q(t)}; \text{ the leading coefficient of } p(t) \cdot q(t) \text{ is positive } \right\}$$

is an ordered field.

In an ordered field K, if $x - y \in P$ we write x > y (or y < x). In particular, x > 0 implies $x \in P$ and x < 0 implies $x \in -P$. Notice that if $x \in P$ and $y \in -P$ then x > y.

We use the notation $x \leq y$ to indicate x < y or x = y, in a similar way we can define $x \geq y$ as well.

Proposition 71. Let K be an ordered field and $x, y, z \in K$, then

- (I) (Transitivity) x < y and $y < z \Rightarrow x < z$;
- (II) (Trichotomy) Only one of the following occurs: x = y, x > y, x < y;
- (III) (Sum monotoneity) $x < y \Rightarrow x + z < y + z$;
- (IV) (Multiplication monotoneity) If z > 0, then $x < y \Rightarrow x \cdot z < y \cdot z$ and if z < 0, then $x < y \Rightarrow x \cdot z > y \cdot z$.

Since in an ordered field K, 1 is always positive we have 1+1>1>0 and 1+1+1>1+1, so we can easily define an increasing injection

$$f: \mathbb{N} \to K$$

by $f(n) = \underbrace{1 + 1 + \dots + 1}_{n}$, or more precisely, f(1) = 1 and f(n+1) = f(n) + 1. Therefore, it makes sense to identify \mathbb{N} with $f(\mathbb{N}) \subseteq K$, so henceforward we will simply write

$$\mathbb{N} \subseteq K$$

whenever K is an ordered field.

Notice in particular that f(n) is never zero in this case, hence every ordered field is infinite. Whenever f(n) is never zero, for f defined above, we say K has **characteristic zero**; if f(p) = 0, then we say K has **characteristic p**.

Example 72. The field \mathbb{Q} clearly has characteristic zero. The field \mathbb{Z}_p has characteristic p.

Proceeding as before, we can extend the bijection above to $f: \mathbb{Z} \to K$ and view $\mathbb{Z} \subseteq K$ as well. Hence, we have $\mathbb{N} \subseteq \mathbb{Z} \subseteq K$.

Finally, we can use $f: \mathbb{Z} \to K$ to define a bijection $g: \mathbb{Q} \to K$ by $g(\frac{a}{b}) = f(a) \cdot f(b)^{-1}$. So we may identify \mathbb{Q} with $g(\mathbb{Q}) \subseteq K$ and write

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset K$$

whenever K is an ordered field.

Example 73. If $K = \mathbb{Q}$ in the above discussion, then $g : \mathbb{Q} \to \mathbb{Q}$ is the identity automorphism. i.e. $g(\frac{a}{b}) = \frac{a}{b}$.

Proposition 74. (Bernoulli's inequality) Let K be an ordered field and $x \in K$. If $x \ge -1$ and $n \in \mathbb{N}$, then

$$(1+x)^n \ge 1 + n \cdot x$$

Proof. We use induction on $n \in \mathbb{N}$. The case n = 1 is clear, suppose the result valid for n. Then $(1+x)^{n+1} = (1+x)^n(1+x) \ge (1+n\cdot x)(1+x) = 1+x+n\cdot x+x^2 \ge 1+x+n\cdot x$, as expected. (Notice that we used the fact that $x \ge -1$ in the first inequality and proposition 71(IV).)

11 Intervals

Let K be an ordered field and a < b be elements of K. We call any subset of the following form an interval:

$$[a,b] = \{x \in K; a \le x \le b\} \ (closed \ interval)$$

$$(a,b) = \{x \in K; a < x < b\} \ (open \ interval)$$

$$[a,b) = \{x \in K; a \le x < b\} \ and \ (a,b] = \{x \in K; a < x \le b\}$$

$$(-\infty,b) = \{x \in K; x < b\} \ and \ (-\infty,b] = \{x \in K; x \le b\}$$

$$(a,\infty) = \{x \in K; a < x\} \ and \ [a,\infty) = \{x \in K; a \le x\}$$

$$(-\infty,\infty) = K$$

If a = b, then [a, a] = a and $(a, a) = \emptyset$. We say the interval [a, a] is degenerate. Let K be an ordered field and $x \in K$. We define the absolute value of x, denoted by |x|, by

$$|x| := \max\{x, -x\},\$$

which is to say, |x| is the greater of the two numbers x or -x. Geometrically, if the elements of K are put in a straight line, |x| measures the distance between x and x, hence |x-a| is the distance between x and x.

Theorem 75. Let x, y be elements of an ordered field K. The following are equivalent:

- $(i) -y \le x \le y$
- (ii) $x \le y$ and $-x \le y$
- (iii) $|x| \leq y$

Corollary 76. Let $x, a, \epsilon \in K$ then

$$|x - a| \le \epsilon \iff a - \epsilon \le x \le a + \epsilon.$$

Remark 2. The theorem and corollary remains valid if we exchange \leq by <.

Theorem 77. Let x, y, z be elements of an ordered field K.

- (i) $|x + y| \le |x| + |y|$;
- (ii) $|x \cdot y| = |x| \cdot |y|$;
- (iii) $|x| |y| \le ||x| |y|| \le |x y|;$
- (iv) $|x-z| \le |x-y| + |y-z|$.

Let K be an ordered field and $X \subseteq K$. An **upper bound** of X is an element $M \in K$ such that $x \leq M$ for every $x \in X$. Similarly, a **lower bound** is an element $m \in K$ such that $m \leq x$ for every $x \in X$. We say X is bounded from above if it has an upper bound, bounded from below if it has a lower bound, and bounded if it has upper and lower bounds, i.e. $X \subseteq [m, M]$.

Example 78. The principle of well-ordering guarantees that \mathbb{N} is bounded from below when viewed as a set inside the ordered field \mathbb{Q} . \mathbb{N} is obviously not bounded from above in \mathbb{Q} , since given any n, n+1 > n.

Example 79. Oddly enough, \mathbb{N} is bounded from above in the ordered field $\mathbb{Q}(t)$ from example 70. Since given any $n \in \mathbb{N}$, the rational function r(t) = t satisfies r(t) - n > 0. Therefore, $r(t) \in \mathbb{Q}(t)$ is an upper bound for \mathbb{N} and the latter is bounded from above, hence bounded, in $\mathbb{Q}(t)$.

Theorem 80. Let K be an ordered field. The following are equivalent:

- 1. \mathbb{N} is not bounded from above;
- 2. Given $a, b \in K$, with a > 0, $\exists n \in \mathbb{N}$ such that $n \cdot a > b$;
- 3. Given a > 0 in K, $\exists n \in \mathbb{N}$ such that $0 < \frac{1}{n} < a$.

A field K satisfying the above conditions is called **Archimedean field**.

Proof. The proof is based on the implications $1 \Rightarrow 2$, $2 \Rightarrow 3$, $3 \Rightarrow 1$.

- $(1 \Rightarrow 2)$ Since $\mathbb N$ is unbounded, $\frac{b}{a} < n$ for some $n \in \mathbb N$, hence $n \cdot a > b$.
- $(2 \Rightarrow 3)$ Take b = 1 in 2.
- $(3 \Rightarrow 1)$ For any a > 0, consider $\frac{1}{a}$, by 3., $\exists n \in \mathbb{N}$ such that $\frac{1}{n} < \frac{1}{a} \iff n > a$. Therefore, no positive element is an upper bound. Similarly, no negative element can be an upper bound since if x is negative -x is positive and we can apply the same argument.

Example 81. Examples 78 and 79 say that \mathbb{Q} is Archimedean but $\mathbb{Q}(t)$ isn't.

12 The real numbers $\mathbb R$

Let K be an ordered field and $X \subseteq K$ be a bounded from above subset. The **supremum** of X, denoted $\sup X$ is the least upper bound of X, in other words, among all upper bounds $M \in K$ of X, i.e. $x \leq M$ for every $x \in X$, $\sup X \in K$ is the least of them. Therefore, $\sup X \in K$ has the following properties:

- (i) (upper bound) For every $x \in X$, $x \le \sup X$.
- (ii) (least upper bound) Given any $a \in K$ such that $x \leq a$ for every $x \in X$, then $\sup X \leq a$. In other words, if $a < \sup X$ then $\exists b \in X$ such that a < b.

Lemma 82. If the supremum of a set X exists, it is unique.

Proof. Suppos $a = \sup X$ and $b = \sup X$. By (ii) above, $a \le b$ since a is the least upper bound, but for the same reason we also have $b \le a$, hence a = b.

Lemma 83. If a set X has a maximum element, then $\max X = \sup X$.

Proof. Indeed, $\max X$ is obviously an upper bound and any other upper bound is greater than or equal to the maximum.

Example 84. Consider the set $I_n = \{1, 2, ..., n\} \subseteq \mathbb{Q}$. Then $\sup I_n = \max I_n = n$.

Example 85. Consider the set $X = \{-\frac{1}{n}; n \in \mathbb{N}\} \subseteq \mathbb{Q}$. Then $\sup X = 0$. Indeed, 0 is an upper bound and given any number a < 0 we can find $-\frac{1}{n}$ such that $a < -\frac{1}{n}$ since \mathbb{Q} is an Archimedean field.

Similar to the idea of supremum, the **infimum** of a bounded from below set $X \subseteq K$, denoted inf X, is the greatest lower bound. The element inf $X \in K$ has the following properties:

- (i) (lower bound) For every $x \in X$, $x \ge \inf X$.
- (ii) (greatest lower bound) Given any $a \in K$ such that $x \geq a$ for every $x \in X$, then inf $X \geq a$.

The lemmas 82 and 83 extend naturally to the notion of infimum, namely, if $X \subseteq K$ has a minimum element m then $m = \inf X$. Additionally, the infimum is unique. More generally, we easily conclude that:

Proposition 86. Let $X \subseteq K$ be a bounded subset of an ordered field K. Then, inf $X \in X \iff \inf X = \min X$ and $\sup X \in X \iff \sup X = \max X$. In particular, every finite set has a supremum and infimum.

Example 87. Consider the set X = (a, b), an open interval in a ordered field K. Then inf X = a and $\sup X = b$. Indeed, a is a lower bound, by definition of interval, suppose c > a, we claim c can't be a lower bound. For instance, consider $d = \frac{a+c}{2} \in (a,b)$. We have d < c if c < b, hence the conclusion.

Example 88. Let $X = \{\frac{1}{2^n}; n \in \mathbb{N}\} \subseteq \mathbb{Q}$. Then inf X = 0 and $\sup X = \frac{1}{2}$. Notice that $\max X = \frac{1}{2}$, by lemma 83 $\sup X = \frac{1}{2}$. Now, 0 is obviously a lower bound. Suppose c > 0, since \mathbb{Q} is Archimedean we can find $n \in \mathbb{N}$ such that $n + 1 > \frac{1}{c}$. By Bernoulli's inequality (Proposition 74), we have $2^n = (1+1)^n \ge 1 + n > \frac{1}{c}$, hence $c > \frac{1}{2^n}$ and c can't be a lower bound, so inf X = 0.

Lemma 89. (Pythagoras) There is no $x \in \mathbb{Q}$ satisfying $x^2 = 2$.

Proof. Suppose not, then $x = \frac{p}{q}$ satisfies $\left(\frac{p}{q}\right)^2 = 2$, or $p^2 = 2q^2$, where $p, q \in \mathbb{Z}$ and $q \neq 0$. If we decompose p^2 in prime factors, it will have an even number of factors equal to two, the same occurs for q^2 . Since $2q^2$ has an odd number of factors two, we can't have $p^2 = 2q^2$.

Proposition 90. Consider the sets of rational numbers $X = \{x \in \mathbb{Q}; x \geq 0 \text{ and } x^2 < 2\}$ and $Y = \{y \in \mathbb{Q}; y > 0 \text{ and } y^2 > 2\}$. There are no rational numbers $a, b \in \mathbb{Q}$ such that $a = \sup X$ and $b = \inf Y$.

Proof. We prove the result concerning the supremum, the result about infimum can be proven similarly. We first claim X doesn't have a maximum element. Given $x \in X$, take r < 1 satisfying $0 < r < \frac{2-x^2}{2x+1}$, then $x + r \in X$, so $x \in X$ can't be the maximum. Indeed, since $r < 1 \Rightarrow r^2 < r$, and we have

$$(x+r)^2 = x^2 + 2xr + r^2 < x^2 + 2xr + r = x^2 + r(2x+1) < x^2 + 2 - x^2 = 2.$$

By a similar reasoning, given $y \in Y$, it's possible to find r > 0 such that $y - r \in Y$, so Y doesn't have a minimum element. Finally, notice that if $x \in X$, $y \in Y$ then x < y, since $x^2 < 2 < y^2 \Rightarrow 0 < (x - y)(x + y) \Rightarrow 0 < (x - y)$.

Suppose there is a number $a \in \mathbb{Q}$ such that $a = \sup X$. Then $a \notin X$, otherwise it would be its maximum. If $a \in Y$, since Y doesn't have a minimum, there would be a $b \in Y$ such that b < a, then x < b < a, a contradiction since a is the supremum. We conclude that $a \notin X$ and $a \notin Y$, so a has to satisfy $a^2 = 2$, a contradiction by lemma 89.

Since every ordered field contains \mathbb{Q} , in the proposition above, if there is an ordered field K such that every nonempty bounded from above set has a supremum, then $a = \sup X$ is an element of K satisfying $a^2 = 2$.

Example 91. (A bounded set with no supremum) Let K be a non-Archimedean field. Then, by definition, $\mathbb{N} \subseteq K$ is bounded from above. Let $M \in K$ be an

upper bound for \mathbb{N} . So $n+1 \leq M$ for all $n \in \mathbb{N}$, but then $n \leq M-1$ and M-1 is also an upper bound. We conclude that if M is an upper bound, M-1 is one as well, hence $\sup \mathbb{N}$ doesn't exists in K.

We say that an ordered field K is **complete**, if every nonempty bounded from above subset $X \subseteq K$ has a supremum in K. This motivates the following axiom (also called **the fundamental axiom of mathematical analysis**):

Axiom. There is a complete ordered field, represented by \mathbb{R} , called the field of real numbers.

Remark 3. Notice that in a complete ordered field K, if $X \subseteq K$ is bounded from below then X has an infimum.

Remark 4. From example 91 we conclude that every complete ordered field is Archimedean.

Proposition 92. If K, L are complete ordered fields, then there is an isomorphism $f: K \to L$.

The proposition above says that, in some suitable sense, \mathbb{R} is the only complete ordered field.

Until the end of the semester, **every** topic we discuss will involve the complete ordered field \mathbb{R} and its properties.

The discussion above leads to the conclusion that despite there is no number $x \in \mathbb{Q}$ satisfying $x^2 = 2$, there is a positive number $x \in \mathbb{R}$ such that $x^2 = 2$. We denote that number by $\sqrt{2}$. There is nothing special about 2, so we can generalize the proof above to any $n \in \mathbb{N}$ that is not a perfect square and conclude that we can find a positive number, denoted by \sqrt{n} , such that $(\sqrt{n})^2 = n$.

We can generalize even further and talk about the n^{th} -root of $m \in \mathbb{N}$, denote by $\sqrt[n]{m}$. Namely, a positive number $x \in \mathbb{R}$ such that $x^n = m$.

We call the elements of the set $\mathbb{R} - \mathbb{Q}$, **irrational numbers**. As we've just seen, there are many of them, namely, numbers of the form $\sqrt[n]{2}$, for $n \geq 2$, are all irrational. In fact, we shall see next that irrational numbers are everywhere, in a precise sense, as a subset of the real numbers.

A subset $X \subseteq \mathbb{R}$ is said to be **dense** in \mathbb{R} if for every $a, b \in \mathbb{R}$, with a < b, we can find $x \in X$ such that a < x < b. In other words, X is dense in \mathbb{R} if every open non-degenerate interval (a, b) contains a point $x \in X$.

Example 93. Let $X = \mathbb{R} - \mathbb{Z}$. Then X is dense in \mathbb{R} . Indeed, every open interval (a,b) is an infinite set (since \mathbb{R} is ordered). On the other hand, $\mathbb{Z} \cap (a,b)$ is finite, hence we can always find a number $x \notin \mathbb{Z}$ with $x \in (a,b)$.

Theorem 94. The set of rational numbers, \mathbb{Q} , and the set of irrational numbers, $\mathbb{R} - \mathbb{Q}$, are both dense in \mathbb{R} .

Proof. Let $(a,b) \in \mathbb{R}$ be a non-degenerate open interval. The idea of the proof is that since b-a>0, there is a natural number $n\in\mathbb{N}$ such that $\frac{1}{n} < b-a$, hence a multiple of this number, say $\frac{m}{n}$ eventually will be in (a,b). More formally, let $X=\{m\in\mathbb{Z};\frac{m}{n}\geq b\}$. Since \mathbb{R} is Archimedean, $X\neq\emptyset$. Notice that X is bounded from below by $nb\in\mathbb{R}$. By the well ordering principle, X has a smallest element, say $m_0\in X$. By the smallness of m_0 , the number $m_0-1\notin X$, so $\frac{m_0-1}{n}< b$. We claim $a<\frac{m_0-1}{n}$. Suppose not, then $\frac{m_0-1}{n}\leq a< b<\frac{m_0}{n}$, which implies that $b-a\leq \frac{m_0}{n}-\frac{m_0-1}{n}=\frac{1}{n}$, a contradiction. Therefore, the rational number $\frac{m_0-1}{n}$ satisfies $a<\frac{m_0-1}{n}< b$ and \mathbb{Q} is dense in \mathbb{R} . We can apply the same argument mutatis mutandis to conclude that $\mathbb{R}-\mathbb{Q}$ is dense. Namely, instead of using $\frac{1}{n}$ in our argument, we use an irrational number, say $\frac{\sqrt{2}}{n}$.

Theorem 95. (The nested intervals principle) Let $I_1 \supseteq I_2 \supseteq \dots I_n \supseteq \dots$ be a decreasing sequence of closed intervals of the form $I_n = [a_n, b_n]$. Then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$, or more precisely,

$$\bigcap_{n=1}^{\infty} I_n = [a, b],$$

where $a = \sup a_n = \sup\{a_n; n \in \mathbb{N}\}\$ and $b = \inf\{b_n; n \in \mathbb{N}\}\$

Proof. By hypothesis, $I_n \supseteq I_{n+1}, \forall n \in \mathbb{N}$, which implies:

$$a_1 \le a_2 \le \dots a_n \le \dots \le b_n \le \dots \le b_2 \le b_1.$$

Notice that a_n is bounded from above by b_1 , hence the supremum of a_n , $a \in \mathbb{R}$, is well defined. Similarly, the infimum of b_n , $b \in \mathbb{R}$, is well defined. Since b_n is an upper bound for a_n , we have $a \leq b_n, \forall n \in \mathbb{N}$. On the other hand, a is also an upper bound and we conclude that

$$a_n \leq a \leq b_n, \forall n \in \mathbb{N}.$$

A similar reasoning can be applied to b, hence

$$[a,b] \subseteq I_n, \forall n \in \mathbb{N}.$$

If x < a, we can find a_{n_0} such that $x < a_{n_0}$, so $x \notin I_{n_0} \Rightarrow x \notin \bigcap_{n=1}^{\infty} I_n$. Similarly, if x > b, then we can find n_1 such that $b_{n_1} < x$, so $x \notin I_{n_1} \Rightarrow x \notin \bigcap_{n=1}^{\infty} I_n$. We conclude that $\bigcap_{n=1}^{\infty} I_n = [a, b]$.

Theorem 96. \mathbb{R} is uncountable.

Proof. Let $X = \{x_1, x_2, \ldots\} \subseteq \mathbb{R}$ be a countable subset of \mathbb{R} , which we know exists by theorem 48. We claim there is always an $x \in \mathbb{R}$ such that $x \notin X$. Pick a closed interval I_1 not containing x_1 , this is possible since \mathbb{R} is infinite. Proceed by induction, after setting I_n not containing x_n , we select $I_{n+1} \subseteq I_n$ as a closed interval which doesn't contain x_{n+1} . Proceeding this way, we construct a nested sequence of closed intervals $I_1 \supseteq I_2 \supseteq \ldots I_n \supseteq \ldots$ Therefore, by theorem 95, there is at least one $x \in \mathbb{R}$ that is not in $x \in \mathbb{R}$

Corollary 97. Any non-degenerate interval $(a,b) \subseteq \mathbb{R}$ is uncountable.

Proof. The function $f:(0,1)\to(a,b)$ defined by f(x)=(b-a)x+a is bijective, so it suffices to prove the result for (0,1). Suppose (0,1) is countable, then (0,1] is also countable and reasoning as before, (n,n+1] is countable for every $n\in\mathbb{N}$. Then $\mathbb{R}=\bigcup_{n\in\mathbb{Z}}(n,n+1]$ is countable, a contradiction. \square

Corollary 98. The set of irrational numbers $\mathbb{R} - \mathbb{Q}$ is uncountable.

Proof. Suppose not, then $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} - \mathbb{Q})$ is countable, a contradiction. \square

13 Sequences

A sequence of real numbers, denoted by $x_n := x(n)$, is a function $x : \mathbb{N} \to \mathbb{R}$ that associates to each natural number $n \in \mathbb{N}$, a real number $x(n) \in \mathbb{R}$. There is no universally defined notation for a sequence x_n , but here are examples of common notation found in the literature:

$$\{x_n\}_{n\in\mathbb{N}}, \mathbf{x}_n, \{x_1, x_2, \ldots\}, (x_n)$$

We say that a sequence x_n is bounded if there are $a, b \in \mathbb{R}$ such that

$$a \le x_n \le b$$
,

this is equivalent of saying that $x(\mathbb{N}) \subseteq [a,b]$, i.e. x(n) is bounded as a function. A sequence is *unbounded* when is not bounded.

A sequence x_n is bounded from above when there is $b \in \mathbb{R}$ such that $x_n \leq b$, and bounded from below if there is an $a \in \mathbb{R}$ such that $a \leq x_n$. Notice that a sequence is bounded if and only if is bounded from above and below.

Let $K \subseteq \mathbb{N}$ be an infinite subset. Then K is countably infinite, let $b: \mathbb{N} \to K$, given by $k \mapsto n_k$ be a bijection. Given any sequence $x: \mathbb{N} \to \mathbb{R}$, the composition $x_{n_k} := x \circ b: K \to \mathbb{R}$ is also a sequence, called a **subsequence** of x_n .

Example 99. Let $K = \{n; n \text{ is even}\} \subseteq \mathbb{N} \text{ and } b(k) = 2k$. In this case, given a sequence x_n , the sequence $x_{n_k} := x_{2n}$ is a subsequence of x_n . For example, if $x_n = (-1)^n$, i.e. $\{-1, 1, -1, \ldots\}$, then x_{2n} is the constant subsequence $x_{2n} = \{1, 1, 1, \ldots\}$.

Notice that every subsequence x_{n_k} of a bounded sequence x_n is itself bounded by definition. We say a sequence x_n is nondecreasing if $x_n \leq x_{n+1}, \forall n \in \mathbb{N}$, and if the inequality is strict, i.e. $x_n < x_{n+1}$, we call x_n an increasing sequence. We define nonincreasing and decreasing sequences in a similar way by placing $\geq (>)$ instead of $\leq (<)$.

A sequence that is either nondecreasing, nonincreasing, increasing, or decreasing will be called **monotone**.

Lemma 100. A monotone sequence x_n is bounded \iff it has a bounded subsequence.

Proof. Only the converse is not obvious. Suppose x_{n_k} is a bounded monotone subsequence, say $x_{n_1} \leq x_{n_2} \leq \ldots \leq b$. Given any $n \in \mathbb{N}$, we can find $n_k > n$, hence $x_n \leq x_{n_k} \leq b$.

Example 101. $x_n = 1$, i.e. $\{1, 1, 1, \ldots\}$, is a constant, bounded, nonincreasing and nondecreasing sequence.

Example 102. $x_n = n$, i.e. $\{1, 2, 3, \ldots\}$, is an unbounded increasing sequence.

Example 103. $x_n = \frac{1}{n}$, i.e. $\{1, \frac{1}{2}, \frac{1}{3}, \ldots\}$, is a bounded decreasing sequence, since $0 < x_n \le 1$.

Example 104. $x_n = 1 + (-1)^n$, i.e. $\{0, 2, 0, 2, \ldots\}$, is a bounded sequence that is not monotone.

Example 105. $x_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \ldots + \frac{1}{n!}$ is increasing, and bounded, since $0 < x_n < 1 + 1 + \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^{n-1}} < 3$. The sequence $y_n = (1 + \frac{1}{n})^n$ is related to this sequence, since by the binomial theorem $y_n \le x_n$, therefore y_n is also bounded, $0 < y_n < 3$.

Figure 1: $y_n = (1 + \frac{1}{n})^n$

Example 106. Let $x_1 = 0$ and $x_2 = 1$, and consider, by induction, $x_{n+2} = x_{n+1} + x_n$. It's easy to see that $0 \le x_n \le 1$, and moreover a quick computation shows that $x_{2n} = 1 - \left(\frac{1}{4} + \frac{1}{16} + \ldots + \frac{1}{4^{n-1}}\right)$ and $x_{2n+1} = \frac{1}{2}\left(1 + \frac{1}{4} + \frac{1}{16} + \ldots + \frac{1}{4^{n-1}}\right)$. So x_n is a bounded sequence that is not monotone.

Figure 2: $x_{n+2} = x_{n+1} + x_n$

Example 107. Let $a \in \mathbb{R}$ such that 0 < a < 1. The sequence $x_n = 1 + a + a^2 + \ldots + a^n = \frac{1-a^{n+1}}{1-a}$ is increasing, since a > 0, and bounded since $0 < x_n \le \frac{1}{1-a}$.

Example 108. The sequence $\{1, \sqrt{2}, \sqrt[3]{3}, \sqrt[4]{4}, \ldots\}$ given by $x_n = \sqrt[n]{n}$, increases for n = 1, 2. We claim that starting at the third term, this sequence is decreasing. Indeed, $x_{n+1} < x_n$ is equivalent to $(n+1)^n < n^{n+1}$, which is equivalent to $(1+\frac{1}{n})^n < n$, which is true for $n \ge 3$ by Example 105. Hence, x_n is bounded.

Figure 3: $x_n = \sqrt[n]{n}$

14 The limit of a sequence

Informally, to say $a \in \mathbb{R}$ is the limit of the sequence x_n is to say that the terms of the sequence are very close to a, when n is large. More precisely, we quantify this using the following definition:

$$\lim_{n \to \infty} x_n = a := \forall \epsilon > 0 \,\exists n_0 \in \mathbb{N}; n > n_0 \Rightarrow |x_n - a| < \epsilon$$

In other words: "The limit of sequence x_n is a, if for every positive number ϵ , no matter how small it is, it's always possible to find an index n_0 such that the distance between x_n and a is less then ϵ , for $n > n_0$."

Additionally, the above is the same of saying that any open interval

$$(a - \epsilon, a + \epsilon)$$

centered at a and with length 2ϵ , contains all the points of the sequence x_n except possibly a finite amount of them.

Remark 5. It's a common practice to omit " $n \to \infty$ " and write $\lim x_n$ only.

When $\lim x_n = a$, we say x_n converges to a, also denoted by $x_n \to a$, and call x_n convergent. If x_n is not convergent, we call it divergent, i.e. there is no $a \in \mathbb{R}$ such that $\lim x_n = a$.

Theorem 109. (Uniqueness of the limit) If $\lim x_n = a$ and $\lim x_n = b$, then a = b.

Proof. Let $\lim x_n = a$ and $b \neq a$, it's enough to prove that $\lim x_n \neq b$. Take $\epsilon = \frac{|b-a|}{2}$, then since $\lim x_n = a$, we can find n_0 such that $n > n_0 \Rightarrow |x_n - a| < \epsilon$. Therefore, $x_n \notin (b - \epsilon, b + \epsilon)$ if $n > n_0$ and we can't have $\lim x_n = b$. \square

Theorem 110. If $\lim x_n = a$, then for every subsequence x_{n_k} of x_n , we also have $\lim x_{n_k} = a$.

Proof. Indeed, since given $\epsilon > 0$ it's possible to find n_0 such that $n > n_0 \Rightarrow |x_n - a| < \epsilon$, the same n_0 works for x_{n_k} as well, namely, $n_k > n_0 \Rightarrow |x_{n_k} - a| < \epsilon$.

Corollary 111. Let $k \in \mathbb{N}$. If $\lim x_n = a$ then $\lim x_{n+k} = a$, since x_{n+k} is a subsequence of x_n .

In other words, Corollary 111 says that the limit of a sequence doesn't change if we omit the first k terms.

Theorem 112. Every convergent sequence x_n is bounded.

Proof. Suppose $\lim x_n = a$. Then it's possible to find n_0 such that $x_n \in (a-1,a+1)$ for $n > n_0$. Let $M = \max\{|x_1|,\ldots,|x_{n_0}|,|a-1|,|a+1|\}$, then $x_n \in (-M,M)$.

Example 113. The sequence $\{0, 1, 0, 1, 0, 1, \ldots\}$ can't be convergent by theorem 110, since it has two subsequences converging to different values, namely, $x_{2n} = 1$ and $x_{2n-1} = 0$. Also, this sequence is an example of a bounded sequence which is not convergent, illustrating the fact that the converse of theorem 112 is false.

Theorem 114. Every bounded monotone sequence is convergent.

Proof. Suppose $x_n \leq x_{n+1}$, the other cases are proved similarly. Since x_n is bounded, $\sup x_n$ is well defined, $\sup x_n$. Let $\epsilon > 0$ be given, then $\exists n_0 \in \mathbb{N}$ such that $a - \epsilon < x_{n_0}$, but since $x_n \leq x_{n+1}$, we must have have $a - \epsilon < x_n$, $\forall n \geq n_0$. We obviously have $x_n \leq a$, hence $a - \epsilon < x_n < a + \epsilon$ for $n > n_0$ and $\lim x_n = a$.

Corollary 115. If a monotone sequence x_n has a convergent subsequence then x_n is convergent.

Example 116. Every constant sequence $x_n = k \in \mathbb{R}$ is convergent and $\lim x_n = k$.

Example 117. The sequence $\{1, 2, 3, 4, \ldots\}$ is divergent because it's unbounded.

Example 118. The sequence $\{1, -1, 1, -1, ...\}$ is divergent because it has two subsequences converging to different values.

Example 119. The sequence $x_n = \frac{1}{n}$ is convergent and $\lim x_n = 0$, since \mathbb{R} is Archimedian and given any $\epsilon > 0$ it's possible to find $n_0 \in \mathbb{N}$ such that $0 < \frac{1}{n_0} < \epsilon$. Hence, $n > n_0 \Rightarrow \frac{1}{n} < \epsilon$.

Example 120. Let 0 < a < 1. The sequence $x_n = a^n$ is monotone and bounded, hence convergent. Notice that $\lim x_n = 0$ in this case.

15 Properties of limits

Theorem 121. Let $\lim x_n = 0$ and y_n a bounded sequence. Then

$$\lim x_n \cdot y_n = 0.$$

Proof. Let c > 0 be such that $|y_n| < c$. Let $\epsilon > 0$ be given, and $n_0 \in \mathbb{N}$ a number such that $n > n_0 \Rightarrow |x_n| < \frac{\epsilon}{c}$. Then, $n > n_0 \Rightarrow |x_n y_n| < \frac{\epsilon}{c} \cdot c = \epsilon$. \square

Example 122. Using the theorem above we have $\lim_{n\to\infty} \frac{\sin n}{n} = 0$

Theorem 123. Let $\lim x_n = a$ and $\lim y_n = b$. Then

- 1. $\lim x_n + y_n = a + b$, $\lim x_n y_n = a b$;
- 2. $\lim x_n \cdot y_n = ab$;

3. If $b \neq 0$ then $\lim \frac{x_n}{y_n} = \frac{a}{b}$

Example 124. Let $a \in \mathbb{R}$ be a positive number. The sequence $x_n = \sqrt[n]{a}$ is bounded and monotone, hence converges. We claim

$$\lim \sqrt[n]{a} = 1.$$

Indeed, let $L := \lim \sqrt[n]{a}$ and consider the subsequence $y_n = x_{n(n+1)}$ then

$$L = \lim y_n = \lim a^{\frac{1}{n(n+1)}} = \lim a^{\frac{1}{n} - \frac{1}{n+1}} = \frac{\lim a^{\frac{1}{n}}}{\lim a^{\frac{1}{n+1}}} = 1$$

Example 125. Similar to the example above is the sequence $x_n = \sqrt[n]{n}$. It is bounded and monotone (starting from the third term), hence converges. We claim

$$\lim \sqrt[n]{n} = 1.$$

Let $L := \lim \sqrt[n]{n}$ and consider the subsequence $y_n = x_{2n}$ then

$$L^{2} = \lim y_{n} \cdot y_{n} = \lim \sqrt[n]{2n} = \lim \sqrt[n]{2} \sqrt[n]{n} = 1 \cdot L = L$$

Hence, L = 0 or L = 1, but $L \neq 0$ since $x_n \geq 1$.

Theorem 126. If $\lim x_n = a$ and a > 0, then $\exists n_0$ such that $x_n > 0$ for $n > n_0$. An equivalent statement is valid if a < 0, namely, up to a finite amount of indexes, $x_n < 0$.

Proof. It's possible to find n_0 such that $n > n_0 \Rightarrow |x_n - a| < \frac{a}{2}$, in particular, $x > \frac{a}{2} > 0$ if $n > n_0$. The case a < 0 is proved similarly.

Corollary 127. If x_n, y_n are convergent sequences and $x_n \leq y_n$ then $\lim x_n \leq \lim y_n$.

Corollary 128. If x_n is convergent and $x_n \geq a \in \mathbb{R}$ then $\lim x_n \geq a$.

Theorem 129. (Squeeze theorem) If $x_n \leq y_n \leq z_n$ and $\lim x_n = \lim z_n$, then $\lim y_n = \lim x_n = \lim z_n$.

16 $\liminf x_n$ and $\limsup x_n$

A number $a \in \mathbb{R}$ is an accumulation point of the sequence x_n , if there is a subsequence x_{n_k} such that $\lim_{k \to \infty} x_{n_k} = a$.

Theorem 130. $a \in \mathbb{R}$ is an accumulation point of the sequence x_n if and only if $\forall \epsilon > 0$, there are infinitely many values of $n \in \mathbb{N}$ such that $x_n \in (a - \epsilon, a + \epsilon)$.

Proof. The implication is clear, we prove the converse only. Take $\epsilon = 1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{k}, \dots$, then it's possible to find x_{n_k} such that $|x_{n_k} - a| < \frac{1}{k}$ for every $k \in \mathbb{N}$ and moreover $n_k < n_{k+1}$, in particular, $\lim_{k \to \infty} x_{n_k} = a$.

Example 131. If $\lim x_n = a$ then x_n has only one accumulation point, namely $a \in \mathbb{R}$. This follows directly from theorem 110.

Example 132. The sequence $\{0, 1, 0, 2, 0, 3, ...\}$ is divergent. However, it has 0 as an accumulation point, due to the constant subsequence $x_{2n-1} = 0$. Similarly, the divergent sequence $\{1, -1, 1, -1, 1, -1, ...\}$ has only two accumulation points: 0 and 1. The divergent sequence $\{1, 2, 3, 4, 5, 6, ...\}$ doesn't have an accumulation point.

Example 133. By theorem 94, every real number $r \in \mathbb{R}$ is an accumulation point of a sequence of rational numbers.

We shall see below that every bounded sequence has at least two accumulation points, and the sequence converges if and only if they coincide.

Let x_n be a bounded sequence, say $m \leq x_n \leq M$, with $m, M \in \mathbb{R}$. Set

$$X_n = \{x_n, x_{n+1}, \ldots\}.$$

Then $X_n \subseteq [m, M]$ and $X_{n+1} \subseteq X_n$. Define $a_n := \inf X_n$ and $b_n := \sup X_n$, then

$$m \le a_1 \le a_2 \le \ldots \le a_n \le \ldots \le b_n \le \ldots \le b_2 \le b_1 \le M$$
,

and the following limits are well defined $a = \lim a_n = \sup a_n$ and $b = \lim b_n = \inf b_n$. We define the *limit inferior* of x_n as

$$\liminf x_n := a$$

and the *limit superior* of x_n as

$$\limsup x_n := b.$$

We obviously have

 $\lim\inf x_n \le \lim\sup x_n.$

Example 134. Consider the sequence $x_n = \{0, 1, 0, 1, 0, 1, \ldots\}$. Using the notation above, $a_n \equiv 0$ and $b_n \equiv 1$. Therefore, $\lim \inf x_n = 0$ and $\lim \sup x_n = 1$. More generally, we have:

Theorem 135. Let x_n be a bounded sequence. Then $\liminf x_n$ is the smallest accumulation point and $\limsup x_n$ is the greatest one.

Proof. We prove the limit inferior claim, the other part can be proved analogously. First, we claim that $a=\liminf x_n$ is an accumulation point. Indeed, using the notation above, $a=\lim a_n$, hence given any $\epsilon>0$, for $n>n_0$, we have $a-\epsilon< a_n< a+\epsilon$. In particular, choose $n_1>n_0$, then $a-\epsilon< a_{n_1}< a+\epsilon$. Therefore, for $n>n_1$ we have $a_{n_1}\leq x_n< a+\epsilon$. We conclude that $a-\epsilon< x_n< a+\epsilon$, by theorem 130, a is an accumulation point. To prove the minimality, let c< a. We claim c is not an accumulation point. Since $c< a\Rightarrow c< a_{n_0}$, for some $n_0\in\mathbb{N}$. Hence, $c< a_{n_0}\leq x_n$ for $n\geq n_0$. Finally, setting $\epsilon=a_{n_0}-c$, we conclude that the interval $(c-\epsilon,c+\epsilon)$ doesn't contain any x_n for $n>n_0$, by theorem 130 this concludes the proof.

Corollary 136. (Bolzano-Weierstrass theorem) Every bounded sequence x_n has a convergent subsequence.

Proof. Since x_n is bounded, $a = \liminf x_n$ is well defined and is an accumulation point. In particular, there's a subsequence of x_n converging to a. \square

Corollary 137. A sequence x_n is convergent if and only if $\liminf x_n = \limsup x_n$ (x_n has a unique accumulation point)

Proof. If x_n is convergent, all subsequences converge to the same limit, in particular $\liminf x_n = \limsup x_n = \lim x_n$. Conversely, suppose $a = \liminf x_n = \limsup x_n$. Then, using the notation above, we can find n_0 such that $a - \epsilon < a_{n_0} \le a \le b_{n_0} < a + \epsilon$ and $n > n_0$ implies $a_{n_0} \le x_n \le b_{n_0}$. We conclude that $a - \epsilon < x_n < a + \epsilon$.

Corollary 138. If $c < \liminf x_n$ then $\exists n_0 \in \mathbb{N}$ such that $n > n_0 \Rightarrow c < x_n$. Similarly, if $c > \limsup x_n$ then $\exists n_1 \in \mathbb{N}$ such that $n > n_1 \Rightarrow c > x_n$.

17 Cauchy Sequences

A sequence x_n is called a **Cauchy sequence** if given $\epsilon > 0$ we can find $n_0 \in \mathbb{N}$ such that for $n, m > n_0$ we have

$$|x_n - x_m| < \epsilon$$

In other words, a Cauchy sequence is a sequence such that its terms x_n are infinitely close for sufficiently large n. It's reasonable to expect that a sequence with this property converges, and that is indeed true as the theorem below shows (for sequences in \mathbb{R} , we will see in a few weeks when we talk about topology, that it's possible to construct a topological space where no Cauchy sequence converges.)

Theorem 139. Every Cauchy sequence is convergent.

The proof is a direct consequence of the two lemmas below.

Lemma 140. Every Cauchy sequence is bounded.

Proof. By definition, we can find $n_0 \in \mathbb{N}$ such that $m, n > n_0 \Rightarrow |x_n - x_m| < 1$. Fix x_m and set $M := \max\{|x_1|, |x_2|, \dots, |x_{n_0}|, |x_m - 1|, |x_m + 1|\}$, then $x_n \in [-M, M]$.

Lemma 141. If a Cauchy sequence x_n has a convergent subsequence x_{n_k} with $\lim_{k\to\infty} x_{n_k} = a$ then it converges and $\lim x_n = a$.

Proof. Given $\epsilon > 0$, it's possible to find n_0 such that $m, n > n_0 \Rightarrow |x_n - x_m| < \frac{\epsilon}{2}$. Additionally, it's possible to find m_0 such that $n_k > m_0 \Rightarrow |x_{n_k} - a| < \frac{\epsilon}{2}$, take one $n_k > n_0$ such that this is true. Then $n > n_0 \Rightarrow |x_n - a| < |x_n - x_{n_k}| + |x_{n_k} - a| < \epsilon$.

Now we prove the converse of the theorem above.

Theorem 142. Every convergent sequence is a Cauchy sequence.

Proof. Suppose $a := \lim x_n$. Then it's possible to find n_0 and n_1 such that $n > n_0 \Rightarrow |x_n - a| < \frac{\epsilon}{2}$ and $m > n_1 \Rightarrow |x_m - a| < \frac{\epsilon}{2}$. We conclude that

$$|x_n - x_m| < |x_n - a| + |x_m - a| < \epsilon$$

for $m, n > \max\{n_0, n_1\}.$

We conclude that

Corollary 143. A sequence x_n of real numbers is a Cauchy sequence if and only if it converges.

18 Infinite limits

A divergent sequence x_n converges to infinity, denoted by $\lim x_n = +\infty$, if for any number M > 0, there is $n_0 > 0$ such that $n > n_0 \Rightarrow x_n > M$. Similarly, A sequence x_n converges to negative infinity, denoted by $\lim x_n = -\infty$, if for any number M > 0, there is $n_0 > 0$ such that $n > n_0 \Rightarrow x_n < -M$.

Example 144. The sequence $x_n = n$ converges to infinity, since given any M > 0, take any natural number $n_0 > M$, then $x_n = n > M$ if $n > n_0$. On the other hand, the sequence $x_n = (-1)^n n$ is divergent but doesn't converge to ∞ , nor to $-\infty$, since it is unbounded from above and below, and as a consequence of the definition a sequence converges, say to $+\infty$, then it's bounded from below, and similarly, converges to $-\infty$, then it's bounded from above.

The following theorem, similar to theorem 123 gives some properties of infinite limits. The proof will be omitted.

Theorem 145. (Arithmetic operations with infinite limits)

- 1. If $\lim x_n = +\infty$ and y_n is bounded from below, then $\lim (x_n + y_n) = +\infty$ and $\lim (x_n \cdot y_n) = +\infty$;
- 2. If $x_n > 0$ then $\lim x_n = 0$ if and only if $\lim \frac{1}{x_n} = +\infty$;
- 3. Let $x_n, y_n > 0$ be positive sequences. Then:
 - (a) If x_n is bounded from below and $\lim y_n = 0$ then $\lim \frac{x_n}{y_n} = +\infty$;
 - (b) If x_n is bounded and $\lim y_n = +\infty$ then $\lim \frac{x_n}{y_n} = 0$.

Example 146. Let $x_n = \sqrt{n+1}$ and $y_n = -\sqrt{n}$. Then $\lim x_n = \infty$, $\lim y_n = -\infty$. We have:

$$\lim(x_n + y_n) = \lim \sqrt{n+1} - \sqrt{n} = \lim \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \lim \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

which gives $\lim(x_n + y_n) = 0$. However, it's **not true in general** that $\lim(x_n + y_n) = \lim x_n + \lim y_n$ if both sequences have infinite limit. For example, $x_n = n^2$ and $y_n = -n$ give a counter-example, since $\lim x_n = +\infty$, $\lim y_n = -\infty$, but $\lim(x_n + y_n) = +\infty$.

Example 147. Let $x_n = [2 + (-1)^n]n$ and $y_n = n$. Then $\lim x_n = \lim y_n = +\infty$, but $\lim \frac{x_n}{y_n} = \lim [2 + (-1)^n]$ doesn't exists. So it's not true in general that $\lim \frac{x_n}{y_n} = 1$ if $\lim x_n = \lim y_n = +\infty$.

Example 148. Let a>1. Then $\lim \frac{a^n}{n}=+\infty$. Indeed, a=1+s with s>0, so $a^n=(1+s)^n\geq 1+ns+\frac{n(n-1)}{2}s^2$ for $n\geq 2$, but $\lim \frac{1+ns+\frac{n(n-1)}{2}s^2}{n}=+\infty$, hence $\lim \frac{a^n}{n}=+\infty$. Arguing by induction, it's easy to show that for any $m\in\mathbb{N}$, $\lim \frac{a^n}{n^m}=+\infty$.

Example 149. Let a > 0. Then $\lim \frac{n!}{a^n} = +\infty$. Indeed, pick $n_0 \in \mathbb{N}$ such that $\frac{n_0}{a} > 2$. Then

$$\frac{n!}{a^n} = \frac{n(n-1)\dots(n_0+1)n_0!}{a^{n_0}\underbrace{a\dots a}_{n-n_0}} > \frac{n_0!}{a^{n_0}} 2^{n-n_0},$$

and it follows that $\lim \frac{n!}{a^n} = +\infty$.

19 Series

Given a sequence of real numbers x_n , the purpose of this section if to give meaning to expressions of the form, $x_1 + x_2 + x_3 + \ldots$, that is, the formal sum of all the elements of the sequence x_n .

A natural way of doing this is to set $s_n := x_1 + \ldots + x_n$, called *partial sums*, and define

$$\sum_{n=1}^{\infty} x_n := \lim s_n$$

It's a common practice to write $\sum x_n$ instead of $\sum_{n=1}^{\infty} x_n$, and to call x_n the general term of the series. In these notes we shall adopt these conventions.

Since we define $\sum x_n$ as a limit, it may or may not exist. In case $\sum x_n = L \in \mathbb{R}$ we say that the series $\sum x_n$ converges, otherwise we say $\sum x_n$ diverges.

Theorem 150. If the series $\sum x_n$ converges then $\lim x_n = 0$.

Proof. Indeed, we have $x_n = s_n - s_{n-1}$. Therefore, $\lim x_n = \lim (s_n - s_{n-1}) = \lim s_n - \lim s_{n-1} = 0$.

The converse of the theorem above is not true. Here's a counterexample:

Example 151. (harmonic series) Consider the series $\sum \frac{1}{n}$. We obviously have $\lim \frac{1}{n} = 0$, however, we claim $\sum \frac{1}{n}$ diverges. Indeed, in order to prove that $\lim s_n$ diverges, it's enough to find a divergent subsequence. Take for example s_{2^n} :

$$s_{2^{n}} = 1 + \frac{1}{2} + \dots + \frac{1}{2^{n}}$$

$$= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots$$

$$> 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \frac{8}{16} + \dots + \frac{2^{n-1}}{2^{n}}$$

$$= 1 + n \cdot \frac{1}{2}$$

Hence, $s_{2^n} > 1 + n \cdot \frac{1}{2}$ and $\lim s_{2^n} = +\infty$.

Example 152. (geometric series) The series $\sum a^n$, with $a \in \mathbb{R}$, diverges if $|a| \ge 1$, since the general term $x_n = a^n$ doesn't satisfy $\lim x_n = 0$. If |a| < 1, then $\sum a^n$ converges. Indeed, we can show by induction that

$$s_n = \frac{1 - a^{n+1}}{1 - a},$$

and hence $\sum a^n = \lim s_n = \frac{1}{1-a}$, if |a| < 1.

Theorem 153. Given series $\sum a_n, \sum b_n$, we have:

- 1. If $\sum a_n$ and $\sum b_n$ converge, then $\sum (a_n + b_n)$ converges and $\sum (a_n + b_n) = \sum a_n + \sum b_n$.
- 2. Let $c \in \mathbb{R}$. If $\sum a_n$ converges, then $\sum c a_n$ also converges, and $\sum c a_n = c \sum a_n$.
- 3. Suppose $\sum a_n$ and $\sum b_n$ converge, set $c_n := \sum_{i=1}^n a_i b_n + \sum_{j=1}^{n-1} a_n b_j$. Then $\sum c_n$ converges and $\sum c_n = (\sum a_n) \cdot (\sum b_n)$.

Example 154. (telescoping series) The series $\sum \frac{1}{n(n+1)}$ is convergent. Since $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, we easily see that $s_n = 1 - \frac{1}{n+1}$, so $\sum \frac{1}{n(n+1)} = 1$.

Example 155. The series $\sum (-1)^n$ is divergent since the sequence $(-1)^n$ has two distinct accumulation points, so it's impossible to have $\lim (-1)^n = 0$.

Theorem 156. Let $a_n \geq 0$ be a nonnegative sequence of real numbers. Then $\sum a_n$ converges if and only if the partial sum s_n is a bounded sequence for every $n \in \mathbb{N}$.

Proof. The implication is clear. The converse follows from the fact that every bounded monotone sequence converges. \Box

Corollary 157. (Comparison principle) Suppose $\sum a_n$ and $\sum b_n$ are series of nonnegative real numbers, i.e. $a_n, b_n \geq 0$. If there are $c \in \mathbb{R}$ and $n_0 \in \mathbb{N}$ such that $a_n \leq c b_n$ for $n > n_0$, then if $\sum b_n$ converges, $\sum a_n$ converges. Moreover, if $\sum a_n$ diverges then $\sum b_n$ diverges.

Example 158. If r > 1, the series $\sum \frac{1}{n^r}$ converges. Indeed, the general term of this series is positive, so the partial sums s_n are increasing, hence it's enough to prove that a subsequence of s_n is bounded. We claim s_{2^n-1} is bounded. We have:

$$s_{2^{n}-1} = 1 + \frac{1}{2^{r}} + \dots + \frac{1}{(2^{n} - 1)^{r}}$$

$$= 1 + \left(\frac{1}{2^{r}} + \frac{1}{3^{r}}\right) + \left(\frac{1}{4^{r}} + \frac{1}{5^{r}} + \frac{1}{6^{r}} + \frac{1}{7^{r}}\right) + \dots + \frac{1}{(2^{n} - 1)^{r}}$$

$$< 1 + \frac{2}{2^{r}} + \frac{4}{4^{r}} + \frac{8}{8^{r}} + \dots + \frac{2^{n-1}}{2^{(n-1)r}}$$

$$= \sum_{i=0}^{n-1} \left(\frac{2}{2^{r}}\right)^{i}$$

On the other hand, the geometric series $\sum_{j=0}^{\infty} \left(\frac{2}{2^r}\right)^j$ converges since $\frac{2}{2^r} < 1$. We conclude that s_{2^n-1} is bounded and the claim follows.

Corollary 159. (Cauchy's criteria) The series $\sum a_n$ is convergent if and only if given $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that $|a_{n+1} + \ldots + a_{n+p}| < \epsilon$ for $n > n_0$.

Proof. Notice that s_n converges if and only if it is a Cauchy sequence (see Corollary 143).

A series $\sum a_n$ is **absolutely convergent** if $\sum |a_n|$ is convergent. A series with all of its terms positive (or negative) is convergent if and only if is absolutely convergent. Hence, in this case the two notion coincide. Here's a classical counterexample that shows that they don't coincide in general:

Example 160. Consider the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$. We already know that $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges, however we claim that $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$ converges. Indeed, notice that the subsequence s_{2n} satisfies

$$s_2 < s_4 < s_6 < \ldots < s_{2n}$$

and is a Cauchy sequence, hence convergent. Whereas s_{2n-1} satisfies

$$s_1 > s_3 > s_5 > \ldots > s_{2n-1},$$

so it's bounded and monotone, hence convergent as well. Set $a := \lim s_{2n}$, $b := \lim s_{2n-1}$, then since $s_{2n} - s_{2n-1} = \frac{1}{2n} \to 0$, we necessarily have a = b. We conclude that s_n has only one accumulation point, hence converges. (We will see later that $a = b = \log 2$)

A series $\sum a_n$ is **conditionally convergent** if $\sum a_n$ is convergent but $\sum |a_n|$ is divergent. The example above shows that $\sum \frac{(-1)^n}{n}$ is conditionally convergent.

Theorem 161. Every absolutely convergent series $\sum a_n$ is convergent.

Proof. By hypothesis, $\sum a_n$ is Cauchy, so we can find $n_0 \in \mathbb{N}$ such that $n > n_0, \forall p \in \mathbb{N} \Rightarrow |a_{n+1}| + \ldots + |a_{n+p}| < \epsilon$. In particular, $|a_{n+1}| + \ldots + |a_{n+p}| < \epsilon$, the conclusion follows from Cauchy's criteria (Corollary 159).

Corollary 162. Let $\sum b_n$ a convergent series with $b_n \geq 0$. If there are $n_0 \in \mathbb{N}$ and $c \in \mathbb{R}$ such that $n > n_0 \Rightarrow |a_n| \leq c b_n$ then the series $\sum a_n$ is absolutely convergent.

Corollary 163. (The root test) If there are $n_0 \in \mathbb{N}$ and $c \in \mathbb{R}$ such that $n > n_0 \Rightarrow \sqrt[n]{|a_n|} \le c < 1$, then the series $\sum a_n$ is absolutely convergent. In other words, if $\limsup \sqrt[n]{|a_n|} < 1$ then $\sum a_n$ is absolutely convergent. On the other hand, if $\limsup \sqrt[n]{|a_n|} > 1$, then $\sum a_n$ diverges.

Proof. In this case, we can compare $\sum |a_n|$ with $\sum c^n$, the latter (absolutely) converges since it's a geometric series with 0 < c < 1. If $\sqrt[n]{|a_n|} > 1$ for n sufficiently large, then $\lim a_n \neq 0$.

Corollary 164. (The root test – second version) If $\lim \sqrt[n]{|a_n|} < 1$, then the series $\sum a_n$ is absolutely convergent. If $\lim \sqrt[n]{|a_n|} > 1$, then the series $\sum a_n$ is divergent.

Example 165. Let $a \in \mathbb{R}$ and consider the series $\sum na^n$. Notice that $\lim \sqrt[n]{n|a|^n} = \lim \sqrt[n]{n} \lim |a| = |a|$. Hence, if |a| < 1 the series $\sum na^n$ is absolutely convergent and if |a| > 1 it diverges. If |a| = 1 the series also diverges, since $\lim na^n \neq 0$ in this case.

Theorem 166. (The ratio test) Let $\sum a_n$ and $\sum b_n$ be series of real numbers such that $a_n \neq 0, b_n > 0, \forall n \in \mathbb{N}$ and $\sum b_n$ convergent. If there is $n_0 \in \mathbb{N}$ such that $n > n_0 \Rightarrow \left| \frac{a_{n+1}}{a_n} \right| \leq \left| \frac{b_{n+1}}{b_n} \right|$, then $\sum a_n$ is absolutely convergent.

Proof. Consider the inequalities:

$$\left| \frac{a_{n_0+2}}{a_{n_0+1}} \right| \le \left| \frac{b_{n_0+2}}{b_{n_0+1}} \right|$$

$$\left| \frac{a_{n_0+3}}{a_{n_0+2}} \right| \le \left| \frac{b_{n_0+3}}{b_{n_0+2}} \right|$$

. . .

$$\left| \frac{a_n}{a_{n-1}} \right| \le \left| \frac{b_n}{b_{n-1}} \right|$$

Multiplying them together, we have:

$$\left| \frac{a_n}{a_{n_0+1}} \right| \le \left| \frac{b_n}{b_{n_0+1}} \right|$$

Hence, $|a_n| \leq c b_n$ and the result follows by the comparison principle.

Corollary 167. (The ratio test – second version) If $\limsup \left| \frac{a_{n+1}}{a_n} \right| < 1$, then the series $\sum a_n$ is absolutely convergent. If $\limsup \left| \frac{a_{n+1}}{a_n} \right| > 1$, then the series $\sum a_n$ is divergent.

Proof. For the convergence, take $b_n = (\limsup \left| \frac{a_{n+1}}{a_n} \right|)^n$ in theorem 166. If $\limsup \left| \frac{a_{n+1}}{a_n} \right| > 1$ then $\lim a_n \neq 0$.

Corollary 168. (The ratio test – third version) If $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$ then $\sum_{n \to \infty} a_n$ is absolutely convergent, if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ then $\sum_{n \to \infty} a_n$ diverges.

Example 169. Fix $x \in \mathbb{R}$ and consider the series $\sum \frac{x^n}{n!}$, then $\left|\frac{a_{n+1}}{a_n}\right| = \frac{|x|}{n+1} \to 0$ regardless of x, and the series is absolutely convergent. We will see later that this series coincides with e^x .

Theorem 170. (Root test is stronger than the ratio test) For any bounded sequence a_n of positive numbers we have

$$\liminf \frac{a_{n+1}}{a_n} \le \liminf \sqrt[n]{a_n} \le \limsup \sqrt[n]{a_n} \le \limsup \frac{a_{n+1}}{a_n},$$

In particular, if $\lim \frac{a_{n+1}}{a_n} = c$ then $\lim \sqrt[n]{a_n} = c$.

Proof. It's enough to prove that $\limsup \sqrt[n]{a_n} \le \limsup \frac{a_{n+1}}{a_n}$, the first inequality can be proven *mutatis mutandis*. We argue by contradiction, suppose there is a $k \in \mathbb{R}$ such that

$$\limsup \sqrt[n]{a_n} > k > \limsup \frac{a_{n+1}}{a_n}$$

Proceeding as in the proof of theorem 166, we can find $n_0 \in \mathbb{N}$ such that $n > n_0 \Rightarrow a_n < c \, k^n$, which implies that $\sqrt[n]{a_n} < c^{\frac{1}{n}} \, k$ and hence:

$$\limsup \sqrt[n]{a_n} \le k$$

a contradiction. \Box

Example 171. A nice application of the theorem above is the computation of $\lim \frac{n}{\sqrt[n]{n!}}$. Set $x_n = \frac{n}{\sqrt[n]{n!}}$ and $y_n = \frac{n^n}{n!}$, then $x_n = \sqrt[n]{y_n}$. On the other hand, $\frac{y_{n+1}}{y_n} = (1 + \frac{1}{n})^n$, hence $\lim \frac{y_{n+1}}{y_n} = e$, and it follows that $\lim \frac{n}{\sqrt[n]{n!}} = e$.

Example 172. Given two distinct numbers $a, b \in \mathbb{R}$, consider the sequence $x_n = \{a, ab, a^2b, a^2b^2, a^3b^2, \ldots\}$, then the ratio $\frac{x_{n+1}}{x_n} = b$ if n is odd, and $\frac{x_{n+1}}{x_n} = a$ if n is even, hence the sequence $\frac{x_{n+1}}{x_n}$ doesn't converge and $\lim \frac{x_{n+1}}{x_n}$ doesn't exist. On the other hand, we have $\lim \sqrt[n]{x_n} = \sqrt{ab}$. This demonstrates that in the theorem above the inequalities can be strict.

Theorem 173. (Dirichlet) Let b_n be a nonincreasing sequence of positive numbers with $\lim b_n = 0$, and $\sum a_n$ be a series such that the partial sum s_n is a bounded sequence. Then the series $\sum a_n b_n$ converges.

Proof. Notice that

$$a_1b_1 + a_2b_2 + \dots + a_nb_n = a_1(b_1 - b_2) + (a_1 + a_2)(b_2 - b_3) + (a_1 + a_2 + a_3)(b_3 - b_4) + \dots + (a_1 + \dots + a_n)b_n$$
$$= \sum_{i=2}^{n} s_{i-1}(b_{i-1} - b_i) + s_nb_n$$

Since s_n is bounded, say $|s_n| \leq k$ and $b_n \to 0$, we have $\lim s_n b_n = 0$. Moreover, $|\sum_{i=2}^n s_{i-1}(b_{i-1} - b_i)| \leq k |\sum_{i=2}^n (b_{i-1} - b_i)| = k(b_1 - b_n)$. So $\sum_{i=2}^n s_{i-1}(b_{i-1} - b_i)$ converges, and therefore, by comparison, $\sum a_n b_n$ converges as well.

We can weaken the hypothesis $\lim b_n = 0$. Indeed, if $\lim b_n = c$ just take $b_n^* := b_n - c$ and use this new sequence instead. We conclude:

Corollary 174. (Abel) If $\sum a_n$ is convergent and b_n is a nonincreasing sequence of positive numbers then $\sum a_n b_n$ converges.

Corollary 175. (Leibniz) Let b_n be a nonincreasing sequence of positive numbers with $\lim b_n = 0$. Then the series $\sum (-1)^n b_n$ converges.

Proof. In this case, $a_n = (-1)^n$ has bounded partial sum, namely $|s_n| \le 1$, and the result follows directly from theorem 173.

Example 176. Some periodic real valued functions can be written as a linear combination of $\sum \cos(nx)$ and $\sum \sin(nx)$. The properties of such functions and generalizations are addressed in area of mathematics called **Fourier Analysis**. E. Stein's book on the subject is a wonderful first-read of the topic.

Take the example of $f(x) = \sum \frac{\cos(nx)}{n}$, we claim that if $x \neq 2\pi k$, $k \in \mathbb{Z}$ then f(x) is well-defined, i.e. $\sum \frac{\cos(nx)}{n}$ converges. Indeed, let $a_n = \cos(nx)$ and $b_n = \frac{1}{n}$, then b_n is decreasing, so by theorem 173, it's enough to prove that the partial sums s_n of $\sum a_n$ are bounded. In other words, we need to show that

$$s_n = \cos(x) + \cos(2x) + \cos(3x) + \dots + \cos(nx)$$

is bounded. Recall, that $e^{ix} = \cos(x) + i\sin(x)$. Therefore:

$$1 + s_n = Re[1 + e^{ix} + e^{2ix} + e^{3ix} + \dots + e^{nix}]$$

$$1 + s_n = Re\left[\frac{1 - e^{(n+1)ix}}{1 - e^{ix}}\right]$$

$$1 + s_n \le \frac{2}{|1 - e^{ix}|}$$

It follows that s_n is bounded and we conclude that $\sum \frac{\cos(nx)}{n}$ converges if $x \neq 2\pi k$.

Let $f: \mathbb{N} \to \mathbb{N}$ be a bijection and $\sum a_n$ be a series of real numbers. Set $b_n = a_{f(n)}$. We say $\sum a_n$ is **commutatively convergent** if $\sum a_n = \sum b_n$ for every bijection $f: \mathbb{N} \to \mathbb{N}$. We will show below that the notion of commutative convergence coincides with absolute convergence.

Theorem 177. A series $\sum a_n$ is absolutely convergent if and only if is commutatively convergent.