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1 Naive set theory

1.1 Sets

A set X is a collection of objects, also called the elements of the set. If ‘a’ is
an element of X, we write a ∈ X. On the other hand, if ‘a’ isn’t an element
of X, we write a /∈ X.

A set X is well defined when there is a rule that allows us to say if an
arbitrary element ‘a’ is or isn’t an element of X.

Example 1. The set X of all right triangles is well-defined. Indeed, given
any object ‘a’, if ‘a’ is not a triangle or doesn’t have a right angle then a /∈ X.
If ‘a’ is a right triangle then a ∈ X.

Example 2. The set X of all tall people is not well-defined. The notion of
‘tall’ is not universally defined, hence given any element a we can’t say if
a ∈ X or a /∈ X.

Usually one uses the notation

X = {a, b, c, . . .}

to represent the set X whose elements are a, b, c, . . ., and if a set has no
elements we denote it by ∅ and call it the empty set.

The set of natural numbers 1, 2, 3, . . . will be represented by

N = {1, 2, 3, . . .}

The set of integers will be represented by

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}

The set of rational numbers, that is, fractions a
b
, where a, b ∈ Z and b ̸= 0,

will be denoted by

Q = { a

b
| a, b ∈ Z, b ̸= 0 }
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The vast majority of sets in mathematics are not defined by specifying its
elements one by one. What usually happens is a set being defined by some
property its elements satisfy, i.e. if a has property P than a ∈ X, whereas if
a doesn’t have property P then a /∈ X. One writes

X = {a | a has property P}

For example, the set
X = {a ∈ N | a > 10},

consists of all natural numbers bigger than 10.
Given two sets A,B, one says that A is a subset of B or that A is

included in B (B contains A), represented by A ⊆ B, if every element of A
is an element of B.

Example 3. We have the obvious inclusion of sets:

N ⊆ Z ⊆ Q.

Example 4. Let X be the set of all squares and Y be the set of all rectangles.
Then X ⊆ Y , since every square is a rectangle.

When one writes X ⊆ Y , it’s possible that X = Y . In case X ̸= Y , we
say X is a proper subset, the notation X ⊊ Y is sometimes used to indicate
that X is a proper subset of Y .

Notice that to write a ∈ X is equivalent to say {a} ⊆ X. Also, by
definition, it’s always true that ∅ ⊆ X for every set X.

It’s easy to see that the inclusion of sets has the following properties:

1. Reflexive, X ⊆ X for every set X;

2. Anti-symmetric, if X ⊆ Y and Y ⊆ X then X = Y ;

3. Transitive, if X ⊆ Y and Y ⊆ Z then X ⊆ Z.

It follows that two sets X and Y are the same if and only if X ⊆ Y and
Y ⊆ X, that is to say, they have the same elements.

Given a set X, we define the power set of X, P(X) as

P(X) = {A |A ⊆ X }.

The set P(X) is the set of all subsets of X, in particular it’s never empty, it
has at least ∅ and X itself as elements.
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Example 5. Let X = {1, 2, 3} then

P(X) = { ∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3} }.

Notice that by using the Fundamental Counting Principle, any set with
n elements has 2n subsets. Therefore, the number of elements of P(X) is 2n.

1.2 Operation with sets

We given two sets X and Y , one can build many other sets. For example,
the union of X and Y , denoted by X ∪ Y is the of elements that are in X
or Y , more precisely:

X ∪ Y = { a | a ∈ X or a ∈ Y }.

Similarly, the intersection of X and Y , denoted by X∩Y is the of elements
that are common to both X and Y :

X ∩ Y = { a | a ∈ X and a ∈ Y }.

If X ∩ Y = ∅, then X and Y are said to be disjoint.

Example 6. Let X = {a ∈ N | a ≤ 100} and Y = {a ∈ N | a > 50} then

X ∪ Y = N and X ∩ Y = {a ∈ N | 50 < a ≤ 100}

Example 7. The sets X = {a ∈ N | a > 1} and Y = {a ∈ N | a < 2} are
disjoint, i.e. X ∩ Y = ∅ since there is no natural number between 1 and 2.

The difference betweenX and Y , denoted byX−Y is the set of elements
that are in X but not in Y , more precisely:

X − Y = { a | a ∈ X and a /∈ Y }.

Given an inclusion of sets X ⊆ Y , the complement of X in Y is the set
Y −X, the notation Xc sometimes is used if there is no confusion about who
the set Y is.

Example 8. Consider the sets X = {a ∈ N | a is even} and Y = N. Then
X ⊆ Y and Xc = {a ∈ N | a is odd}.

Proposition 9. Given sets A,B,C,D the following properties are true:
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1. A ∪ ∅ = A; A ∩ ∅ = ∅

2. A ∪ A = A; A ∩ A = A

3. A ∪B = B ∪ A; A ∩B = B ∩ A

4. A ∪ (B ∪ C) = (A ∪B) ∪ C; A ∩ (B ∩ C) = (A ∩B) ∩ C

5. A ∪B = A ⇔ B ⊆ A; A ∩B = A ⇔ A ⊆ B

6. if A ⊆ B and C ⊆ D then A ∪ C ⊆ B ∪D and A ∩ C ⊆ B ∩D

7. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C); A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

8. (Ac)c = A

9. (A ∪B)c = Ac ∩Bc; (A ∩B)c = Ac ∪Bc

Proof. The last property, (A ∪ B)c = Ac ∩ Bc, will be demonstrated below,
the others are trivial or can be proved in a similar way.

We prove that (A∪B)c ⊆ Ac ∩Bc. Let a ∈ (A∪B)c, then a /∈ A∪B, in
particular, a /∈ A and a /∈ B, hence a ∈ Ac ∩Bc.

Conversely, take a ∈ Ac ∩ Bc. Then a /∈ A and a /∈ B, so a /∈ A ∪ B and
it follows that a ∈ (A ∪B)c.

An ordered pair (a, b) is formed by two objects a and b, such that for any
other such pair (c, d):

(a, b) = (c, d) ⇔ a = c and b = d.

The elements a and b are called coordinates of (a, b), a is the first coordinate
and b the second one.

The cartesian product X × Y of two sets X and Y is the set of all
ordered pairs (x, y) such that x ∈ X and y ∈ Y :

X × Y = { (x, y) |x ∈ X and y ∈ Y }.

Remark 1. An ordered pair is not the same as a set, i.e. (a, b) ̸= {a, b}.
Notice that {a, b} = {b, a} but (a, b) ̸= (b, a) in general.

Example 10. Consider the sets X = {1, 2, 3} and Y = {a, b}, then

X × Y = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b) }.
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1.3 Functions

A function f : X → Y consists of three components: a set X, the domain,
a set Y , the co-domain, and a rule that associates each element a ∈ X an
unique element in f(a) ∈ Y , f(a) is called the value of f(x) at a, or the
image of a under f(x).

Another common notation to denote a function is x 7→ f(x). In this case
the domain and codomain can be identified by the context.

Example 11. The function f : N → N given by f(n) = n + 1 is called the
successor function.

Example 12. Let X be the set of all triangles. One can define a function
f : X → R by f(x) = area of x.

Example 13. (Relation that is not a function) The correspondence that
associates to each real number x, all y satisfying y2 = x is not a function
because any x ̸= 0 will be associated to two values, namely ±

√
x, and in order

to be a function every x has to have exactly one image y = f(x).

The graph of a function f : X → Y is a subset of X × Y defined by

Γ(f) = { (x, f(x)) |x ∈ X }.

Example 14. Consider the function f(x) = e−x2
, its graph is given below:

A function f : X → Y is said to be injective or one-to-one if for every
x, y such that f(x) = f(y) then x = y. Suppose X ⊆ Y , then inclusion
i : X → Y given by i(x) = x is a typical example of injective function.

A function f : X → Y is said to be surjective or onto if for every y ∈ Y
there is x ∈ X such that y = f(x). The projection p : X × Y → X in the
first coordinate, given by p(x, y) = x is a typical example of surjection.
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Finally, a function f : X → Y is bijective or a bijection if it is both
surjective and injective.

Example 15. The function given by f(x) = x3 is injective.

Example 16. The step function f(x) = max{n ∈ Z |n ≤ x } is not injective.

Example 17. The function f(x) = sinx is a bijection if we consider f :
(−π

2
, π
2
) → R.
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Given a function f : X → Y , the image of a set A ⊆ X is defined by

f(A) = { y ∈ Y | y = f(a), a ∈ A }.

Conversely, the inverse image of a set (sometimes called pre-image) B ⊆ Y
is given by

f−1(B) = {x ∈ X | f(x) ∈ B }.

Proposition 18. Given f : X → Y and subsets A,B ⊆ X, we have:

1. f(A ∪B) = f(A) ∪ f(B); f−1(A ∪B) = f−1(A) ∪ f−1(B)

2. f(A ∩B) ⊆ f(A) ∩ f(B); f−1(A ∩B) = f−1(A) ∩ f−1(B)

3. if A ⊆ B then f(A) ⊆ f(B) and f−1(A) ⊆ f−1(B)

4. f(∅) = ∅; f−1(∅) = ∅

5. f−1(Y ) = X

6. f−1(Ac) = (f−1(A))c

Example 19. Consider the function f(x, y) = x2 + y2, the inverse image
f−1({1}) is a circle of radius 1. Similarly, any line ax+ by = c can be seen
as g−1({c}), where g(x, y) = ax+ by.

Given two functions f : X → Y and g : Y → Z, the composition g ◦ f of
g and f is defined as the function:

(g ◦ f)(x) = g(f(x))

Example 20. The composition of the functions g(x) = sinx and f(x) = ex

is the function (g ◦ f)(x) = sin ex depicted below.
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Given a function f : X → Y and a subset A ⊆ X, the restriction of
f(x) to A, denoted by f |A : A → Y , is defined by f |A(x) = f(x). Similarly,
if X ⊆ Z, a extension of f(x) to Z is any function g : Z → Y such that
g|X(x) = f(x).

Example 21. Consider again the function f(x, y) = x2 + y2, and the unit
circle S1 = { (x, y) |x2 + y2 = 1 }. Then the restriction f |S1 is the constant
function g(x) = 1.

Given functions f : X → Y , and g : Y → X, the function g(x) is called
left-inverse of f(x) if

(g ◦ f)(x) = x.

Similarly, the function g(x) is called right-inverse of f(x) if

(f ◦ g)(x) = x.

Finally, if there is a function f−1(x) such that

(f ◦ f−1)(x) = (f−1 ◦ f)(x) = x,

f−1(x) is called the inverse of f(x). Notice that any inverse, if exists, is
unique. If g(x) and h(x) are both inverses of f(x) then

g(x) = g(f(h(x))) = (g ◦ f)(h(x)) = h(x).

Proposition 22. A function f : X → Y has an inverse f−1 : Y → X ⇔ f
is bijective.

Proof. Suppose f has an inverse f−1 and f(x) = f(y) for some x, y. Taking
the inverse on both sides, we conclude that x = y and f is injective. Similarly,
take y ∈ Y and set x = f−1(y), then f(x) = y and it follows that f is
surjective.

Conversely, suppose f bijective. If f(x) = y, set f−1(y) = x. One can
easily check that (f ◦ f−1)(x) = (f−1 ◦ f)(x) = x.

Example 23. Consider the function f : (0,+∞) → (0,+∞) given by f(x) =
1
x
, then the f is its own inverse, i.e. (f ◦ f)(x) = x.
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1.4 The natural numbers N
The natural numbers are built axiomatically. Start with a set N, whose
elements are called natural numbers, and a function s : N → N, called the
successor function. For any n ∈ N, s(n) is called the successor of n.

The function s(n) satisfies the following axioms:

Axiom 1. s(n) is injective, i.e. every number has a unique successor.

Axiom 2. The set N− s(N) has only one element, which will be denoted by 1, i.e.
every number has a successor and 1 is not a successor of any number.

Axiom 3. (Principle of induction) Let X ⊆ N be a subset with the following
property: 1 ∈ X and given n ∈ X, s(n) ∈ X as well. Then X = N.

Whenever axiom 3 is used to prove a result, the result is said to be proved
by induction.

Proposition 24. For any n ∈ N, s(n) ̸= n.

Proof. The proof is by induction. Let X ∈ N be a subset defined by:

X = {n ∈ N | s(n) ̸= n }.

By Axiom 2, 1 ∈ X. Let n ∈ X, then s(n) ̸= n. By Axiom 1, s(s(n)) ̸= s(n),
hence s(n) ∈ X. The proof follows by Axiom 3.

Given a function f : X → X, its power fn is defined inductively. More
precisely, if one sets f 1 = f then fn is defined by:

f s(n) = f ◦ fn.

In particular, if one sets 2 = s(1), 3 = s(2), . . ., then f 2 = f ◦ f, f 3 =
f ◦ f ◦ f, . . ..

Now, given two natural numbers m,n ∈ N, their sum m+n ∈ N is defined
by:

m+ n = sn(m).

It follows that m+ 1 = s(m) and m+ s(n) = s(m+ n), in particular:

m+ (n+ 1) = (m+ n) + 1

More generally, the following can be proved using induction:
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Proposition 25. For any m,n, p ∈ N:

1. (Associativity) m+ (n+ p) = (m+ n) + p;

2. (Commutativity) m+ n = n+m;

3. (Cancellation Law) m+ n = m+ p ⇒ n = p;

4. (Trichotomy) Only one of the following can occur: m = n, or ∃q ∈ N
such that m = n+ q, or ∃r ∈ N such that n = m+ r.

The notion of order among natural numbers can be defined in terms of
addition. Namely, one writes

m < n,

if ∃q ∈ N such that n = m+ q; in the same situation, one also writes n > m.
Notice in particular that for every m ∈ N:

m < s(m).

Finally, one writes m ≥ n if m > n or m = n and a similar definition applies
to ≤.

Proposition 26. For any m,n, p ∈ N:

(I) (Transitivity) m < n, n < p ⇒ m < p;

(II) (Trichotomy) Only one of the following can occur: m = n, m < n or
m > n.

(III) m < n ⇒ m+ p < n+ p.

The multiplication operation m · n will be defined in a similar way as
m+n was defined. Let am : N → N be the ‘add m’ function, am(n) = n+m.
Then multiplication of two natural numbers m · n is defined as:

m · 1 := m,

m · (n+ 1) := (am)
n(m).

So m ·2 = am(m) = m+m,m ·3 = (am)
2(m) = m+m+m, . . ., and it follows

that:
m · (n+ 1) := m · n+m.

More generally, the following is true:
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Proposition 27. For any m,n, p ∈ N:

a. m · (n · p) = (m · n) · p;

b. m · n = n ·m;

c. m · n = p · n ⇒ m = p;

d. m · (n+ p) := m · n+m · p;

e. m < n ⇒ m · p < n · p.

1.5 Well-ordering principle

Let X ⊆ N. A number m ∈ X is called the minimum element of X,
denoted m = minX, if m ≤ n for every n ∈ X. For example, 1 is the
minimum of N; 100 is the minimum of {100, 1000, 10000}.

Lemma 28. If m = minX and n = minX then m = n.

Proof. Since m ≤ p for every p ∈ X, m ≤ n in particular. Similarly, n ≤ m
and hence m = n.

The maximum element is defined similarly: m = maxX if m ≥ n, ∀n ∈
X. Notice that not all subsets X ⊆ N have a maximum. In fact, N itself
doesn’t have a maximum, since m < m + 1 for every m ∈ N. The lemma
above remains valid if we exchange ‘minimum’ by ‘maximum’.

Despite not all subsets of N having a maximum, they do have a minimum
if they are non-empty.

Theorem 29. (Well-ordering principle) Let X ⊆ N be non-empty. Then X
has a minimum.

Proof. If 1 ∈ X then 1 is the minimum, so suppose 1 /∈ X. Let

In = {m ∈ N | 1 ≤ m ≤ n },

and consider the set
L = {n ∈ N | In ⊆ Xc }.

Since 1 /∈ X ⇒ 1 ∈ L. If n ∈ L ⇒ n + 1 ∈ L then induction would imply
L = N, but L ̸= N since L ⊆ Xc = N − X, and X ̸= ∅. We conclude that
there is a m0 such that m0 ∈ L but m0 + 1 /∈ L. It follows than m0 + 1 is
the minimum element of X.
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Corollary 30. (Strong induction) Let X ⊆ N be a set with the following
property:

∀n ∈ N, if X contains all m < n ⇒ n ∈ X.

Then X = N.

Proof. Set Y = Xc, the claim is that Y = ∅. Suppose not, that is, Y ̸= ∅.
By the theorem above, Y has a minimum element, say p ∈ Y . But then by
hypothesis p ∈ X, a contradiction.

Example 31. Strong induction can be used to prove the Fundamental the-
orem of Arithmetic, which says that every number greater than 1 can
written as a product of primes (a number p is prime if p ̸= m · n, with
m < p and n < p). Indeed, Let X = {m ∈ N |m is a product of primes }
and n ∈ N a given number. If X contains all numbers m such that m < n,
then if n is prime, n ∈ X; if n is not a prime then n = p ·q with p < n, q < n,
again it follows that n ∈ X. Therefore, strong induction implies X = N.

Let X be any set. A common way of defining a function f : N → X
is by recurrence (sometimes ‘by induction’ is used), namely, f(1) is given
and also a rule that allows one to obtain f(m) knowing f(n) for all n < m.
Technically, more than one function f could exist satisfying these conditions,
however it is know that such a function is unique, the proof of this fact is
left as an exercise.

Example 32. (Factorial) The factorial function f : n 7→ n! can be defined
using induction. Set f(1) = 1 and f(n + 1) = (n + 1) · f(n). Then f(2) =
2 · 1, f(3) = 3 · 2 · 1, . . . , f(n) = n!.

Example 33. (Arbitrary sums/products) So far the definition of m+ n was
used, what about m + n + p or m1 + . . . +mn? In order to define arbitrary
sums (or products), one can use induction. Namely,

m1 + . . .+mn = (m1 + . . .+mn−1) +mn;

and similarly, for products:

m1 · . . . ·mn = (m1 · . . . ·mn−1) ·mn.
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1.6 Finite and Infinite sets

Throughout this section, In stands for the set of numbers less than or equal
to n:

In = {m ∈ N | 1 ≤ m ≤ n }

A arbitrary set X is finite if X = ∅ or there is number n ∈ N and a bijection

f : In → X.

In the latter case, one says that X has n elements and writes:

|X| = n,

f is said to be a counting function for X. By convention, if X = ∅ then one
says X has zero elements, i.e. |∅| = 0.

It remains to show that the number of elements is a well-defined notion,
that is to say, if there are bijections f : In → X and g : Im → X then n = m.

Theorem 34. Let X ⊆ In. If there is a bijection f : In → X, then X = In.

Proof. The proof is by induction on n. The case n = 1 is obvious, suppose
the result true for n, the proof follows if one can prove the result for n+ 1.

Suppose X ⊆ In+1 and there is a bijection f : In+1 → X. Let a = f(n+1)
and consider the restriction f : In → X − {a}.

If X − {a} ⊆ In then X − {a} = In, a = n+ 1 and X = In+1.
Suppose X − {a} ̸⊆ In, then n + 1 ∈ X − {a} and one can find b such

that f(b) = n + 1. Let g : In+1 → X be the defined by g(m) = f(m) if
m ̸= n + 1, a; g(n + 1) = n + 1; g(b) = a. By construction, the restriction
g : In → X − {n + 1} is a bijection and obviously X − {n + 1} ⊆ In, hence
X − {n+ 1} = In and it follows that X = In+1.

Corollary 35. (Number of elements is well-defined) If there is a bijection
f : In → Im then m = n. Therefore, if f : In → X and g : Im → X are
bijections then n = m.

Proof. The first part follows directly from the theorem. For the second part,
consider the composition (f−1 ◦ g) : Im → In.

Corollary 36. There is no bijection f : X → Y between a finite set X and
a proper subset Y ⊆ X.
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Proof. By definition there is a bijection φ : In → X for some n ∈ N. Since
Y is proper, A := φ−1(Y ) is also proper in In. Let φA : A → Y be the
restriction of φ from In to A. Suppose there is a bijection f : X → Y ,
then the composite function φ−1

A ◦ f ◦ φ : In → A defines a bijection, a
contradiction.

Theorem 37. Let X be a finite set and Y ⊆ X, then Y is finite and |Y | ≤
|X|, the equality occurs only if X = Y .

Proof. It’s enough to prove the result for X = In. If n = 1 the result
is obvious. Suppose the result is valid for In and consider Y ⊆ In+1. If
Y ⊆ In, the induction hypothesis gives the result, so assume n+1 ∈ Y . Then
Y −{n+1} ⊆ In and by induction, there is a bijection f : Ip → Y −{n+1},
where p ≤ n. Let g : Ip+1 → Y be a bijection defined by g(n) = f(n) if
n ∈ In, and g(p + 1) = n + 1. This proves that Y is finite, moreover since
p ≤ n ⇒ p+ 1 ≤ n+ 1, |Y | ≤ n. The last statement says that if Y ⊆ In and
|Y | = n then Y = In, but this is a direct consequence of theorem 34.

The following Corollary is immediate:

Corollary 38. Let Y be finite and f : X → Y be an injective function. Then
X is also finite and |X| ≤ |Y |.

Corollary 39. Let X be finite and f : X → Y be an surjective function.
Then Y is also finite and |Y | ≤ |X|.

Proof. Since f is surjective, by the proof of proposition 22, f has an injective
right-inverse g : Y → X. The result follows by the corollary above.

A set X that is not finite is said to be infinite. More, precisely X is
infinite when it’s not empty and there is no bijection f : In → X for any
n ∈ N.

Example 40. The natural numbers N is an infinite set since there is no
surjection between In and N, because given any function f : In → N, the
number f(1) + f(2) + . . .+ f(n) is not in the range.

Example 41. Z and Q are also infinite sets since they contain N, which is
infinite.

A set X ⊆ N is bounded, if there is a number M ∈ N such that n ≤ M
for all n ∈ X.
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Theorem 42. Let X ⊆ N be nonempty. The following are equivalent:

a. X is finite;

b. X is bounded;

c. X has a greatest element.

Proof. The proof is based on the implications a ⇒ b, b ⇒ c, c ⇒ a.

(a ⇒ b) Let X = {x1, x2, . . . , xn}. Then M = x1 + . . .+ xn satisfies n ≤ M for
all n ∈ X.

(b ⇒ c) Consider the set A = {n ∈ N |n ≥ x,∀x ∈ X }. Since X is bounded,
A ̸= ∅. By the principle of well ordering, A has a minimum element,
say m ∈ A. If m ∈ X then m is the greatest element, so suppose
m /∈ X. By definition, m > n for all n ∈ X, and since X ̸= ∅, m > 1,
that is m = p+1, for some p ∈ N. If p ≥ x for all x ∈ X then p ∈ A, a
contradiction since p < m and m is minimal. If there is a x ∈ X such
that x > p, then x ≥ m a contradiction unless x = m, but m /∈ X by
assumption. It follows that m ∈ X and m is the greatest element.

(c ⇒ a) If X has a greatest element, say M , then X ⊆ IM and it follows that
X is finite.

The Theorem below follows directly from the definitions, the proof will
be omitted.

Theorem 43. Let X and Y be two sets such that |X| = m, |Y | = n and
X ∩ Y = ∅. Then X ∪ Y is finite and |X ∪ Y |=m+ n.

The following corollary is immediate:

Corollary 44. Let X1, X2, . . . , Xn, be a finite collection of sets such that

each Xi is finite and Xi ∩Xj = ∅ if i ̸= j. Then
n⋃

i=1

Xi is finite and

|
n⋃

i=1

Xi| =
n∑

i=1

|Xi|

.
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Corollary 45. Let X1, X2, . . . , Xn, be a finite collection of sets such that

each Xi is finite. Then
n⋃

i=1

Xi is finite and

|
n⋃

i=1

Xi| ≤
n∑

i=1

|Xi|

.

Proof. For each i = 1, . . . , n, set Yi = Xi × {i}. Then the projection

πi :
n⋃

i=1

Yi →
n⋃

i=1

Xi

in the first coordinate is surjective, by Corollaries 39 and 44, the proof is
complete.

Corollary 46. Let X1, X2, . . . , Xn, be a finite collection of sets such that
each Xi is finite. Then X1 × . . .×Xn is finite and

|X1 × . . .×Xn| =
n∏

i=1

|Xi|

.

Proof. It’s enough to prove for n = 2, since the general case follows from this
one. LetX2 = {y1, . . . , ym}, notice thatX1×X2 = X1×{y1}∪. . .∪X2×{ym},
the result follows by Corollary 44.

1.7 Countable Sets

A set X is countable if it is finite or there is a bijection f : N → X. In the
latter case, it is necessarily an infinite set, since as N is infinite, and we use
the term countably infinite.

Example 47. The set X = { 2n ∈ N |n ∈ N } of all even numbers is count-
able. The function f(x) = 2x defines a bijection between X and N.

Theorem 48. Let X be an infinite set. Then X has a countably infinite
subset.
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Proof. It’s enough to find an injective function f : N → X, since every
injective function is a bijection over its image. Choose an element a1 ∈ X,
set X1 = X − {a1} and f(1) = a1. Since X is infinite, X1 is also infinite,
choose an element a2 in X1, and set f(2) = a2. Proceeding by induction, we
have f(n) = an, an ∈ Xn−1, where Xn−1 = X − {a1, a2, . . . , an−1}.

Suppose f(n) = f(m), with n,m ∈ N, then an = am, which is possible
only if n = m. Therefore, f is injective.

Corollary 49. A set X is infinite ⇐⇒ there is a bijection f : X → Y ,
where Y ⊊ X is a proper subset.

Proof. (⇒) Suppose X infinite, by theorem 48, X has a countably infinite
subset, say Z = {a1, a2, a3, . . .}. Set Y = (X−Z)∪{a2, a4, a6, . . .} and
define f(x) = x if x ∈ X−Z, and f(an) = a2n otherwise. The function
f(x), defined this way, is clearly a bijection.

(⇐) Follows from Corollary 36.

A function f : X → Y is called increasing if x < y ⇒ f(x) < f(y).

Theorem 50. Every subset X of N is countable.

Proof. The proof is very similar to the one in theorem 48. IfX is finite then is
countable, so assume X infinite. We define an increasing bijection f : N → X
by induction. Let X1 = X, a1 = minX (which exists by Theorem 29), and
set f(1) = a1. Now, define X2 = X − {a1} and f(2) = a2 = minX2. By
induction, we define f(n) = an = minXn, whereXn = X−{a1, a2, . . . , an−1}.
The function f(n) is injective by construction, suppose f(n) not surjective.
There is x ∈ X such that x /∈ f(N). So x ∈ Xn for every n, which implies
that x > f(n) for every n, and x is a bound for the infinite set f(N), a
contradiction by Theorem 42.

Corollary 51. Let X be a countable set. Then for any Y ⊆ X, Y is count-
able.

Corollary 52. The set of all prime numbers is countable.

Corollary 53. Let Y be a countable set and f : X → Y an injective function.
Then X is countable.

Corollary 54. The set Z of integers is countable.

18



Proof. The function f : Z → N defined by f(0) = 1, f(m) = 2m, if m > 0
and f(m) = −2m+ 1, if m < 0, is bijective.

Corollary 55. Let X be a countable set and f : X → Y a surjective function.
Then Y is countable.

Proposition 56. The set N× N is countable.

Proof. The function defined by f(m,n) = 2m3n is a bijection f : N × N →
N.

Corollary 57. Let X1, X2, . . . be a countable collection of countable sets. Set

X =
∞⋃
i=1

Xi, then X is countable.

Proof. Let fi : N → Xi be a counting function for each i ∈ N. Then
f(i,m) := fi(m) defines a surjection f : N × N → X. By Corollary 55,
X is countable.

Corollary 58. If X, Y are countable sets then X × Y is countable.

Proof. Let f1 : N → X, f2 : N → Y be counting functions. Then f(m,n) :=
(f1(m), f2(n)) defines a bijection, Proposition 56 concludes the proof.

Corollary 59. The set Q of rational numbers is countable.

Proof. Let Z∗ denote the set of nonzero integers. Define the surjective func-
tion f : Z × Z∗ → Q given by f(m,n) = m

n
. By Corollary 55, Q is count-

able.

1.8 Uncountable sets

A set X is uncountable if it’s not countable. Given two sets X and Y , if
there is a bijection f : X → Y , we say X and Y have the same cardinality,
in symbols:

card(X) = card(Y ).

If we assume f injective only and there is no surjective function g : X → Y ,
then we say

card(X) < card(Y ).

The cardinality of the Natural numbers N is denoted by

card(N) = ℵ0.
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If the set X is finite with n elements, we say card(X) = n. By definition, for
any infinite set X:

ℵ0 ≤ card(X).

Recall that given two sets X and Y , the set F(X, Y ) denotes the set of all
functions betwenn X and Y .

Theorem 60. (Cantor) Let X and Y be sets such that Y has at least two
elements. There is no surjective function ϕ : X → F(X, Y ).

Proof. Suppose a function ϕ : X → F(X, Y ) is given and let ϕx = ϕ(x) :
X → Y be the image of x ∈ X, which itself is a function. We claim that
there is a f : X → Y that is not ϕx for any X. Indeed, for each x ∈ X let
f(x) be an element different than ϕx(x) (this is possible sice |Y | ≥ 2), then
f ̸= ϕx for every x ∈ X and hence, ϕ is not surjective.

Corollary 61. Let X1, X2, . . . be a countable collection of countably infinite

sets. Then the infinite cartesian product X =
∞∏
i=1

Xi is uncountable.

Proof. It’s enough to prove the result for Xi = N. In this case, X = F(N,N)
and the result follows from Theorem 60.

Example 62. The set X = {(a1, a2, a3, a4, . . .} of all sequence of natural
numbers is uncountable.

Example 63. The set of all real numbers R is uncountable. This will be
proved in the next sections.

2 The real numbers R

2.1 Fields

A field K is a set K together with two operations:

+ : K ×K → K and · : K ×K → K

satisfying the following properties (also called field axioms):
Given x, y, z ∈ K, we have:

1. (x+ y) + z = x+ (y + z);
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2. x+ y = y + x;

3. There is an element 0 ∈ K such that ∀x ∈ K, x+ 0 = x;

4. For any x ∈ K there is an element y ∈ K such that x + y = 0. We
define −x := y, and write z − x instead of z + (−x);

5. (x · y) · z = x · (y · z);

6. x · y = y · x;

7. There is an element 1 ∈ K such that 1 ̸= 0 and ∀x ∈ K, x · 1 = x;

8. For any x ̸= 0 there is an element y ∈ K such that x · y = 1. We define
x−1 := y, and write z

x
instead of z · x−1;

9. x · (y + z) = x · y + x · z.

Given two fields K and L, we say a function f : K → L is a homomorphism,
if f(x+y) = f(x)+f(y) and f(c·x) = c·f(x). We say f is an isomorphism if,
in addition, f is bijective and f−1 is also a homomorphism. An automorphism
f : K → K is an isomorphism between K and itself.

Example 64. The set rational numbers Q together with the operations

a

b
+

c

d
=

ad+ bc

db
and

a

b
· c
d
=

ac

bd

is a field. In this case, 0 = 0
1
, 1 = 1

1
and (a

b
)−1 = b

a
.

Example 65. If p is prime, the set of integers mod p, Zp = {0̄, . . . , p− 1},
with operations ā + b̄ = a+ b and ā · b̄ = a · b, is a field. It easy to see that
0 = 0̄, 1 = 1̄ in this case. Moreover, by Fermat’s little theorem ā · āp−2 = 1̄,
hence ā−1 = āp−2.

Example 66. The set of rational functions, Q(t) = { p(t)
q(t)

; p(t), q(t) ∈ Q[t], q(t) ̸≡
0 }, where Q[t] is the set of polynomials with rational coefficients, with the
usual operations of fractions is a field.

Proposition 67. Let K be a field and x, y ∈ K, then

a. x · 0 = 0;
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b. x · z = y · z and z ̸= 0 then x = y;

c. x · y = 0 ⇒ x = 0 or y = 0;

d. x2 = y2 ⇒ x = ±y.

Proof. a. Indeed, x · 0 + x = x · (0 + 1) = x, hence x · 0 = 0.

b. We have x = x · z · z−1 = y · z · z−1 = y.

c. If x ̸= 0 then x · y = 0 · x ⇒ y = 0.

d. Notice that x2 = y2 ⇒ x2 − y2 = 0 ⇒ (x− y)(x+ y) = 0.

2.2 Ordered Fields

An ordered field is a field K together with a subset P ⊆ K, called the set of
positive elements, such that for any x, y ∈ P the following properties hold:

(I) (Close under addition/multiplication) x+ y ∈ P, x · y ∈ P ;

(II) (Trichotomy) For any x ∈ K, only one of the following occurs: x = 0,
x ∈ P ,−x ∈ P .

If we denote −P = {−p ; p ∈ P }, then K can be written as a disjoint union

K = P ∪ −P ∪ {0}

Notice that in an ordered field if x ̸= 0 then x2 ∈ P . In particular 1 ∈ P in
an ordered field.

Example 68. The field of rational numbers Q together with the set

P =
{ a

b
∈ Q ; a · b ∈ N

}
is an ordered field.

Example 69. The field Zp can’t be ordered, since if we add 1̄, p times, the
result is 0̄, i.e. 1̄ + · + 1̄ = 0̄, but in an ordered field the sum of positive
elements has to be positive, in particular nonzero.
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Example 70. The field Q(t) of example 66 together with the set

P =

{
p(t)

q(t)
; the leading coefficient of p(t) · q(t) is positive

}
is an ordered field.

In an ordered field K, if x − y ∈ P we write x > y (or y < x). In
particular, x > 0 implies x ∈ P and x < 0 implies x ∈ −P . Notice that if
x ∈ P and y ∈ −P then x > y.

We use the notation x ≤ y to indicate x < y or x = y, in a similar way
we can define x ≥ y as well.

Proposition 71. Let K be an ordered field and x, y, z ∈ K, then

(I) (Transitivity) x < y and y < z ⇒ x < z;

(II) (Trichotomy) Only one of the following occurs: x = y, x > y,x < y;

(III) (Sum monotoneity) x < y ⇒ x+ z < y + z;

(IV) (Multiplication monotoneity)If z > 0, then x < y ⇒ x · z < y · z and if
z < 0, then x < y ⇒ x · z > y · z.

Since in an ordered field K, 1 is always positive we have 1 + 1 > 1 > 0
and 1 + 1 + 1 > 1 + 1, so we can easily define an increasing injection

f : N → K

by f(n) =

n︷ ︸︸ ︷
1 + 1 + · · ·+ 1, or more precisely, f(1) = 1 and f(n+1) = f(n)+1.

Therefore, it makes sense to identify N with f(N) ⊆ K, so henceforward we
will simply write

N ⊆ K

whenever K is an ordered field.
Notice in particular that f(n) is never zero in this case, hence every or-

dered field is infinite. Whenever f(n) is never zero, for f defined above, we
say K has characteristic zero; if f(p) = 0, then we say K has character-
istic p.

Example 72. The field Q clearly has characteristic zero. The field Zp has
characteristic p.
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Proceeding as before, we can extend the bijection above to f : Z → K
and view Z ⊆ K as well. Hence, we have N ⊆ Z ⊆ K.

Finally, we can use f : Z → K to define a bijection g : Q → K by
g(a

b
) = f(a) · f(b)−1. So we may identify Q with g(Q) ⊆ K and write

N ⊆ Z ⊆ Q ⊆ K

whenever K is an ordered field.

Example 73. If K = Q in the above discussion, then g : Q → Q is the
identity automorphism. i.e. g(a

b
) = a

b
.

Proposition 74. (Bernoulli’s inequality) Let K be an ordered field and x ∈
K. If x ≥ −1 and n ∈ N, then

(1 + x)n ≥ 1 + n · x

Proof. We use induction on n ∈ N. The case n = 1 is clear, suppose the
result valid for n. Then (1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + n · x)(1 + x) =
1 + x+ n · x+ x2 ≥ 1 + x+ n · x, as expected. (Notice that we used the fact
that x ≥ −1 in the first inequality and proposition 71(IV).)

2.3 Intervals

Let K be an ordered field and a < b be elements of K. We call any subset
of the following form an interval:

[a, b] = {x ∈ K; a ≤ x ≤ b} (closed interval)

(a, b) = {x ∈ K; a < x < b} (open interval)

[a, b) = {x ∈ K; a ≤ x < b} and (a, b] = {x ∈ K; a < x ≤ b}

(−∞, b) = {x ∈ K;x < b} and (−∞, b] = {x ∈ K;x ≤ b}

(a,∞) = {x ∈ K; a < x} and [a,∞) = {x ∈ K; a ≤ x}

(−∞,∞) = K
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If a = b, then [a, a] = a and (a, a) = ∅. We say the interval [a, a] is degenerate.
Let K be an ordered field and x ∈ K. We define the absolute value of x,

denoted by |x|, by
|x| := max{x,−x},

which is to say, |x| is the greater of the two numbers x or −x. Geometrically,
if the elements of K are put in a straight line, |x| measures the distance
between x and 0, hence |x− a| is the distance between x and a.

Theorem 75. Let x, y be elements of an ordered field K. The following are
equivalent:

(i) −y ≤ x ≤ y

(ii) x ≤ y and −x ≤ y

(iii) |x| ≤ y

Corollary 76. Let x, a, ϵ ∈ K then

|x− a| ≤ ϵ ⇐⇒ a− ϵ ≤ x ≤ a+ ϵ.

Remark 2. The theorem and corollary remains valid if we exchange ≤ by
<.

Theorem 77. Let x, y, z be elements of an ordered field K.

(i) |x+ y| ≤ |x|+ |y|;

(ii) |x · y| = |x| · |y|;

(iii) |x| − |y| ≤ ||x| − |y|| ≤ |x− y|;

(iv) |x− z| ≤ |x− y|+ |y − z|.

Let K be an ordered field and X ⊆ K. An upper bound of X is an
element M ∈ K such that x ≤ M for every x ∈ X. Similarly, a lower
bound is an element m ∈ K such that m ≤ x for every x ∈ X. We say X is
bounded from above if it has an upper bound, bounded from below if it has a
lower bound, and bounded if it has upper and lower bounds, i.e. X ⊆ [m,M ].

Example 78. The principle of well-ordering guarantees that N is bounded
from below when viewed as a set inside the ordered field Q. N is obviously
not bounded from above in Q, since given any n, n+ 1 > n.
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Example 79. Oddly enough, N is bounded from above in the ordered field
Q(t) from example 70. Since given any n ∈ N, the rational function r(t) = t
satisfies r(t) − n > 0. Therefore, r(t) ∈ Q(t) is an upper bound for N and
the latter is bounded from above, hence bounded, in Q(t).

Theorem 80. Let K be an ordered field. The following are equivalent:

1. N is not bounded from above;

2. Given a, b ∈ K, with a > 0, ∃n ∈ N such that n · a > b;

3. Given a > 0 in K, ∃n ∈ N such that 0 < 1
n
< a.

A field K satisfying the above conditions is called Archimedean field.

Proof. The proof is based on the implications 1 ⇒ 2, 2 ⇒ 3, 3 ⇒ 1.

(1 ⇒ 2) Since N is unbounded, b
a
< n for some n ∈ N, hence n · a > b.

(2 ⇒ 3) Take b = 1 in 2.

(3 ⇒ 1) For any a > 0, consider 1
a
, by 3., ∃n ∈ N such that 1

n
< 1

a
⇐⇒ n >

a. Therefore, no positive element is an upper bound. Similarly, no
negative element can be an upper bound since if x is negative −x is
positive and we can apply the same argument.

Example 81. Examples 78 and 79 say that Q is Archimedean but Q(t) isn’t.

2.4 The real numbers R
Let K be an ordered field and X ⊆ K be a bounded from above subset. The
supremum of X, denoted supX is the least upper bound of X, in other
words, among all upper bounds M ∈ K of X, i.e. x ≤ M for every x ∈ X,
supX ∈ K is the least of them. Therefore, supX ∈ K has the following
properties:

(i) (upper bound) For every x ∈ X, x ≤ supX.

(ii) (least upper bound) Given any a ∈ K such that x ≤ a for every x ∈ X,
then supX ≤ a. In other words, if a < supX then ∃b ∈ X such that
a < b.
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Lemma 82. If the supremum of a set X exists, it is unique.

Proof. Suppos a = supX and b = supX. By (ii) above, a ≤ b since a is
the least upper bound, but for the same reason we also have b ≤ a, hence
a = b.

Lemma 83. If a set X has a maximum element, then maxX = supX.

Proof. Indeed, maxX is obviously an upper bound and any other upper
bound is greater than or equal to the maximum.

Example 84. Consider the set In = {1, 2, . . . , n} ⊆ Q. Then sup In =
max In = n.

Example 85. Consider the set X = {− 1
n
;n ∈ N} ⊆ Q. Then supX = 0.

Indeed, 0 is an upper bound and given any number a < 0 we can find − 1
n

such that a < − 1
n
since Q is an Archimedean field.

Similar to the idea of supremum, the infimum of a bounded from below set
X ⊆ K, denoted infX, is the greatest lower bound. The element infX ∈ K
has the following properties:

(i) (lower bound) For every x ∈ X, x ≥ infX.

(ii) (greatest lower bound) Given any a ∈ K such that x ≥ a for every
x ∈ X, then infX ≥ a.

The lemmas 82 and 83 extend naturally to the notion of infimum, namely,
if X ⊆ K has a minimum element m then m = infX. Additionally, the
infimum is unique. More generally, we easily conclude that:

Proposition 86. Let X ⊆ K be a bounded subset of an ordered field K.
Then, infX ∈ X ⇐⇒ infX = minX and supX ∈ X ⇐⇒ supX =
maxX. In particular, every finite set has a supremum and infimum.

Example 87. Consider the set X = (a, b), an open interval in a ordered field
K. Then infX = a and supX = b. Indeed, a is a lower bound, by definition
of interval, suppose c > a, we claim c can’t be a lower bound. For instance,
consider d = a+c

2
∈ (a, b). We have d < c if c < b, hence the conclusion.
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Example 88. Let X = { 1
2n
;n ∈ N} ⊆ Q. Then infX = 0 and supX = 1

2
.

Notice that maxX = 1
2
, by lemma 83 supX = 1

2
. Now, 0 is obviously a

lower bound. Suppose c > 0, since Q is Archimedean we can find n ∈ N
such that n + 1 > 1

c
. By Bernoulli’s inequality (Proposition 74), we have

2n = (1 + 1)n ≥ 1 + n > 1
c
, hence c > 1

2n
and c can’t be a lower bound, so

infX = 0.

Lemma 89. (Pythagoras) There is no x ∈ Q satisfying x2 = 2.

Proof. Suppose not, then x = p
q
satisfies

(
p
q

)2

= 2, or p2 = 2q2, where

p, q ∈ Z and q ̸= 0. If we decompose p2 in prime factors, it will have an even
number of factors equal to two, the same occurs for q2. Since 2q2 has an odd
number of factors two, we can’t have p2 = 2q2.

Proposition 90. Consider the sets of rational numbers X = {x ∈ Q;x ≥
0 and x2 < 2} and Y = {y ∈ Q; y > 0 and y2 > 2}. There are no rational
numbers a, b ∈ Q such that a = supX and b = inf Y .

Proof. We prove the result concerning the supremum, the result about in-
fimum can be proven similarly. We first claim X doesn’t have a maximum
element. Given x ∈ X, take r < 1 satisfying 0 < r < 2−x2

2x+1
, then x + r ∈ X,

so x ∈ X can’t be the maximum. Indeed, since r < 1 ⇒ r2 < r, and we have

(x+ r)2 = x2 + 2xr + r2 < x2 + 2xr + r = x2 + r(2x+ 1) < x2 + 2− x2 = 2.

By a similar reasoning, given y ∈ Y , it’s possible to find r > 0 such that
y− r ∈ Y , so Y doesn’t have a minimum element. Finally, notice that if x ∈
X, y ∈ Y then x < y, since x2 < 2 < y2 ⇒ 0 < (x− y)(x+ y) ⇒ 0 < (x− y).

Suppose there is a number a ∈ Q such that a = supX. Then a /∈
X, otherwise it would be its maximum. If a ∈ Y , since Y doesn’t have a
minimum, there would be a b ∈ Y such that b < a, then x < b < a, a
contradiction since a is the supremum. We conclude that a /∈ X and a /∈ Y ,
so a has to satisfy a2 = 2, a contradiction by lemma 89.

Since every ordered field contains Q, in the proposition above, if there is
an ordered field K such that every nonempty bounded from above set has a
supremum, then a = supX is an element of K satisfying a2 = 2.

Example 91. (A bounded set with no supremum) Let K be a non-Archimedean
field. Then, by definition, N ⊆ K is bounded from above. Let M ∈ K be an
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upper bound for N. So n + 1 ≤ M for all n ∈ N, but then n ≤ M − 1 and
M − 1 is also an upper bound. We conclude that if M is an upper bound,
M − 1 is one as well, hence supN doesn’t exists in K.

We say that an ordered field K is complete, if every nonempty bounded
from above subset X ⊆ K has a supremum in K. This motivates the follow-
ing axiom (also called the fundamental axiom of mathematical analy-
sis):

Axiom. There is a complete ordered field, represented by R, called the
field of real numbers.

Remark 3. Notice that in a complete ordered field K, if X ⊆ K is bounded
from below then X has an infimum.

Remark 4. From example 91 we conclude that every complete ordered field
is Archimedean.

Proposition 92. If K,L are complete ordered fields, then there is an iso-
morphism f : K → L.

The proposition above says that, in some suitable sense, R is the only
complete ordered field.

Until the end of the semester, every topic we discuss will involve the
complete ordered field R and its properties.

The discussion above leads to the conclusion that despite there is no
number x ∈ Q satisfying x2 = 2, there is a positive number x ∈ R such that
x2 = 2. We denote that number by

√
2. There is nothing special about 2, so

we can generalize the proof above to any n ∈ N that is not a perfect square
and conclude that we can find a positive number, denoted by

√
n, such that

(
√
n)2 = n.
We can generalize even further and talk about the nth-root of m ∈ N,

denote by n
√
m. Namely, a positive number x ∈ R such that xn = m.

We call the elements of the set R − Q, irrational numbers. As we’ve
just seen, there are many of them, namely, numbers of the form n

√
2, for

n ≥ 2, are all irrational. In fact, we shall see next that irrational numbers
are everywhere, in a precise sense, as a subset of the real numbers.

A subset X ⊆ R is said to be dense in R if for every a, b ∈ R, with a < b,
we can find x ∈ X such that a < x < b. In other words, X is dense in R if
every open non-degenerate interval (a, b) contains a point x ∈ X.
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Example 93. Let X = R − Z. Then X is dense in R. Indeed, every open
interval (a, b) is an infinite set (since R is ordered). On the other hand,
Z ∩ (a, b) is finite, hence we can always find a number x /∈ Z with x ∈ (a, b).

Theorem 94. The set of rational numbers, Q, and the set of irrational
numbers, R−Q, are both dense in R.

Proof. Let (a, b) ∈ R be a non-degenerate open interval. The idea of the
proof is that since b − a > 0, there is a natural number n ∈ N such that
1
n
< b−a, hence a multiple of this number, say m

n
eventually will be in (a, b).

More formally, let X = {m ∈ Z; m
n
≥ b}. Since R is Archimedean, X ̸= ∅.

Notice that X is bounded from below by nb ∈ R. By the well ordering
principle, X has a smallest element, say m0 ∈ X. By the smallness of m0,
the number m0 − 1 /∈ X, so m0−1

n
< b. We claim a < m0−1

n
. Suppose not,

then m0−1
n

≤ a < b < m0

n
, which implies that b − a ≤ m0

n
− m0−1

n
= 1

n
, a

contradiction. Therefore, the rational number m0−1
n

satisfies a < m0−1
n

< b
and Q is dense in R. We can apply the same argument mutatis mutandis to
conclude that R − Q is dense. Namely, instead of using 1

n
in our argument,

we use an irrational number, say
√
2
n
.

Theorem 95. (The nested intervals principle) Let I1 ⊇ I2 ⊇ . . . In ⊇ . . .
be a decreasing sequence of closed intervals of the form In = [an, bn]. Then
∞⋂
n=1

In ̸= ∅, or more precisely,

∞⋂
n=1

In = [a, b],

where a = sup an = sup{an;n ∈ N} and b = inf bn = inf{bn;n ∈ N}

Proof. By hypothesis, In ⊇ In+1,∀n ∈ N, which implies:

a1 ≤ a2 ≤ . . . an ≤ . . . ≤ bn ≤ . . . ≤ b2 ≤ b1.

Notice that an is bounded from above by b1, hence the supremum of an,
a ∈ R, is well defined. Similarly, the infimum of bn, b ∈ R, is well defined.
Since bn is an upper bound for an, we have a ≤ bn, ∀n ∈ N. On the other
hand, a is also an upper bound and we conclude that

an ≤ a ≤ bn,∀n ∈ N.
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A similar reasoning can be applied to b, hence

[a, b] ⊆ In,∀n ∈ N.

If x < a, we can find an0 such that x < an0 , so x /∈ In0 ⇒ x /∈
∞⋂
n=1

In.

Similarly, if x > b, then we can find n1 such that bn1 < x, so x /∈ In1 ⇒ x /∈
∞⋂
n=1

In. We conclude that
∞⋂
n=1

In = [a, b].

Theorem 96. R is uncountable.

Proof. Let X = {x1, x2, . . .} ⊆ R be a countable subset of R, which we
know exists by theorem 48. We claim there is always an x ∈ R such that
x /∈ X. Pick a closed interval I1 not containing x1, this is possible since R is
infinite. Proceed by induction, after setting In not containing xn, we select
In+1 ⊆ In as a closed interval which doesn’t contain xn+1. Proceeding this
way, we construct a nested sequence of closed intervals I1 ⊇ I2 ⊇ . . . In ⊇ . . ..
Therefore, by theorem 95, there is at least one x ∈ R that is not in X.

Corollary 97. Any non-degenerate interval (a, b) ⊆ R is uncountable.

Proof. The function f : (0, 1) → (a, b) defined by f(x) = (b−a)x+a is bijec-
tive, so it suffices to prove the result for (0, 1). Suppose (0, 1) is countable,
then (0, 1] is also countable and reasoning as before, (n, n + 1] is countable
for every n ∈ N. Then R =

⋃
n∈Z

(n, n+ 1] is countable, a contradiction.

Corollary 98. The set of irrational numbers R−Q is uncountable.

Proof. Suppose not, then R = Q∪ (R−Q) is countable, a contradiction.

3 Sequences and series

3.1 Sequences

A sequence of real numbers, denoted by xn := x(n), is a function x : N →
R that associates to each natural number n ∈ N, a real number x(n) ∈ R.
There is no universally defined notation for a sequence xn, but here are
examples of common notation found in the literature:

{xn}n∈N, xn, {x1, x2, . . .}, (xn)
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We say that a sequence xn is bounded if there are a, b ∈ R such that

a ≤ xn ≤ b,

this is equivalent of saying that x(N) ⊆ [a, b], i.e. x(n) is bounded as a
function. A sequence is unbounded when is not bounded.

A sequence xn is bounded from above when there is b ∈ R such that
xn ≤ b, and bounded from below if there is an a ∈ R such that a ≤ xn.
Notice that a sequence is bounded if and only if is bounded from above and
below.

Let K ⊆ N be an infinite subset. Then K is countably infinite, let b :
N → K, given by k 7→ nk be a bijection. Given any sequence x : N → R, the
composition xnk

:= x ◦ b : K → R is also a sequence, called a subsequence
of xn.

Example 99. Let K = {n;n is even} ⊆ N and b(k) = 2k. In this case, given
a sequence xn, the sequence xnk

:= x2n is a subsequence of xn. For example,
if xn = (−1)n,i.e. {−1, 1,−1, . . .}, then x2n is the constant subsequence
x2n = {1, 1, 1, . . .}.

Notice that every subsequence xnk
of a bounded sequence xn is itself

bounded by definition. We say a sequence xn is nondecreasing if xn ≤
xn+1,∀n ∈ N, and if the inequality is strict, i.e. xn < xn+1, we call xn

an increasing sequence. We define nonincreasing and decreasing sequences
in a similar way by placing ≥ (>) instead of ≤ (<).

A sequence that is either nondecreasing, nonincreasing, increasing, or
decreasing will be called monotone.

Lemma 100. A monotone sequence xn is bounded ⇐⇒ it has a bounded
subsequence.

Proof. Only the converse is not obvious. Suppose xnk
is a bounded monotone

subsequence, say xn1 ≤ xn2 ≤ . . . ≤ b. Given any n ∈ N, we can find nk > n,
hence xn ≤ xnk

≤ b.

Example 101. xn = 1, i.e. {1, 1, 1, . . .}, is a constant, bounded, nonincreas-
ing and nondecreasing sequence.

Example 102. xn = n, i.e. {1, 2, 3, . . .}, is an unbounded increasing se-
quence.
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Example 103. xn = 1
n
, i.e. {1, 1

2
, 1
3
, . . .}, is a bounded decreasing sequence,

since 0 < xn ≤ 1.

Example 104. xn = 1 + (−1)n, i.e. {0, 2, 0, 2, . . .}, is a bounded sequence
that is not monotone.

Example 105. xn = 1 + 1
1!
+ 1

2!
+ . . .+ 1

n!
is increasing, and bounded, since

0 < xn < 1+1+ 1
2
+ 1

4
+ . . .+ 1

2n−1 < 3. The sequence yn = (1+ 1
n
)n is related

to this sequence, since by the binomial theorem yn ≤ xn, therefore yn is also
bounded, 0 < yn < 3.

Figure 1: yn = (1 + 1
n)

n

Example 106. Let x1 = 0 and x2 = 1, and consider, by induction, xn+2 =
xn+1+xn. It’s easy to see that 0 ≤ xn ≤ 1, and moreover a quick computation
shows that x2n = 1−

(
1
4
+ 1

16
+ . . .+ 1

4n−1

)
and x2n+1 =

1
2

(
1 + 1

4
+ 1

16
+ . . .+ 1

4n−1

)
.

So xn is a bounded sequence that is not monotone.

Figure 2: xn+2 = xn+1 + xn
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Example 107. Let a ∈ R such that 0 < a < 1. The sequence xn = 1 +
a + a2 + . . . + an = 1−an+1

1−a
is increasing, since a > 0, and bounded since

0 < xn ≤ 1
1−a

.

Example 108. The sequence {1,
√
2, 3
√
3, 4
√
4, . . .} given by xn = n

√
n, in-

creases for n = 1, 2. We claim that starting at the third term, this sequence
is decreasing. Indeed, xn+1 < xn is equivalent to (n + 1)n < nn+1, which is
equivalent to (1 + 1

n
)n < n, which is true for n ≥ 3 by Example 105. Hence,

xn is bounded.

Figure 3: xn = n
√
n

3.2 The limit of a sequence

Informally, to say a ∈ R is the limit of the sequence xn is to say that the
terms of the sequence are very close to a, when n is large. More precisely,
we quantify this using the following definition:

lim
n→∞

xn = a := ∀ϵ > 0 ∃n0 ∈ N;n > n0 ⇒ |xn − a| < ϵ

In other words: “The limit of sequence xn is a, if for every positive number
ϵ, no matter how small it is, it’s always possible to find an index n0 such that
the distance between xn and a is less then ϵ, for n > n0.”

Additionally, the above is the same of saying that any open interval

(a− ϵ, a+ ϵ)

centered at a and with length 2ϵ, contains all the points of the sequence xn

except possibly a finite amount of them.
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Remark 5. It’s a common practice to omit “ n → ∞ ”and write limxn only.

When limxn = a, we say xn converges to a, also denoted by xn → a, and
call xn convergent. If xn is not convergent, we call it divergent, i.e. there is
no a ∈ R such that lim xn = a.

Theorem 109. (Uniqueness of the limit) If limxn = a and limxn = b, then
a = b.

Proof. Let limxn = a and b ̸= a, it’s enough to prove that limxn ̸= b. Take
ϵ = |b−a|

2
, then since limxn = a, we can find n0 such that n > n0 ⇒ |xn−a| <

ϵ. Therefore, xn /∈ (b− ϵ, b+ ϵ) if n > n0 and we can’t have limxn = b.

Theorem 110. If limxn = a, then for every subsequence xnk
of xn, we also

have limxnk
= a.

Proof. Indeed, since given ϵ > 0 it’s possible to find n0 such that n > n0 ⇒
|xn−a| < ϵ, the same n0 works for xnk

as well, namely, nk > n0 ⇒ |xnk
−a| <

ϵ.

Corollary 111. Let k ∈ N. If limxn = a then limxn+k = a, since xn+k is a
subsequence of xn.

In other words, Corollary 111 says that the limit of a sequence doesn’t
change if we omit the first k terms.

Theorem 112. Every convergent sequence xn is bounded.

Proof. Suppose limxn = a. Then it’s possible to find n0 such that xn ∈
(a− 1, a+ 1) for n > n0. Let M = max{|x1|, . . . , |xn0|, |a− 1|, |a+ 1|}, then
xn ∈ (−M,M).

Example 113. The sequence {0, 1, 0, 1, 0, 1, . . .} can’t be convergent by theo-
rem 110, since it has two subsequences converging to different values, namely,
x2n = 1 and x2n−1 = 0. Also, this sequence is an example of a bounded
sequence which is not convergent, illustrating the fact that the converse of
theorem 112 is false.

Theorem 114. Every bounded monotone sequence is convergent.
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Proof. Suppose xn ≤ xn+1, the other cases are proved similarly. Since xn is
bounded, supxn is well defined, say a = sup xn. Let ϵ > 0 be given, then
∃n0 ∈ N such that a − ϵ < xn0 , but since xn ≤ xn+1, we must have have
a − ϵ < xn, ∀n ≥ n0. We obviously have xn ≤ a, hence a − ϵ < xn < a + ϵ
for n > n0 and limxn = a.

Corollary 115. If a monotone sequence xn has a convergent subsequence
then xn is convergent.

Example 116. Every constant sequence xn = k ∈ R is convergent and
limxn = k.

Example 117. The sequence {1, 2, 3, 4, . . .} is divergent because it’s un-
bounded.

Example 118. The sequence {1,−1, 1,−1, . . .} is divergent because it has
two subsequences converging to different values.

Example 119. The sequence xn = 1
n
is convergent and limxn = 0, since R

is Archimedian and given any ϵ > 0 it’s possible to find n0 ∈ N such that
0 < 1

n0
< ϵ. Hence, n > n0 ⇒ 1

n
< ϵ.

Example 120. Let 0 < a < 1. The sequence xn = an is monotone and
bounded, hence convergent. Notice that limxn = 0 in this case.

3.3 Properties of limits

Theorem 121. Let limxn = 0 and yn a bounded sequence. Then

limxn · yn = 0.

Proof. Let c > 0 be such that |yn| < c. Let ϵ > 0 be given, and n0 ∈ N a
number such that n > n0 ⇒ |xn| < ϵ

c
. Then, n > n0 ⇒ |xnyn| < ϵ

c
·c = ϵ.

Example 122. Using the theorem above we have lim
n→∞

sinn
n

= 0

Theorem 123. Let limxn = a and lim yn = b. Then

1. limxn + yn = a+ b, limxn − yn = a− b;

2. limxn · yn = ab;
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3. If b ̸= 0 then lim xn

yn
= a

b

Example 124. Let a ∈ R be a positive number. The sequence xn = n
√
a is

bounded and monotone, hence converges. We claim

lim n
√
a = 1.

Indeed, let L := lim n
√
a and consider the subsequence yn = xn(n+1) then

L = lim yn = lim a
1

n(n+1) = lim a
1
n
− 1

n+1 =
lim a

1
n

lim a
1

n+1

= 1

Example 125. Similar to the example above is the sequence xn = n
√
n. It is

bounded and monotone (starting from the third term), hence converges. We
claim

lim n
√
n = 1.

Let L := lim n
√
n and consider the subsequence yn = x2n then

L2 = lim yn · yn = lim
n
√
2n = lim

n
√
2 n
√
n = 1 · L = L

Hence, L = 0 or L = 1, but L ̸= 0 since xn ≥ 1.

Theorem 126. If limxn = a and a > 0, then ∃n0 such that xn > 0 for
n > n0. An equivalent statement is valid if a < 0, namely, up to a finite
amount of indexes, xn < 0.

Proof. It’s possible to find n0 such that n > n0 ⇒ |xn−a| < a
2
, in particular,

x > a
2
> 0 if n > n0. The case a < 0 is proved similarly.

Corollary 127. If xn, yn are convergent sequences and xn ≤ yn then limxn ≤
lim yn.

Corollary 128. If xn is convergent and xn ≥ a ∈ R then limxn ≥ a.

Theorem 129. (Squeeze theorem) If xn ≤ yn ≤ zn and limxn = lim zn, then
lim yn = limxn = lim zn.
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3.4 lim inf xn and lim supxn

A number a ∈ R is an accumulation point of the sequence xn, if there is a
subsequence xnk

such that lim
k→∞

xnk
= a.

Theorem 130. a ∈ R is an accumulation point of the sequence xn if and only
if ∀ϵ > 0, there are infinitely many values of n ∈ N such that xn ∈ (a−ϵ, a+ϵ).

Proof. The implication is clear, we prove the converse only. Take ϵ =
1, 1

2
, 1
3
, . . . , 1

k
, . . ., then it’s possible to find xnk

such that |xnk
− a| < 1

k
for

every k ∈ N and moreover nk < nk+1, in particular, lim
k→∞

xnk
= a.

Example 131. If limxn = a then xn has only one accumulation point,
namely a ∈ R. This follows directly from theorem 110.

Example 132. The sequence {0, 1, 0, 2, 0, 3, . . .} is divergent. However, it
has 0 as an accumulation point, due to the constant subsequence x2n−1 =
0. Similarly, the divergent sequence {1,−1, 1,−1, 1,−1, . . .} has only two
accumulation points: 0 and 1. The divergent sequence {1, 2, 3, 4, 5, 6, . . .}
doesn’t have an accumulation point.

Example 133. By theorem 94, every real number r ∈ R is an accumulation
point of a sequence of rational numbers.

We shall see below that every bounded sequence has at least two accu-
mulation points, and the sequence converges if and only if they coincide.

Let xn be a bounded sequence, say m ≤ xn ≤ M , with m,M ∈ R. Set

Xn = {xn, xn+1, . . .}.

Then Xn ⊆ [m,M ] and Xn+1 ⊆ Xn. Define an := infXn and bn := supXn,
then

m ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ . . . ≤ bn ≤ . . . ≤ b2 ≤ b1 ≤ M,

and the following limits are well defined a = lim an = sup an and b = lim bn =
inf bn. We define the limit inferior of xn as

lim inf xn := a

and the limit superior of xn as

lim supxn := b.

We obviously have
lim inf xn ≤ lim supxn.
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Example 134. Consider the sequence xn = {0, 1, 0, 1, 0, 1, . . .}. Using the
notation above, an ≡ 0 and bn ≡ 1. Therefore, lim inf xn = 0 and lim supxn =
1. More generally, we have:

Theorem 135. Let xn be a bounded sequence. Then lim inf xn is the smallest
accumulation point and lim supxn is the greatest one.

Proof. We prove the limit inferior claim, the other part can be proved anal-
ogously. First, we claim that a = lim inf xn is an accumulation point. In-
deed, using the notation above, a = lim an, hence given any ϵ > 0, for
n > n0, we have a − ϵ < an < a + ϵ. In particular, choose n1 > n0, then
a − ϵ < an1 < a + ϵ. Therefore, for n > n1 we have an1 ≤ xn < a + ϵ. We
conclude that a−ϵ < xn < a+ϵ, by theorem 130, a is an accumulation point.
To prove the minimality, let c < a. We claim c is not an accumulation point.
Since c < a ⇒ c < an0 , for some n0 ∈ N. Hence, c < an0 ≤ xn for n ≥ n0.
Finally, setting ϵ = an0 −c, we conclude that the interval (c− ϵ, c+ ϵ) doesn’t
contain any xn for n > n0, by theorem 130 this concludes the proof.

Corollary 136. (Bolzano–Weierstrass theorem) Every bounded sequence xn

has a convergent subsequence.

Proof. Since xn is bounded, a = lim inf xn is well defined and is an accumu-
lation point. In particular, there’s a subsequence of xn converging to a.

Corollary 137. A sequence xn is convergent if and only if lim inf xn =
lim supxn (xn has a unique accumulation point)

Proof. If xn is convergent, all subsequences converge to the same limit,
in particular lim inf xn = lim sup xn = limxn. Conversely, suppose a =
lim inf xn = lim sup xn. Then, using the notation above, we can find n0 such
that a − ϵ < an0 ≤ a ≤ bn0 < a + ϵ and n > n0 implies an0 ≤ xn ≤ bn0 . We
conclude that a− ϵ < xn < a+ ϵ.

Corollary 138. If c < lim inf xn then ∃n0 ∈ N such that n > n0 ⇒ c < xn.
Similarly, if c > lim supxn then ∃n1 ∈ N such that n > n1 ⇒ c > xn.

3.5 Cauchy Sequences

A sequence xn is called a Cauchy sequence if given ϵ > 0 we can find
n0 ∈ N such that for n,m > n0 we have

|xn − xm| < ϵ
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In other words, a Cauchy sequence is a sequence such that its terms xn

are infinitely close for sufficiently large n. It’s reasonable to expect that a
sequence with this property converges, and that is indeed true as the theorem
below shows (for sequences in R, we will see in a few weeks when we talk
about topology, that it’s possible to construct a topological space where no
Cauchy sequence converges.)

Theorem 139. Every Cauchy sequence is convergent.

The proof is a direct consequence of the two lemmas below.

Lemma 140. Every Cauchy sequence is bounded.

Proof. By definition, we can find n0 ∈ N such that m,n > n0 ⇒ |xn − xm| <
1. Fix xm and set M := max{|x1|, |x2|, . . . , |xn0|, |xm − 1|, |xm + 1|}, then
xn ∈ [−M,M ].

Lemma 141. If a Cauchy sequence xn has a convergent subsequence xnk

with lim
k→∞

xnk
= a then it converges and limxn = a.

Proof. Given ϵ > 0, it’s possible to find n0 such thatm,n > n0 ⇒ |xn−xm| <
ϵ
2
. Additionally, it’s possible to find m0 such that nk > m0 ⇒ |xnk

− a| < ϵ
2
,

take one nk > n0 such that this is true. Then n > n0 ⇒ |xn − a| <
|xn − xnk

|+ |xnk
− a| < ϵ.

Now we prove the converse of the theorem above.

Theorem 142. Every convergent sequence is a Cauchy sequence.

Proof. Suppose a := limxn. Then it’s possible to find n0 and n1 such that
n > n0 ⇒ |xn − a| < ϵ

2
and m > n1 ⇒ |xm − a| < ϵ

2
. We conclude that

|xn − xm| < |xn − a|+ |xm − a| < ϵ,

for m,n > max{n0, n1}.

We conclude that

Corollary 143. A sequence xn of real numbers is a Cauchy sequence if and
only if it converges.
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3.6 Infinite limits

A divergent sequence xn converges to infinity, denoted by limxn = +∞, if for
any number M > 0, there is n0 > 0 such that n > n0 ⇒ xn > M . Similarly,
A sequence xn converges to negative infinity, denoted by limxn = −∞, if for
any number M > 0, there is n0 > 0 such that n > n0 ⇒ xn < −M .

Example 144. The sequence xn = n converges to infinity, since given any
M > 0, take any natural number n0 > M , then xn = n > M if n > n0. On
the other hand, the sequence xn = (−1)nn is divergent but doesn’t converge
to ∞, nor to −∞, since it is unbounded from above and below, and as a
consequence of the definition a sequence converges, say to +∞, then it’s
bounded from below, and similarly, converges to −∞, then it’s bounded from
above.

The following theorem, similar to theorem 123 gives some properties of
infinite limits. The proof will be omitted.

Theorem 145. (Arithmetic operations with infinite limits)

1. If limxn = +∞ and yn is bounded from below, then lim(xn+yn) = +∞
and lim(xn · yn) = +∞ ;

2. If xn > 0 then limxn = 0 if and only if lim 1
xn

= +∞;

3. Let xn, yn > 0 be positive sequences. Then:

(a) If xn is bounded from below and lim yn = 0 then lim xn

yn
= +∞;

(b) If xn is bounded and lim yn = +∞ then lim xn

yn
= 0.

Example 146. Let xn =
√
n+ 1 and yn = −

√
n. Then limxn = ∞,lim yn =

−∞. We have:

lim(xn+yn) = lim
√
n+ 1−

√
n = lim

(
√
n+ 1−

√
n)(

√
n+ 1 +

√
n)√

n+ 1 +
√
n

= lim
1√

n+ 1 +
√
n
,

which gives lim(xn + yn) = 0. However, it’s not true in general that
lim(xn + yn) = limxn + lim yn if both sequences have infinite limit. For
example, xn = n2 and yn = −n give a counter-example, since limxn = +∞,
lim yn = −∞, but lim(xn + yn) = +∞.
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Example 147. Let xn = [2 + (−1)n]n and yn = n. Then limxn = lim yn =
+∞, but lim xn

yn
= lim[2 + (−1)n] doesn’t exists. So it’s not true in general

that lim xn

yn
= 1 if limxn = lim yn = +∞.

Example 148. Let a > 1. Then lim an

n
= +∞. Indeed, a = 1+s with s > 0,

so an = (1 + s)n ≥ 1 + ns+ n(n−1)
2

s2 for n ≥ 2, but lim
1+ns+

n(n−1)
2

s2

n
= +∞,

hence lim an

n
= +∞. Arguing by induction, it’s easy to show that for any

m ∈ N, lim an

nm = +∞.

Example 149. Let a > 0. Then lim n!
an

= +∞. Indeed, pick n0 ∈ N such
that n0

a
> 2. Then

n!

an
=

n(n− 1) . . . (n0 + 1)n0!

an0 a . . . a︸ ︷︷ ︸
n−n0

>
n0!

an0
2n−n0 ,

and it follows that lim n!
an

= +∞.

3.7 Series

Given a sequence of real numbers xn, the purpose of this section if to give
meaning to expressions of the form, x1 + x2 + x3 + . . ., that is, the formal
sum of all the elements of the sequence xn.

A natural way of doing this is to set sn := x1 + . . . + xn, called partial
sums, and define

∞∑
n=1

xn := lim sn

It’s a common practice to write
∑

xn instead of
∞∑
n=1

xn, and to call xn the

general term of the series. In these notes we shall adopt these conventions.
Since we define

∑
xn as a limit, it may or may not exist. In case

∑
xn =

L ∈ R we say that the series
∑

xn converges, otherwise we say
∑

xn diverges.

Theorem 150. If the series
∑

xn converges then limxn = 0.

Proof. Indeed, we have xn = sn− sn−1. Therefore, limxn = lim(sn− sn−1) =
lim sn − lim sn−1 = 0.

The converse of the theorem above is not true. Here’s a counterexample:
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Example 151. (harmonic series) Consider the series
∑

1
n
. We obviously

have lim 1
n
= 0, however, we claim

∑
1
n
diverges. Indeed, in order to prove

that lim sn diverges, it’s enough to find a divergent subsequence. Take for
example s2n:

s2n = 1 +
1

2
+ . . .+

1

2n

= 1 +
1

2
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

> 1 +
1

2
+

2

4
+

4

8
+

8

16
+ . . .+

2n−1

2n

= 1 + n · 1
2

Hence, s2n > 1 + n · 1
2
and lim s2n = +∞.

Example 152. (geometric series) The series
∑

an, with a ∈ R, diverges if
|a| ≥ 1, since the general term xn = an doesn’t satisfy limxn = 0. If |a| < 1,
then

∑
an converges. Indeed, we can show by induction that

sn =
1− an+1

1− a
,

and hence
∑

an = lim sn = 1
1−a

, if |a| < 1.

Theorem 153. Given series
∑

an,
∑

bn, we have:

1. If
∑

an and
∑

bn converge, then
∑

(an + bn) converges and
∑

(an +
bn) =

∑
an +

∑
bn.

2. Let c ∈ R. If
∑

an converges, then
∑

c an also converges, and
∑

c an =
c
∑

an.

3. Suppose
∑

an and
∑

bn converge, set cn :=
n∑

i=1

aibn +
n−1∑
j=1

anbj. Then∑
cn converges and

∑
cn = (

∑
an) · (

∑
bn).

Example 154. (telescoping series) The series
∑

1
n(n+1)

is convergent. Since
1

n(n+1)
= 1

n
− 1

n+1
, we easily see that sn = 1− 1

n+1
, so

∑
1

n(n+1)
= 1.

Example 155. The series
∑

(−1)n is divergent since the sequence (−1)n has
two distinct accumulation points, so it’s impossible to have lim(−1)n = 0.
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Theorem 156. Let an ≥ 0 be a nonnegative sequence of real numbers. Then∑
an converges if and only if the partial sum sn is a bounded sequence for

every n ∈ N.

Proof. The implication is clear. The converse follows from the fact that every
bounded monotone sequence converges.

Corollary 157. (Comparison principle) Suppose
∑

an and
∑

bn are series
of nonnegative real numbers, i.e. an, bn ≥ 0. If there are c ∈ R and n0 ∈ N
such that an ≤ c bn for n > n0, then if

∑
bn converges,

∑
an converges.

Moreover, if
∑

an diverges then
∑

bn diverges.

Example 158. If r > 1, the series
∑

1
nr converges. Indeed, the general

term of this series is positive, so the partial sums sn are increasing, hence
it’s enough to prove that a subsequence of sn is bounded. We claim s2n−1 is
bounded. We have:

s2n−1 = 1 +
1

2r
+ . . .+

1

(2n − 1)r

= 1 +

(
1

2r
+

1

3r

)
+

(
1

4r
+

1

5r
+

1

6r
+

1

7r

)
+ . . .+

1

(2n − 1)r

< 1 +
2

2r
+

4

4r
+

8

8r
+ . . .+

2n−1

2(n−1)r

=
n−1∑
j=0

(
2

2r

)j

On the other hand, the geometric series
∞∑
j=0

(
2
2r

)j
converges since 2

2r
< 1. We

conclude that s2n−1 is bounded and the claim follows.

Corollary 159. (Cauchy’s criteria) The series
∑

an is convergent if and
only if given ϵ > 0, there is n0 ∈ N such that |an+1 + . . . + an+p| < ϵ for
n > n0.

Proof. Notice that sn converges if and only if it is a Cauchy sequence (see
Corollary 143).

A series
∑

an is absolutely convergent if
∑

|an| is convergent. A
series with all of its terms positive (or negative) is convergent if and only if
is absolutely convergent. Hence, in this case the two notion coincide. Here’s
a classical counterexample that shows that they don’t coincide in general:
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Example 160. Consider the series
∑ (−1)n

n
. We already know that

∑
1
n

diverges, however we claim that
∑ (−1)n

n
converges. Indeed, notice that the

subsequence s2n satisfies

s2 < s4 < s6 < . . . < s2n,

and is a Cauchy sequence, hence convergent. Whereas s2n−1 satisfies

s1 > s3 > s5 > . . . > s2n−1,

so it’s bounded and monotone, hence convergent as well. Set a := lim s2n, b :=
lim s2n−1, then since s2n − s2n−1 = 1

2n
→ 0, we necessarily have a = b. We

conclude that sn has only one accumulation point, hence converges. (We will
see later that a = b = log 2)

A series
∑

an is conditionally convergent if
∑

an is convergent but∑
|an| is divergent. The example above shows that

∑ (−1)n

n
is conditionally

convergent.

Theorem 161. Every absolutely convergent series
∑

an is convergent.

Proof. By hypothesis,
∑

an is Cauchy, so we can find n0 ∈ N such that
n > n0,∀p ∈ N ⇒ |an+1| + . . . + |an+p| < ϵ. In particular, |an+1 + . . . +
an+p| < |an+1|+ . . .+ |an+p| < ϵ, the conclusion follows from Cauchy’s criteria
(Corollary 159).

Corollary 162. Let
∑

bn a convergent series with bn ≥ 0. If there are
n0 ∈ N and c ∈ R such that n > n0 ⇒ |an| ≤ c bn then the series

∑
an is

absolutely convergent.

Corollary 163. (The root test) If there are n0 ∈ N and c ∈ R such that
n > n0 ⇒ n

√
|an| ≤ c < 1, then the series

∑
an is absolutely convergent. In

other words, if lim sup n
√

|an| < 1 then
∑

an is absolutely convergent. On the

other hand, if lim sup n
√

|an| > 1, then
∑

an diverges.

Proof. In this case, we can compare
∑

|an| with
∑

cn, the latter (absolutely)
converges since it’s a geometric series with 0 < c < 1. If n

√
|an| > 1 for n

sufficiently large, then lim an ̸= 0.

Corollary 164. (The root test – second version) If lim n
√
|an| < 1, then the

series
∑

an is absolutely convergent. If lim n
√

|an| > 1, then the series
∑

an
is divergent.
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Example 165. Let a ∈ R and consider the series
∑

nan. Notice that
lim n

√
n |a|n = lim n

√
n lim |a| = |a|. Hence, if |a| < 1 the series

∑
nan is

absolutely convergent and if |a| > 1 it diverges. If |a| = 1 the series also
diverges, since limnan ̸= 0 in this case.

Theorem 166. (The ratio test) Let
∑

an and
∑

bn be series of real numbers
such that an ̸= 0, bn > 0,∀n ∈ N and

∑
bn convergent. If there is n0 ∈ N

such that n > n0 ⇒
∣∣∣an+1

an

∣∣∣ ≤ ∣∣∣ bn+1

bn

∣∣∣, then ∑
an is absolutely convergent.

Proof. Consider the inequalities:∣∣∣∣an0+2

an0+1

∣∣∣∣ ≤ ∣∣∣∣bn0+2

bn0+1

∣∣∣∣∣∣∣∣an0+3

an0+2

∣∣∣∣ ≤ ∣∣∣∣bn0+3

bn0+2

∣∣∣∣
. . .∣∣∣∣ an

an−1

∣∣∣∣ ≤ ∣∣∣∣ bn
bn−1

∣∣∣∣
Multiplying them together, we have:∣∣∣∣ an

an0+1

∣∣∣∣ ≤ ∣∣∣∣ bn
bn0+1

∣∣∣∣
Hence, |an| ≤ c bn and the result follows by the comparison principle.

Corollary 167. (The ratio test – second version) If lim sup
∣∣∣an+1

an

∣∣∣ < 1, then

the series
∑

an is absolutely convergent. If lim sup
∣∣∣an+1

an

∣∣∣ > 1, then the series∑
an is divergent.

Proof. For the convergence, take bn = (lim sup
∣∣∣an+1

an

∣∣∣)n in theorem 166. If

lim sup
∣∣∣an+1

an

∣∣∣ > 1 then lim an ̸= 0.

Corollary 168. (The ratio test – third version) If lim
∣∣∣an+1

an

∣∣∣ < 1 then
∑

an

is absolutely convergent, if lim
∣∣∣an+1

an

∣∣∣ > 1 then
∑

an diverges.
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Example 169. Fix x ∈ R and consider the series
∑

xn

n!
, then

∣∣∣an+1

an

∣∣∣ =
|x|
n+1

→ 0 regardless of x, and the series is absolutely convergent. We will see
later that this series coincides with ex.

Theorem 170. (Root test is stronger than the ratio test) For any bounded
sequence an of positive numbers we have

lim inf
an+1

an
≤ lim inf n

√
an ≤ lim sup n

√
an ≤ lim sup

an+1

an
,

In particular, if lim an+1

an
= c then lim n

√
an = c.

Proof. It’s enough to prove that lim sup n
√
an ≤ lim sup an+1

an
, the first inequal-

ity can be proven mutatis mutandis. We argue by contradiction, suppose
there is a k ∈ R such that

lim sup n
√
an > k > lim sup

an+1

an

Proceeding as in the proof of theorem 166, we can find n0 ∈ N such that
n > n0 ⇒ an < c kn, which implies that n

√
an < c

1
n k and hence:

lim sup n
√
an ≤ k

a contradiction.

Example 171. A nice application of the theorem above is the computation
of lim n

n√
n!
. Set xn = n

n√
n!

and yn = nn

n!
, then xn = n

√
yn. On the other hand,

yn+1

yn
= (1 + 1

n
)n, hence lim yn+1

yn
= e, and it follows that lim n

n√
n!

= e.

Example 172. Given two distinct numbers a, b ∈ R, consider the sequence
xn = {a, ab, a2b, a2b2, a3b2, . . .}, then the ratio xn+1

xn
= b if n is odd, and

xn+1

xn
= a if n is even, hence the sequence xn+1

xn
doesn’t converge and lim xn+1

xn

doesn’t exist. On the other hand, we have lim n
√
xn =

√
ab. This demonstrates

that in the theorem above the inequalities can be strict.

Theorem 173. (Dirichlet) Let bn be a nonincreasing sequence of positive
numbers with lim bn = 0, and

∑
an be a series such that the partial sum sn

is a bounded sequence. Then the series
∑

anbn converges.
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Proof. Notice that

a1b1 + a2b2 + . . .+ anbn = a1(b1 − b2) + (a1 + a2)(b2 − b3)+

+ (a1 + a2 + a3)(b3 − b4) + . . .+ (a1 + . . .+ an)bn

=
n∑

i=2

si−1(bi−1 − bi) + snbn

Since sn is bounded, say |sn| ≤ k and bn → 0, we have lim snbn = 0.
Moreover, |

∑n
i=2 si−1(bi−1 − bi)| ≤ k|

∑n
i=2(bi−1 − bi)| = k(b1 − bn). So∑n

i=2 si−1(bi−1 − bi) converges, and therefore, by comparison,
∑

anbn con-
verges as well.

We can weaken the hypothesis lim bn = 0. Indeed, if lim bn = c just take
b∗n := bn − c and use this new sequence instead. We conclude:

Corollary 174. (Abel) If
∑

an is convergent and bn is a nonincreasing se-
quence of positive numbers then

∑
anbn converges.

Corollary 175. (Leibniz) Let bn be a nonincreasing sequence of positive
numbers with lim bn = 0. Then the series

∑
(−1)nbn converges.

Proof. In this case, an = (−1)n has bounded partial sum, namely |sn| ≤ 1,
and the result follows directly from theorem 173.

Example 176. Some periodic real valued functions can be written as a linear
combination of

∑
cos(nx) and

∑
sin(nx). The properties of such functions

and generalizations are addressed in area of mathematics called Fourier
Analysis. E. Stein’s book on the subject is a wonderful first-read of the
topic.

Take the example of f(x) =
∑ cos(nx)

n
, we claim that if x ̸= 2πk, k ∈ Z

then f(x) is well-defined, i.e.
∑ cos(nx)

n
converges. Indeed, let an = cos(nx)

and bn = 1
n
, then bn is decreasing, so by theorem 173, it’s enough to prove

that the partial sums sn of
∑

an are bounded. In other words, we need to
show that

sn = cos(x) + cos(2x) + cos(3x) + . . .+ cos(nx)
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is bounded. Recall, that eix = cos(x) + i sin(x). Therefore:

1 + sn = Re[1 + eix + e2ix + e3ix + . . .+ enix]

1 + sn = Re[
1− e(n+1)ix

1− eix
]

1 + sn ≤ 2

|1− eix|

It follows that sn is bounded and we conclude that
∑ cos(nx)

n
converges if

x ̸= 2πk.

Given a series
∑

an, we define the positive part of
∑

an as the series∑
pn, where pn = an if an > 0, and pn = 0 if an ≤ 0. Similarly, the negative

part of
∑

an as the series
∑

qn, where qn = −an if an < 0, and qn = 0
if an ≥ 0. It follows immediately from the definition that pn, qn ≥ 0 and
an = pn − qn, |an| = pn + qn ∀n ∈ N.

Proposition 177. The series
∑

an is absolutely convergent if and only if∑
pn and

∑
qn converge.

Proof. Notice that pn ≤ |an| and qn ≤ |an|, hence if
∑

|an| converge then by
comparison

∑
pn and

∑
qn also converge. The converse is obvious.

Example 178. If
∑

an is not absolutely convergent, then the proposition

is false. Take the example of
∑ (−1)n

n
. In this case,

∑
pn =

∑
1
2n

and∑
qn =

∑
1

2n−1
, and both diverge.

Proposition 179. If
∑

an is conditionally convergent then
∑

pn and
∑

qn
diverge.

Proof. Suppose not, say
∑

qn converge. Then
∑

|an| =
∑

pn +
∑

qn =∑
an + 2

∑
qn also converges, a contradiction.

Let f : N → N be a bijection and
∑

an be a series of real numbers. Set
bn = af(n). We say

∑
an is commutatively convergent if

∑
an =

∑
bn

for every bijection f : N → N. We will show below that the notion of
commutative convergence coincides with absolute convergence.

Theorem 180. A series
∑

an is absolutely convergent if and only if is com-
mutatively convergent.
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Proof. Suppose
∑

an absolutely convergent, and let bn = af(n) for some
bijection f : N → N. It’s enough to assume that an ≥ 0, otherwise just use
the fact that an = pn − qn, for pn, qn ≥ 0, and apply the result for pn and

qn. Now, fix n ∈ N and let sn =
n∑

i=1

ai denote the partial sum of
∑

an, and

tn =
n∑

i=1

bi, the partial sum of
∑

bn. If we set m := max{f(x); 1 ≤ x ≤ n}, it

follows that tn =
n∑

i=1

af(i) ≤
m∑
i=1

ai = sm. We conclude that for each n ∈ N it’s

possible to find m ∈ N such that tn ≤ sm, and similarly using f−1(y) instead
of f(x), given m ∈ N it’s possible to find n ∈ N, such that sm ≤ tn, which
implies lim sn = lim tn, hence

∑
an =

∑
bn.

Conversely, we want to show that if
∑

an is commutatively convergent
then it is absolutely convergent. We prove the contra-positive, that is, sup-
pose

∑
an is not absolutely convergent then

∑
an is not commutatively

convergent. Indeed, if
∑

an is divergent, just take bn = an. Otherwise,∑
an is conditionally convergent, say

∑
an = S ∈ R, and by proposition

179, both
∑

pn and
∑

qn diverge. Moreover, since lim an = 0, we have
lim pn = lim qn = 0. Take any number c ̸= S, we will show that we can
reorder an into bn in such a way that

∑
bn = c, hence

∑
an can’t be com-

mutatively convergent. Let n1 be the smallest natural such that

p1 + p2 + . . .+ pn1 > c,

and n2 > n1, be smallest number such that

p1 + . . .+ pn1 − q1 − q2 − . . .− qn2 < c.

Proceeding by induction, we obtain a new series
∑

bn, such that the partial
sums tn approach c. Indeed, for odd i we have tni

− c ≤ pni
, be definition

of ni, and similarly, c − tni+1
≤ qni+1

. Since lim pn = lim qn = 0, we have
lim tni

= c. A similar argument holds for i even.

4 Topology of R
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