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1 Naive set theory

1.1 Sets

A set X is a collection of objects, also called the elements of the set. If ‘a’ is
an element of X, we write a € X. On the other hand, if ‘a’ isn’t an element
of X, we write a ¢ X.

A set X is well defined when there is a rule that allows us to say if an
arbitrary element ‘a’ is or isn’t an element of X.

Example 1. The set X of all right triangles is well-defined. Indeed, given
any object ‘a’, if ‘a’is not a triangle or doesn’t have a right angle then a ¢ X.
If ‘a’ is a right triangle then a € X.

Example 2. The set X of all tall people is not well-defined. The notion of
‘tall’ is not universally defined, hence given any element a we can’t say if
aceX ora¢ X.

Usually one uses the notation

X=A{a,b,¢ ...}

to represent the set X whose elements are a,b,c,..., and if a set has no
elements we denote it by () and call it the empty set.
The set of natural numbers 1,2, 3, ... will be represented by

N=1{1,2,3 ..}
The set of integers will be represented by
Z={.,-3,-2,-1,01,2,3, ...}

The set of rational numbers, that is, fractions §, where a,b € Z and b # 0,
will be denoted by

Q={5labez b#0}
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The vast majority of sets in mathematics are not defined by specifying its
elements one by one. What usually happens is a set being defined by some
property its elements satisfy, i.e. if a has property P than a € X, whereas if
a doesn’t have property P then a ¢ X. One writes

X = {a] a has property P}
For example, the set
X ={a € N|a> 10},

consists of all natural numbers bigger than 10.

Given two sets A, B, one says that A is a subset of B or that A is
included in B (B contains A), represented by A C B, if every element of A
is an element of B.

Example 3. We have the obvious inclusion of sets:
NCZCQ.

Example 4. Let X be the set of all squares and'Y be the set of all rectangles.
Then X CY, since every square 1s a rectangle.

When one writes X C Y, it’s possible that X =Y. In case X # Y, we
say X is a proper subset, the notation X C Y is sometimes used to indicate
that X is a proper subset of Y.

Notice that to write a € X is equivalent to say {a} C X. Also, by
definition, it’s always true that () C X for every set X.

It’s easy to see that the inclusion of sets has the following properties:

1. Reflexive, X C X for every set X
2. Anti-symmetric, if X CY and Y C X then X =Y
3. Transitive, if X CY and Y C Z then X C Z.

It follows that two sets X and Y are the same if and only if X C Y and
Y C X, that is to say, they have the same elements.
Given a set X, we define the power set of X, P(X) as

P(X)={A|AC X}

The set P(X) is the set of all subsets of X, in particular it’s never empty, it
has at least () and X itself as elements.



Example 5. Let X = {1,2,3} then
PX) = {0, {1}, {2}, {3}, {1,2}, {1,3},{2,3} }.

Notice that by using the Fundamental Counting Principle, any set with
n elements has 2" subsets. Therefore, the number of elements of P(X) is 2".

1.2 Operation with sets

We given two sets X and Y, one can build many other sets. For example,
the union of X and Y, denoted by X UY is the of elements that are in X
or Y, more precisely:

XUY ={alaeXoracY}.

Similarly, the intersection of X and Y, denoted by X NY is the of elements
that are common to both X and Y:

XNY ={alae Xanda€cY}.
If XNY =0, then X and Y are said to be disjoint.
Example 6. Let X = {a € N|a <100} and Y = {a € N|a > 50} then
XUY =Nand X NY = {a € N|50 < a < 100}

Example 7. The sets X = {a € N|a > 1} and Y = {a € N|a < 2} are
disjoint, i.e. X NY = ) since there is no natural number between 1 and 2.

The difference between X and Y, denoted by X —Y is the set of elements
that are in X but not in Y, more precisely:

X—-Y={alae Xanda ¢V}

Given an inclusion of sets X C Y, the complement of X in Y is the set
Y — X, the notation X°¢ sometimes is used if there is no confusion about who
the set Y is.

Example 8. Consider the sets X = {a € N|a is even} and Y = N. Then
X CY and X¢={a € N|a is odd}.

Proposition 9. Given sets A, B, C, D the following properties are true:
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AUD=A; AnD=10

AUA=A; ANA=A

AUB=BUA; ANB=BnA

AU(BUC)=(AUB)UC; An(BNC)=(AnB)NnC
AUB=A&BCA; ANB=A< ACB

if ACB and C C D then AUC CBUD and ANC CBND
AU(BNC)=(AUB)N(AUC); AN(BUC)=(ANnB)U((ANnCQC)
(Ac)e = A

© 2 RS @ e e

(AUB) = A°N B¢; (AN B)¢ = A°U B¢

Proof. The last property, (AU B)¢ = A°N B¢, will be demonstrated below,
the others are trivial or can be proved in a similar way.

We prove that (AU B)¢ C A°N B°. Let a € (AUB)° thena ¢ AUB, in
particular, a ¢ A and a ¢ B, hence a € A° N B°.

Conversely, take a € AN B°. Thena ¢ A and a ¢ B, soa ¢ AU B and
it follows that a € (AU B)°. O

An ordered pair (a,b) is formed by two objects a and b, such that for any
other such pair (¢, d):

(a,b) = (¢,d) < a=cand b=d.

The elements a and b are called coordinates of (a,b), a is the first coordinate
and b the second one.

The cartesian product X x Y of two sets X and Y is the set of all
ordered pairs (x,y) such that x € X and y € YV

XxY={(r,y)lre XandyeY}.

Remark 1. An ordered pair is not the same as a set, i.e. (a,b) # {a,b}.
Notice that {a,b} = {b,a} but (a,b) # (b,a) in general.

Example 10. Consider the sets X = {1,2,3} and Y = {a,b}, then

X xY ={(1,a),(1,0),(2,a),(2b),(3,a),(3b)}.

5



1.3 Functions

A function f : X — Y consists of three components: a set X, the domain,
a set Y, the co-domain, and a rule that associates each element a € X an
unique element in f(a) € Y, f(a) is called the value of f(z) at a, or the
image of a under f(z).

Another common notation to denote a function is x +— f(x). In this case
the domain and codomain can be identified by the context.

Example 11. The function f : N — N given by f(n) = n + 1 is called the
successor function.

Example 12. Let X be the set of all triangles. One can define a function
f: X =R by f(z) = area of z.

Example 13. (Relation that is not a function) The correspondence that
associates to each real number x, all y satisfying y*> = x is not a function
because any x # 0 will be associated to two values, namely ++/x, and in order
to be a function every x has to have exactly one image y = f(x).

The graph of a function f: X — Y is a subset of X x Y defined by
I(f)={(z f(z)) |z e X}

Example 14. Consider the function f(x) = e~ its graph is given below:

1

. .
-2 -1 1 2

A function f : X — Y is said to be injective or one-to-one if for every
x,y such that f(z) = f(y) then x = y. Suppose X C Y, then inclusion
i: X — Y given by i(x) = z is a typical example of injective function.

A function f: X — Y is said to be surjective or onto if for every y € Y
there is z € X such that y = f(x). The projection p : X XY — X in the
first coordinate, given by p(z,y) = x is a typical example of surjection.
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Finally, a function f : X — Y is bijective or a bijection if it is both

surjective and injective.

Example 15. The function given by f(x) =z

05

3

18 1njective.

-1.0b

Example 16. The step function f(x) =

max{n € Z|n < x } is not injective.

Example 17.

(—g,g) — R.

05

The function f(z) = sinx is a bijection if we consider f :

. . .
05 1.0 156



Given a function f: X — Y, the image of a set A C X is defined by

fA) ={yeYly=/fla),ac A}

Conversely, the inverse image of a set (sometimes called pre-image) B CY
is given by
f(B)={reX|f(x) e B}.

Proposition 18. Given f: X — Y and subsets A, B C X, we have:
1. f(AUB) = f(A)U f(B); [ (AUB) = fT{(A) U f(B)

f(ANB) C f(A)Nf(B); [~ (ANB) = f~1(A)nf(B)

if AC B then f(A) C f(B) and f~(A) C f~4(B)

f0)=0; f71(0) =0

i) =x

f7HA) = (F1(A)°

Example 19. Consider the function f(x,y) = x? + y*, the inverse image
F7Y{1}) is a circle of radius 1. Similarly, any line ax + by = ¢ can be seen
as g 1({c}), where g(x,y) = ax + by.

S T

Given two functions f: X — Y and g : Y — Z, the composition go f of
g and f is defined as the function:

(g o f)(x) = g(f(x))

Example 20. The composition of the functions g(x) = sinx and f(x) = e”
is the function (g o f)(z) = sine” depicted below.

—

1ol sin(e*)

AN
|




Given a function f : X — Y and a subset A C X, the restriction of
f(z) to A, denoted by f|a: A — Y, is defined by f|a(x) = f(x). Similarly,
if X C Z, a extension of f(x) to Z is any function g : Z — Y such that

glx(x) = f(2).

Example 21. Consider again the function f(z,y) = x> + y?, and the unit
circle St = { (z,y) | 2* + y* = 1}. Then the restriction f|s: is the constant
function g(x) = 1.

Given functions f : X — Y, and g : Y — X, the function g(z) is called
left-inverse of f(x) if

(go f)lz) =z
Similarly, the function g(z) is called right-inverse of f(x) if
(fog)(z) ==

Finally, if there is a function f~1(x) such that

(fof™(z)=(f"of)lx) =z,

f1(z) is called the inverse of f(x). Notice that any inverse, if exists, is
unique. If g(x) and h(x) are both inverses of f(z) then

9(x) = g(f(h(x))) = (g o f)(h(x)) = h(z).

Proposition 22. A function f: X —Y has an inverse f~1:Y - X & f
18 bijective.

Proof. Suppose f has an inverse f~! and f(x) = f(y) for some x,y. Taking
the inverse on both sides, we conclude that x = y and f is injective. Similarly,
take y € Y and set * = f~!(y), then f(x) = y and it follows that f is
surjective.

Conversely, suppose f bijective. If f(x) =y, set f~!(y) = z. One can
easily check that (fo f~1)(z) = (f~'o f)(z) = . O

Example 23. Consider the function f : (0, +00) — (0, +00) given by f(x) =
1. then the f is its own inverse, i.e. (fo f)(z) = x.



1.4 The natural numbers N

The natural numbers are built axiomatically. Start with a set N, whose
elements are called natural numbers, and a function s : N — N, called the
successor function. For any n € N, s(n) is called the successor of n.

The function s(n) satisfies the following axioms:

Axiom 1. s(n) is injective, i.e. every number has a unique successor.

Axiom 2. The set N— s(N) has only one element, which will be denoted by 1, i.e.
every number has a successor and 1 is not a successor of any number.

Axiom 3. (Principle of induction) Let X C N be a subset with the following
property: 1 € X and given n € X, s(n) € X as well. Then X = N.

Whenever axiom 3 is used to prove a result, the result is said to be proved
by induction.

Proposition 24. For any n € N, s(n) # n.
Proof. The proof is by induction. Let X € N be a subset defined by:

X ={neN]|s(n)#n}.

By Axiom 2, 1 € X. Let n € X, then s(n) # n. By Axiom 1, s(s(n)) # s(n),
hence s(n) € X. The proof follows by Axiom 3.
[

Given a function f : X — X, its power f" is defined inductively. More
precisely, if one sets f! = f then f" is defined by:

f = fofm.

In particular, if one sets 2 = s(1),3 = s(2),..., then f2 = fo f, f3 =
fofof, ...
Now, given two natural numbers m,n € N, their sum m+n € N is defined
by:
m—+n = s"(m).

It follows that m + 1 = s(m) and m + s(n) = s(m + n), in particular:
m+n+1)=m+n)+1

More generally, the following can be proved using induction:

10



Proposition 25. For any m,n,p € N:
1. (Associativity) m + (n +p) = (m +n) + p;
2. (Commutativity) m +n =n+m;
3. (Cancellation Law) m +n=m+p=n=p;

4. (Trichotomy) Only one of the following can occur: m =n, or 3¢ € N
such that m =n+ q, or Ir € N such thatn =m +r.

The notion of order among natural numbers can be defined in terms of
addition. Namely, one writes
m < n,

if 4¢ € N such that n = m + ¢; in the same situation, one also writes n > m.
Notice in particular that for every m € N:

m < s(m).

Finally, one writes m > n if m > n or m = n and a similar definition applies
to <.

Proposition 26. For any m,n,p € N:
(I) (Transitivity) m <n,n <p = m < p;

(II) (Trichotomy) Only one of the following can occur: m = n, m < n or
m > n.

(III) m <n=m+p<n+p.

The multiplication operation m - n will be defined in a similar way as
m+n was defined. Let a,, : N — N be the ‘add m’ function, a,,(n) = n+m.
Then multiplication of two natural numbers m - n is defined as:

m-1:=m,
m-(n+1):= (an)"(m).
Som-2 = a,(m) =m+m,m-3 = (a,)*(m) =m-+m+m,..., and it follows

that:
m-(n+1):=m-n+m.

More generally, the following is true:
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Proposition 27. For any m,n,p € N:
a. m-(n-p)=(m-n)-p;
b. m-n=n-m;
c.m-mn=p-n=m=p;
d m-(n+p)=m-n+m-p;

e m<n=m-p<n-p.

1.5 Well-ordering principle

Let X € N. A number m € X is called the minimum element of X,
denoted m = min X, if m < n for every n € X. For example, 1 is the
minimum of N; 100 is the minimum of {100, 1000, 10000}.

Lemma 28. [f m = min X and n = min X then m = n.

Proof. Since m < p for every p € X, m < n in particular. Similarly, n < m
and hence m = n. O

The maximum element is defined similarly: m = max X if m > n, Vn €
X. Notice that not all subsets X C N have a maximum. In fact, N itself
doesn’t have a maximum, since m < m + 1 for every m € N. The lemma
above remains valid if we exchange ‘minimum’ by ‘maximum’.

Despite not all subsets of N having a maximum, they do have a minimum
if they are non-empty.

Theorem 29. (Well-ordering principle) Let X C N be non-empty. Then X
has a minimum.

Proof. If 1 € X then 1 is the minimum, so suppose 1 ¢ X. Let
L ={meN|1<m<n},

and consider the set

L={neN|I, C X}
Since 1 ¢ X = 1€ L. lf n€ L = n+1 € L then induction would imply
L =N,but L # Nsince L C X®=N- X, and X # (). We conclude that
there is a mg such that my € L but mg + 1 ¢ L. It follows than mgy + 1 is
the minimum element of X. O]
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Corollary 30. (Strong induction) Let X C N be a set with the following
property:
Vn € N, if X contains allm <n =n € X.

Then X = N.

Proof. Set Y = X¢, the claim is that Y = (). Suppose not, that is, Y # (.
By the theorem above, Y has a minimum element, say p € Y. But then by
hypothesis p € X, a contradiction. O

Example 31. Strong induction can be used to prove the Fundamental the-
orem of Arithmetic, which says that every number greater than 1 can
written as a product of primes (a number p is prime if p # m - n, with
m < pandn < p). Indeed, Let X = {m € N|m is a product of primes}
and n € N a giwen number. If X contains all numbers m such that m < n,
then if n is prime, n € X ; if n is not a prime thenn = p-q withp < n,q < n,
again it follows that n € X. Therefore, strong induction implies X = N.

Let X be any set. A common way of defining a function f : N — X
is by recurrence (sometimes ‘by induction’ is used), namely, f(1) is given
and also a rule that allows one to obtain f(m) knowing f(n) for all n < m.
Technically, more than one function f could exist satisfying these conditions,
however it is know that such a function is unique, the proof of this fact is
left as an exercise.

Example 32. (Factorial) The factorial function f : n +— n! can be defined
using induction. Set f(1) =1 and f(n+1) = (n+1)- f(n). Then f(2) =
21, f3)=3-2-1,..., f(n) =nl

Example 33. (Arbitrary sums/products) So far the definition of m +n was
used, what about m +n+p or mi + ... +m,? In order to define arbitrary
sums (or products), one can use induction. Namely,

mi+...+my=(my+...4+mu_1)+mp;
and similarly, for products:

My My = (M. My_1) - my.

13



1.6 Finite and Infinite sets

Throughout this section, I,, stands for the set of numbers less than or equal
to n:
Li={meN|1<m<n}

A arbitrary set X is finite if X = () or there is number n € N and a bijection
f:I,— X.
In the latter case, one says that X has n elements and writes:
X] =n,

f is said to be a counting function for X. By convention, if X = () then one
says X has zero elements, i.e. |(] = 0.

It remains to show that the number of elements is a well-defined notion,
that is to say, if there are bijections f : [, - X and ¢ : I,,, = X then n = m.

Theorem 34. Let X C I,,. If there is a bijection f : I, — X, then X = I,,.

Proof. The proof is by induction on n. The case n = 1 is obvious, suppose
the result true for n, the proof follows if one can prove the result for n + 1.

Suppose X C [, and there is a bijection f : [,.; — X. Let a = f(n+1)
and consider the restriction f : I,, — X — {a}.

IfX—{a} C1I,then X —{a} =1I,,a=n+1and X =1,,;.

Suppose X — {a} € I,, then n +1 € X — {a} and one can find b such
that f(b) = n+ 1. Let g : I,41 — X be the defined by g(m) = f(m) if
m#n+1,a; gln+1) =n+1; g(b) = a. By construction, the restriction
g: 1, — X —{n+ 1} is a bijection and obviously X — {n + 1} C I, hence
X —{n+1} =1, and it follows that X = I,,,;. O

Corollary 35. (Number of elements is well-defined) If there is a bijection
f: 1L, — I, then m = n. Therefore, if f : I, - X and g : I, — X are
bijections then n = m.

Proof. The first part follows directly from the theorem. For the second part,
consider the composition (f~'og): I, — I,. O

Corollary 36. There is no bijection f : X — Y between a finite set X and
a proper subset Y C X.
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Proof. By definition there is a bijection ¢ : I,, = X for some n € N. Since
Y is proper, A := ¢ 1(Y) is also proper in I,,. Let ¢4 : A — Y be the
restriction of ¢ from I, to A. Suppose there is a bijection f : X — Y,
then the composite function p,' o fo ¢ : I, — A defines a bijection, a
contradiction. O

Theorem 37. Let X be a finite set and Y C X, then Y is finite and |Y| <
| X|, the equality occurs only if X =Y.

Proof. 1t’s enough to prove the result for X = [,. If n = 1 the result
is obvious. Suppose the result is valid for [, and consider Y C I,,y. If
Y C I, the induction hypothesis gives the result, so assume n+1 € Y. Then
Y —{n+1} C I, and by induction, there is a bijection f : I, = Y —{n+1},
where p < n. Let g : I,;1 — Y be a bijection defined by g(n) = f(n) if
n € I,, and g(p + 1) = n+ 1. This proves that Y is finite, moreover since
p<n=p+1<n+1,|Y| <n. The last statement says that if Y C I,, and
|Y| = n then Y = I,,, but this is a direct consequence of theorem O

The following Corollary is immediate:

Corollary 38. LetY be finite and f : X — Y be an injective function. Then
X is also finite and | X| < |Y].

Corollary 39. Let X be finite and f : X — Y be an surjective function.
Then'Y s also finite and |Y'| < |X]|.

Proof. Since f is surjective, by the proof of proposition 22} f has an injective
right-inverse g : Y — X. The result follows by the corollary above. O]

A set X that is not finite is said to be infinite. More, precisely X is
infinite when it’s not empty and there is no bijection f : I, — X for any
n € N.

Example 40. The natural numbers N is an infinite set since there is no
surjection between I,, and N, because given any function f : I, — N, the
number f(1)+ f(2) + ...+ f(n) is not in the range.

Example 41. Z and Q are also infinite sets since they contain N, which is
infinite.

A set X C N is bounded, if there is a number M € N such that n < M
for alln € X.

15



Theorem 42. Let X C N be nonempty. The following are equivalent:

a.
b.

C.

X is finite;
X is bounded;

X has a greatest element.

Proof. The proof is based on the implications a = b, b = ¢, ¢ = a.

(a = b)

(b= ¢)

(c = a)

Let X = {xy,29,...,2,}. Then M =z + ...+ z,, satisfies n < M for
alln € X.

Consider the set A = {n € N|n > z,Vx € X }. Since X is bounded,
A # (). By the principle of well ordering, A has a minimum element,
say m € A. If m € X then m is the greatest element, so suppose
m ¢ X. By definition, m > n for all n € X, and since X # 0, m > 1,
thatism =p+1, forsomep e N. If p>z forallz € X thenp € A, a
contradiction since p < m and m is minimal. If there is a x € X such
that > p, then > m a contradiction unless x = m, but m ¢ X by
assumption. It follows that m € X and m is the greatest element.

If X has a greatest element, say M, then X C I, and it follows that
X is finite.

]

The Theorem below follows directly from the definitions, the proof will
be omitted.

Theorem 43. Let X and Y be two sets such that | X| = m,|Y| = n and
XNY =0. Then X UY is finite and | X UY |=m + n.

The following corollary is immediate:

Corollary 44. Let X1, Xs,...,X,, be a finite collection of sets such that
each X; is finite and X; N X; =0 if i # 5. Then |J X; is finite and
i=1

Jxil=>_1xil
=1 =1

16



Corollary 45. Let X1, X5,...,X,, be a finite collection of sets such that
each X; is finite. Then |J X; is finite and

=1

JXil <) 1l
i=1 =1

Proof. For each i =1,...,n,set Y; = X; x {i}. Then the projection

=1 =1

in the first coordinate is surjective, by Corollaries and [44] the proof is
complete. n

Corollary 46. Let X, Xs,..., X, be a finite collection of sets such that
each X; is finite. Then X1 X ... x X,, is finite and

X1 % ox X | = ]I
=1

Proof. 1t’s enough to prove for n = 2, since the general case follows from this
one. Let X2 = {yl, e ,ym}, notice that X1 XXQ = X1 X {yl}U . UX2 X {ym}7
the result follows by Corollary [44] O

1.7 Countable Sets

A set X is countable if it is finite or there is a bijection f : N — X. In the
latter case, it is necessarily an infinite set, since as N is infinite, and we use
the term countably infinite.

Example 47. The set X = {2n € N|n € N} of all even numbers is count-
able. The function f(x) = 2x defines a bijection between X and N.

Theorem 48. Let X be an infinite set. Then X has a countably infinite
subset.

17



Proof. 1t’s enough to find an injective function f : N — X, since every
injective function is a bijection over its image. Choose an element a; € X,
set X1 = X — {a1} and f(1) = a;. Since X is infinite, X; is also infinite,
choose an element ay in X;, and set f(2) = ay. Proceeding by induction, we
have f(n) = a,, a, € X,,_1, where X,, 1 = X —{ay,as,...,a, 1}

Suppose f(n) = f(m), with n,m € N, then a, = a,,, which is possible
only if n = m. Therefore, f is injective. m

Corollary 49. A set X is infinite <= there is a bijection f : X — Y,
where Y C X is a proper subset.

Proof. (=) Suppose X infinite, by theorem X has a countably infinite
subset, say Z = {aq, az,as,...}. Set Y = (X — Z)U{az, a4, ag, ...} and
define f(z) =z ifx € X —Z, and f(a,) = ag, otherwise. The function
f(x), defined this way, is clearly a bijection.

(<) Follows from Corollary [36]

A function f: X — Y is called increasing if x <y = f(z) < f(y).
Theorem 50. Every subset X of N is countable.

Proof. The proof is very similar to the one in theorem 48 If X is finite then is
countable, so assume X infinite. We define an increasing bijection f : N — X
by induction. Let X; = X, a; = min X (which exists by Theorem , and
set f(1) = a;. Now, define X5 = X — {a1} and f(2) = a3 = min X3. By
induction, we define f(n) = a,, = min X,,, where X,, = X —{ay,as,...,a,-1}.
The function f(n) is injective by construction, suppose f(n) not surjective.
There is x € X such that ¢ f(N). So x € X,, for every n, which implies
that © > f(n) for every n, and z is a bound for the infinite set f(N), a
contradiction by Theorem O

Corollary 51. Let X be a countable set. Then for anyY C X, Y s count-
able.

Corollary 52. The set of all prime numbers is countable.

Corollary 53. LetY be a countable set and f : X — Y an injective function.
Then X s countable.

Corollary 54. The set Z. of integers is countable.
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Proof. The function f : Z — N defined by f(0) = 1, f(m) = 2m,if m > 0
and f(m) = —2m + 1,if m < 0, is bijective. ]

Corollary 55. Let X be a countable set and f : X — Y a surjective function.
Then Y 1is countable.

Proposition 56. The set N x N s countable.

Proof. The function defined by f(m,n) = 2™3" is a bijection f : N x N —
N. O]

Corollary 57. Let X1, Xy, ... be a countable collection of countable sets. Set
X = U Xi, then X is countable.

=1

Proof. Let f; : N — X, be a counting function for each ¢ € N. Then
f(i,m) = fi(m) defines a surjection f : N x N — X. By Corollary [55]
X is countable. O]

Corollary 58. If X,Y are countable sets then X XY is countable.

Proof. Let f1 : N — X, fo: N = Y be counting functions. Then f(m,n) :=
(fi(m), f2(n)) defines a bijection, Proposition 56| concludes the proof. O

Corollary 59. The set Q of rational numbers is countable.

Proof. Let Z* denote the set of nonzero integers. Define the surjective func-
tion f : Z x Z* — Q given by f(m,n) = ™. By Corollary , Q is count-
able. O

1.8 Uncountable sets

A set X is uncountable if it’s not countable. Given two sets X and Y, if
there is a bijection f: X — Y, we say X and Y have the same cardinality,
in symbols:

card(X) = card(Y).

If we assume f injective only and there is no surjective function g : X — Y,

then we say
card(X) < card(Y).

The cardinality of the Natural numbers N is denoted by
card(N) = Ny.
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If the set X is finite with n elements, we say card(X) = n. By definition, for
any infinite set X:
Ny < card(X).

Recall that given two sets X and Y, the set F(X,Y) denotes the set of all
functions betwenn X and Y.

Theorem 60. (Cantor) Let X and Y be sets such that Y has at least two
elements. There is no surjective function ¢ : X — F(X,Y).

Proof. Suppose a function ¢ : X — F(X,Y) is given and let ¢, = ¢(x) :
X — Y be the image of x € X, which itself is a function. We claim that
there is a f : X — Y that is not ¢, for any X. Indeed, for each x € X let
f(z) be an element different than ¢, (x) (this is possible sice |Y'| > 2), then
f # ¢, for every x € X and hence, ¢ is not surjective. m

Corollary 61. Let X1, X5, ... be a countable collection of countably infinite

oo
sets. Then the infinite cartesian product X = [ X; is uncountable.
i=1

Proof. 1t’s enough to prove the result for X; = N. In this case, X = F(N,N)
and the result follows from Theorem [60. m

Example 62. The set X = {(ay,a2,as,ay,...} of all sequence of natural
numbers is uncountable.

Example 63. The set of all real numbers R is uncountable. This will be
proved in the next sections.

2 The real numbers R
2.1 Fields
A field K is a set K together with two operations:
+: KxK—>Kand - : K xK— K

satisfying the following properties (also called field axioms):
Given x,y,z € K, we have:

L (z+y tz=a+y+2);
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2. x4+y=y+ux;
3. There is an element 0 € K such that Vo € K, 4+ 0 = x;

4. For any x € K there is an element y € K such that x +y = 0. We
define —z := y, and write z — x instead of z + (—x);

b (x-y)-z=x-(y-2);
6. z-y=y-u;
7. There is an element 1 € K such that 1 0 and Ve € K, - 1 = x;

8. For any x # 0 there is an element y € K such that z-y = 1. We define

x~! =y, and write 2 instead of z -z ';

9. 2-(y+z2)=x-y+x-z

Given two fields K and L, we say a function f : K — L is a homomorphism,
if f(x+y) = f(x)+ f(y) and f(c-z) = c- f(x). Wesay f is an isomorphism if,
in addition, f is bijective and f~! is also a homomorphism. An automorphism
f: K — K is an isomorphism between K and itself.

Example 64. The set rational numbers Q together with the operations

+E_ad+bc dg
a-a "y

ac

¢
d bd

a
b

is a field. In this case, 0 =2, 1=1 and (¢)~' = 2.

Example 65. If p is prime, the set of integers mod p, Z, = {0,...,p — 1},

with operations a +b=a-+b and a-b=a-b, is a field. It easy to see that

0=0,1=1 in this case. Moreover, by Fermat’s little theorem a -a?~2 =1,
hence a~—' = aP~2.

Example 66. The set of rational functions, Q(t) = { 2% ; p(t), q(t) € Qlt], q(t) #
0}, where Q[t] is the set of polynomials with rational coefficients, with the
usual operations of fractions is a field.

Proposition 67. Let K be a field and x,y € K, then

a. x-0=0;
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b. x-z=y-zand z # 0 then x = y;
c.v-y=0=x=0o0ry=0;
d 2 =y*=x=+ty.

Proof.  a. Indeed, z-0+2=x-(0+1) =z, hence -0 = 0.

1 1

b. Wehavex =2-2z-27"=y-2-27" =y.
c. fz#0thenx-y=0-2=y=0.

d. Notice that 22 =y*> = 22 —y* = 0= (v — y)(z +y) = 0.

2.2 Ordered Fields

An ordered field is a field K together with a subset P C K, called the set of
positive elements, such that for any z,y € P the following properties hold:

(I) (Close under addition/multiplication) x +vy € P,x -y € P;

(IT) (Trichotomy) For any = € K, only one of the following occurs: = = 0,
re P —xeP.

If we denote —P = { —p; p € P}, then K can be written as a disjoint union
K=PU-PU{0}

Notice that in an ordered field if z # 0 then 2% € P. In particular 1 € P in
an ordered field.

Example 68. The field of rational numbers Q together with the set
a
P:{EEQ;mbeN}

s an ordered field.

Example 69. The field Z, can’t be ordered, since if we add 1, p times, the
result is 0, i.e. 1+ -+ 1 = 0, but in an ordered field the sum of positive
elements has to be positive, in particular nonzero.
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Example 70. The field Q(t) of exzample [66 together with the set

t
= { %; the leading coefficient of p(t) - q(t) is pasitive}
q

is an ordered field.

In an ordered field K, if z —y € P we write x > y (or y < z). In
particular, x > 0 implies x € P and x < 0 implies + € —P. Notice that if
x € Pand y € —P then z > y.

We use the notation x < y to indicate z < y or z = y, in a similar way
we can define x > y as well.

Proposition 71. Let K be an ordered field and x,y,z € K, then

(1) (Transitivity) v <y and y < z = x < z;

(1) (Trichotomy) Only one of the following occurs: x =y, © > y,x < y;
(III) (Sum monotoneity) r <y =x+ 2 <y+ z;

(IV) (Multiplication monotoneity)lf z >0, thenx <y =z -z < y-z and if
2<0,thenx<y=z-2>y-2.

Since in an ordered field K, 1 is always positive we have 1 +1 > 1 > 0
and 14+ 1+ 1> 141, so we can easily define an increasing injection

N> K
/—;L%
by f(n) =1+ 1+ -+ 1, or more precisely, f(1) = 1 and f(n+1) = f(n)+1.
Therefore, it makes sense to identify N with f(N) C K, so henceforward we
will simply write

NCK

whenever K is an ordered field.

Notice in particular that f(n) is never zero in this case, hence every or-
dered field is infinite. Whenever f(n) is never zero, for f defined above, we
say K has characteristic zero; if f(p) = 0, then we say K has character-
istic p.

Example 72. The field Q clearly has characteristic zero. The field Z, has
characteristic p.
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Proceeding as before, we can extend the bijection above to f : Z — K
and view Z C K as well. Hence, we have N C Z C K.
Finally, we can use f : Z — K to define a bijection g : Q — K by

9(%) = f(a)- f(b)~'. So we may identify Q with g(Q) C K and write

NCZCQCK
whenever K is an ordered field.

Example 73. If K = Q in the above discussion, then g : Q — Q is the

identity automorphism. i.e. g(%) = .

Proposition 74. (Bernoulli’s inequality) Let K be an ordered field and x €
K. If x > —1 and n € N, then

14+z)">1+n-z

Proof. We use induction on n € N. The case n = 1 is clear, suppose the
result valid for n. Then (14 2)""' = (1+2)"(1+2z) > (1+n-z)(1+2z) =
l+x+n-z+2*>>1+x+n-x,as expected. (Notice that we used the fact
that x > —1 in the first inequality and proposition [7T1(IV).) O

2.3 Intervals

Let K be an ordered field and a < b be elements of K. We call any subset
of the following form an interval:

la,b] ={z € K;a < x <b} (closed interval)

(a,b) ={x € K;a < x < b} (open interval)

la,b) ={z € K;a <z <b} and (a,b] = {xr € K;a < x < b}
(—o0,b) = {z € K;z < b} and (—o0,b] = {zx € K;z < b}
(a,00) ={x € K;a <z} and [a,00) = {z € K;a < z}
(

—00,00) = K
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If a = b, then [a,a] = a and (a,a) = 0. We say the interval [a, a] is degenerate.
Let K be an ordered field and z € K. We define the absolute value of z,
denoted by |z|, by
|z| := max{z, —x},

which is to say, |z| is the greater of the two numbers x or —z. Geometrically,
if the elements of K are put in a straight line, |z| measures the distance
between x and 0, hence |z — a| is the distance between x and a.

Theorem 75. Let x,y be elements of an ordered field K. The following are
equivalent:

(i) ~y<z<y
(i) v <y and —z <y
(i17) |x| <y
Corollary 76. Let x,a,¢ € K then
|t —a]<e <= a—e<zx<a+e

Remark 2. The theorem and corollary remains valid if we exchange < by
<.

Theorem 77. Let x,y, z be elements of an ordered field K.
(1) |z +yl < ||+ [yl;

(i) |z -yl =[] - yl;

(iit) |x] = |yl <z = [yl| < [z —yl;

() v — 2| <[z —y|+ ]y — |

Let K be an ordered field and X C K. An upper bound of X is an
element M € K such that x < M for every x € X. Similarly, a lower
bound is an element m € K such that m < x for every x € X. We say X is
bounded from above if it has an upper bound, bounded from below if it has a
lower bound, and bounded if it has upper and lower bounds, i.e. X C [m, M].

Example 78. The principle of well-ordering guarantees that N is bounded
from below when viewed as a set inside the ordered field Q. N is obviously
not bounded from above in Q, since given anyn, n+ 1 > n.
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Example 79. Oddly enough, N is bounded from above in the ordered field
Q(t) from exzample[70. Since given any n € N, the rational function r(t) =t
satisfies r(t) —n > 0. Therefore, r(t) € Q(t) is an upper bound for N and
the latter is bounded from above, hence bounded, in Q(t).

Theorem 80. Let K be an ordered field. The following are equivalent:
1. N s not bounded from above;
2. Gwen a,b € K, with a > 0, dn € N such that n - a > b;
3. Gwen a >0 K, dn € N such that0<%<a.
A field K satisfying the above conditions is called Archimedean field.
Proof. The proof is based on the implications 1 = 2, 2 = 3, 3 = 1.
(1 = 2) Since N is unbounded, 2 < n for some n € N, hence n-a > b.
(2= 3) Take b=11in 2.

(3 = 1) For any a > 0, consider %, by 3., 3n € N such that % < % <~ n >

a. Therefore, no positive element is an upper bound. Similarly, no
negative element can be an upper bound since if = is negative —x is
positive and we can apply the same argument.

]
Example 81. Examples|[78 and |79 say that Q is Archimedean but Q(t) isn’t.

2.4 The real numbers R

Let K be an ordered field and X C K be a bounded from above subset. The
supremum of X, denoted sup X is the least upper bound of X, in other
words, among all upper bounds M € K of X, ie. x < M for every x € X,
sup X € K is the least of them. Therefore, sup X € K has the following
properties:

(i) (upper bound) For every z € X, x < sup X.

(i) (least upper bound) Given any a € K such that = < a for every x € X,
then sup X < a. In other words, if a < sup X then 3b € X such that
a <b.
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Lemma 82. [f the supremum of a set X exists, it is unique.

Proof. Suppos a = sup X and b = sup X. By (ii) above, a < b since a is
the least upper bound, but for the same reason we also have b < a, hence
a=b. [

Lemma 83. If a set X has a mazximum element, then max X = sup X.

Proof. Indeed, max X is obviously an upper bound and any other upper
bound is greater than or equal to the maximum. O]

Example 84. Consider the set I, = {1,2,...,n} C Q. Then supl, =
max I, = n.

Example 85. Consider the set X = {—%;n € N} € Q. Then sup X = 0.
Indeed, 0 is an upper bound and given any number a < 0 we can find —%
such that a < —% since Q is an Archimedean field.

Similar to the idea of supremum, the infimum of a bounded from below set
X C K, denoted inf X, is the greatest lower bound. The element inf X € K
has the following properties:

(i) (lower bound) For every x € X, z > inf X.

(ii) (greatest lower bound) Given any a € K such that z > a for every
r € X, then inf X > a.

The lemmas [82] and [83] extend naturally to the notion of infimum, namely,
if X € K has a minimum element m then m = inf X. Additionally, the
infimum is unique. More generally, we easily conclude that:

Proposition 86. Let X C K be a bounded subset of an ordered field K.
Then, inf X € X <= infX = minX and supX € X <= supX =
max X . In particular, every finite set has a supremum and infimum.

Example 87. Consider the set X = (a,b), an open interval in a ordered field
K. Then inf X = a and sup X = b. Indeed, a is a lower bound, by definition
of interval, suppose ¢ > a, we claim ¢ can’t be a lower bound. For instance,
consider d = %3¢ € (a,b). We have d < ¢ if ¢ < b, hence the conclusion.
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Example 88. Let X = {2%,71 €N} CQ. Theninf X =0 and sup X = %
Notice that max X = %, by lemma sup X = % Now, 0 is obviously a
lower bound. Suppose ¢ > 0, since Q is Archimedean we can find n € N
such that n +1 > % By Bernoulli’s inequality (Proposition , we have
' =(1+1)">14n> %, hence ¢ > = and c can’t be a lower bound, so

2'/L
inf X = 0.
Lemma 89. (Pythagoras) There is no x € Q satisfying x* = 2.

2
Proof. Suppose not, then z = % satisfies <§> = 2, or p?* = 2¢*, where

p,q € Z and g # 0. If we decompose p? in prime factors, it will have an even
number of factors equal to two, the same occurs for ¢%. Since 2¢* has an odd
number of factors two, we can’t have p? = 2¢>. O

Proposition 90. Consider the sets of rational numbers X = {x € Q;x >
0 and 2* < 2} and Y = {y € Q;y > 0 and y* > 2}. There are no rational
numbers a,b € Q such that a =sup X and b =infY .

Proof. We prove the result concerning the supremum, the result about in-
fimum can be proven similarly. We first claim X doesn’t have a maximum
element. Given x € X, take r < 1 satisfying 0 < r < %, then z +r € X,
so r € X can’t be the maximum. Indeed, since r < 1 = r? < r, and we have

(z+r)P=24+2or+r? <2*+2xr+r=2"4+r(2z+1) <2*+2—-2*=2.

By a similar reasoning, given y € Y, it’s possible to find » > 0 such that
y—r €Y, s0Y doesn’t have a minimum element. Finally, notice that if x €
X,y€Y thenz <y,sincez? <2<y’ =0<(z—y)(z+y) = 0< (z—y).

Suppose there is a number ¢ € Q such that a = supX. Then a ¢
X, otherwise it would be its maximum. If a € Y, since Y doesn’t have a
minimum, there would be a b € Y such that b < a, then x < b < a, a
contradiction since a is the supremum. We conclude that a ¢ X and a ¢ Y,
so a has to satisfy a® = 2, a contradiction by lemma . O

Since every ordered field contains Q, in the proposition above, if there is
an ordered field K such that every nonempty bounded from above set has a
supremum, then a = sup X is an element of K satisfying a? = 2.

Example 91. (A bounded set with no supremum) Let K be a non-Archimedean
field. Then, by definition, N C K is bounded from above. Let M € K be an
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upper bound for N. Son+1 < M for alln € N, but thenn < M — 1 and
M — 1 is also an upper bound. We conclude that if M 1is an upper bound,
M — 1 is one as well, hence supN doesn’t exists in K.

We say that an ordered field K is complete, if every nonempty bounded
from above subset X C K has a supremum in K. This motivates the follow-
ing axiom (also called the fundamental axiom of mathematical analy-
sis):

Axiom. There is a complete ordered field, represented by R, called the
field of real numbers.

Remark 3. Notice that in a complete ordered field K, if X C K is bounded
from below then X has an infimum.

Remark 4. From example |91 we conclude that every complete ordered field
is Archimedean.

Proposition 92. If K, L are complete ordered fields, then there is an iso-
morphism f: K — L.

The proposition above says that, in some suitable sense, R is the only
complete ordered field.

Until the end of the semester, every topic we discuss will involve the
complete ordered field R and its properties.

The discussion above leads to the conclusion that despite there is no
number x € Q satisfying 22 = 2, there is a positive number x € R such that
2> = 2. We denote that number by /2. There is nothing special about 2, so
we can generalize the proof above to any n € N that is not a perfect square
and conclude that we can find a positive number, denoted by +/n, such that
(vn)? =n.

We can generalize even further and talk about the n'*-root of m € N,
denote by {/m. Namely, a positive number z € R such that 2" = m.

We call the elements of the set R — QQ, irrational numbers. As we've
just seen, there are many of them, namely, numbers of the form /2, for
n > 2, are all irrational. In fact, we shall see next that irrational numbers
are everywhere, in a precise sense, as a subset of the real numbers.

A subset X C R is said to be dense in R if for every a,b € R, with a < b,
we can find x € X such that a < z < b. In other words, X is dense in R if
every open non-degenerate interval (a,b) contains a point z € X.
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Example 93. Let X =R —Z. Then X 1is dense in R. Indeed, every open
interval (a,b) is an infinite set (since R is ordered). On the other hand,
Z N (a,b) is finite, hence we can always find a number x ¢ Z with x € (a,b).

Theorem 94. The set of rational numbers, Q, and the set of irrational
numbers, R — Q, are both dense in R.

Proof. Let (a,b) € R be a non-degenerate open interval. The idea of the
proof is that since b — a > 0, there is a natural number n € N such that
% < b—a, hence a multiple of this number, say " eventually will be in (a, b).
More formally, let X = {m € Z;™ > b}. Since R is Archimedean, X # 0.
Notice that X is bounded from below by nb € R. By the well ordering
principle, X has a smallest element, say mo € X. By the smallness of my,
the number mo — 1 ¢ X, so mOT_l < b. We claim a < mOT_l Suppose not,
then m(’T—l < a < b < = which implies that b —a < mf—m%_l = %, a
contradiction. Therefore, the rational number mUT_l satisfies a < mOT_l <b
and Q is dense in R. We can apply the same argument mutatis mutandis to
conclude that R — Q is dense. Namely, instead of using % in our argument,

we use an irrational number, say \/75 O

Theorem 95. (The nested intervals principle) Let Iy O I O ... 1, D

be a decreasing sequence of closed intervals of the form I, = [ay,by]. Then

m [n 7£ @, or more precz'sely,
n=1

ﬁ I, = [CL, b]?
n=1

where a = sup a,, = sup{a,;n € N} and b = inf b, = inf{b,;n € N}
Proof. By hypothesis, I, O I,,11,Vn € N, which implies:
a1§a2§...an§...Sbné...SbQSbl.

Notice that a, is bounded from above by b;, hence the supremum of a,,
a € R, is well defined. Similarly, the infimum of b,, b € R, is well defined.
Since b,, is an upper bound for a,, we have a < b,,Vn € N. On the other
hand, a is also an upper bound and we conclude that

a, <a<b,,VneN.
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A similar reasoning can be applied to b, hence

[a,b] C I,,,¥n € N.

o
If © < a, we can find a,, such that x < ap,, so z & I,, = = ¢ () I,
n=1

Similarly, if > b, then we can find ny such that b,, < z,sox ¢ I,,, = x ¢
() I.. We conclude that [ I, = [a, b]. O

n=1 n=1

Theorem 96. R is uncountable.

Proof. Let X = {z1,29,...} C R be a countable subset of R, which we
know exists by theorem We claim there is always an © € R such that
x ¢ X. Pick a closed interval I} not containing z;, this is possible since R is
infinite. Proceed by induction, after setting I,, not containing x,,, we select
I,+1 C I, as a closed interval which doesn’t contain x,;. Proceeding this
way, we construct a nested sequence of closed intervals I; D I, O ... [, D ....
Therefore, by theorem [05], there is at least one x € R that is not in X. [

Corollary 97. Any non-degenerate interval (a,b) C R is uncountable.

Proof. The function f : (0,1) — (a,b) defined by f(z) = (b—a)x+a is bijec-
tive, so it suffices to prove the result for (0,1). Suppose (0, 1) is countable,
then (0,1] is also countable and reasoning as before, (n,n + 1] is countable

for every n € N. Then R = J (n,n + 1] is countable, a contradiction. — [J
nez

Corollary 98. The set of irrational numbers R — Q is uncountable.

Proof. Suppose not, then R = QU (R — Q) is countable, a contradiction. [J

3 Sequences and series

3.1 Sequences

A sequence of real numbers, denoted by z,, := x(n), is a function z : N —
R that associates to each natural number n € N, a real number z(n) € R.
There is no universally defined notation for a sequence z,, but here are
examples of common notation found in the literature:

{$n}n€N7 Xn, {xla Lo, .. '}7 (gjn)

31



We say that a sequence x,, is bounded if there are a,b € R such that
a<xz, <D,

this is equivalent of saying that z(N) C la,b], i.e. x(n) is bounded as a
function. A sequence is unbounded when is not bounded.

A sequence z, is bounded from above when there is b € R such that
T, < b, and bounded from below if there is an a € R such that a < z,.
Notice that a sequence is bounded if and only if is bounded from above and
below.

Let K C N be an infinite subset. Then K is countably infinite, let b :
N — K, given by k +— n; be a bijection. Given any sequence x : N — R, the
composition z,, :=zob: K — R is also a sequence, called a subsequence
of z,,.

Example 99. Let K = {n;n is even} C N and b(k) = 2k. In this case, given
a sequence x,, the sequence T, := Ta, is a subsequence of x,. For example,
if ¢, = (=1)"d.e. {—1,1,—1,...}, then xq, is the constant subsequence
2o = {1,1,1,...}.

Notice that every subsequence z,, of a bounded sequence z,, is itself
bounded by definition. We say a sequence x, is nondecreasing if =, <
Tni1,Vn € N, and if the inequality is strict, i.e. z, < x,y11, we call z,
an increasing sequence. We define nonincreasing and decreasing sequences
in a similar way by placing > (>) instead of < (<).

A sequence that is either nondecreasing, nonincreasing, increasing, or
decreasing will be called monotone.

Lemma 100. A monotone sequence x,, is bounded <= it has a bounded
subsequence.

Proof. Only the converse is not obvious. Suppose z,, is a bounded monotone
subsequence, say T, < T, < ... <b. Given any n € N, we can find ng > n,
hence z,, < z,, <b. O

Example 101. z,, = 1, i.e. {1,1,1,...}, is a constant, bounded, nonincreas-
ing and nondecreasing sequence.

Example 102. z,, = n, i.e. {1,2,3,...}, is an unbounded increasing se-
quence.
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Example 103. z, = %, ie. {1,3, 3,

since 0 < x,, < 1.

.}, is a bounded decreasing sequence,

Example 104. z,, = 1 + (=1)", i.e. {0,2,0,2,...}, is a bounded sequence
that is not monotone.

Example 105. 2, = 1 + 5 + 5, + ... + = is increasing, and bounded, since
0<z, <l+l4+i+31+... 4575 <3. The sequencey, = (14 +)" is related
to this sequence, since by the binomial theorem vy, < x,, therefore y, s also

bounded, 0 <y, < 3.

0 5 10 15 20

Figure 1: y, = (1+ 1)»

Example 106. Let x1 = 0 and x5 = 1, and consider, by induction, x,, o =
Tna1+xn. It’s easy to see that 0 < x, < 1, and moreover a quick computation

showsthata:%:1—(}1+%+...+4n%1) andazgn+1:%(1+}l+%+...—|—4n%l

So x,, is a bounded sequence that is not monotone.

5 10 15 2

Figure 2: z,419 = xp41 + 2
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Example 107. Let a € R such that 0 < a < 1. The sequence z, = 1 +
a+a®+ ... +a" = 1_1“_”; 15 increasing, since a > 0, and bounded since
O0<zx, < ﬁ

Example 108. The sequence {1,v/2,v/3,V/4,...} given by z, = /n, in-
creases for n = 1,2. We claim that starting at the third term, this sequence
is decreasing. Indeed, .1 < T, is equivalent to (n + 1)" < n"* which is
equivalent to (1 + %)" < n, which is true for n > 3 by Example . Hence,
T, 18 bounded.

of 20 40 60 80 100

Figure 3: z, = ¢/n

3.2 The limit of a sequence

Informally, to say a € R is the limit of the sequence z,, is to say that the
terms of the sequence are very close to a, when n is large. More precisely,
we quantify this using the following definition:

lim z, =a:=Ve>03ng € N;n >ng = |z, —a| <e

n—oo
In other words: “The limit of sequence x, is a, if for every positive number
€, no matter how small it is, it’s always possible to find an index ng such that

the distance between x,, and a is less then €, for n > ng.”
Additionally, the above is the same of saying that any open interval

(@ —€,a+€)

centered at a and with length 2¢, contains all the points of the sequence x,,
except possibly a finite amount of them.
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Remark 5. It’s a common practice to omit “n — oo "and write lim x,, only.

When lim z,, = a, we say z,, converges to a, also denoted by z,, — a, and
call z,, convergent. If x, is not convergent, we call it divergent, i.e. there is
no a € R such that limz,, = a.

Theorem 109. (Uniqueness of the limit) If lim x,, = a and limx,, = b, then

a=>b.
Proof. Let limx,, = a and b # a, it’s enough to prove that lim x,, # b. Take
€= @, then since lim x,, = a, we can find ng such that n > ng = |z, —al <

¢. Therefore, z, ¢ (b —€,b+ €) if n > ng and we can’t have limz,, =b. O

Theorem 110. Iflimz, = a, then for every subsequence x,, of x,,, we also
have lim z,,, = a.

Proof. Indeed, since given € > 0 it’s possible to find ny such that n > ny =
|z, —a| < €, the same ny works for x,,, as well, namely, ny > ng = |z, —al <
€. L]

Corollary 111. Let k € N. Iflimz, = a then limx, ., = a, since T, 1S a
subsequence of x,,.

In other words, Corollary says that the limit of a sequence doesn’t
change if we omit the first £ terms.

Theorem 112. Every convergent sequence x, 1s bounded.

Proof. Suppose limz, = a. Then it’s possible to find ng such that z, €
(a—1,a+1) for n > ng. Let M = max{|x1]|,...,|xn|,|a — 1],]a + 1|}, then
xn € (=M, M). O

Example 113. The sequence {0,1,0,1,0,1,...} can’t be convergent by theo-
rem[110}, since it has two subsequences converging to different values, namely,
Top, = 1 and 9,1 = 0. Also, this sequence is an example of a bounded
sequence which is not convergent, illustrating the fact that the converse of

theorem is false.

Theorem 114. Every bounded monotone sequence is convergent.
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Proof. Suppose z,, < x,11, the other cases are proved similarly. Since z,, is
bounded, sup x,, is well defined, say a = supz,. Let ¢ > 0 be given, then
dng € N such that a — ¢ < z,,, but since z,, < x,4;, we must have have
a— € < T,, Yn > ng. We obviously have x, < a, hence a —€¢ < z, < a+¢€
for n > ny and limz,, = a. O

Corollary 115. If a monotone sequence x, has a convergent subsequence
then x, is convergent.

Example 116. Fvery constant sequence x, = k € R s convergent and
limz,, = k.

Example 117. The sequence {1,2,3,4,...} is divergent because it’s un-
bounded.

Example 118. The sequence {1,—1,1,—1,...} is divergent because it has
two subsequences converging to different values.

Example 119. The sequence x, = % 1s convergent and limx,, = 0, since R
is Archimedian and given any € > 0 it’s possible to find ng € N such that
0<ni0<e. Hence,n>n0:>%<e.

Example 120. Let 0 < a < 1. The sequence x, = a™ is monotone and

bounded, hence convergent. Notice that limx, = 0 in this case.

3.3 Properties of limits
Theorem 121. Let limz, =0 and y,, a bounded sequence. Then
limz, -y, = 0.

Proof. Let ¢ > 0 be such that |y,| < ¢. Let € > 0 be given, and ny € N a
number such that n > ng = [z,| < €. Then, n > ng = |2,y,| < S-c=€. O

Example 122. Using the theorem above we have lim 27 = ()
n—oo

Theorem 123. Let limz, = a and limy, =b. Then
1. imz, +y, =a-+b, limx, —y, =a—0b;

2. limx, -y, = ab;
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3. Ifb#0 thenlim%:%

Example 124. Let a € R be a positive number. The sequence x,, = /a is

bounded and monotone, hence converges. We claim
lim {/a = 1.
Indeed, let L :=1im {/a and consider the subsequence vy, = Tn(nt1) then

. 1
. [ S B T liman

L =limy, =lima"® =lima»" 1 = —— =1
lim an+1

Example 125. Similar to the example above is the sequence x, = {/n. It is

bounded and monotone (starting from the third term), hence converges.

claim
lim /n = 1.

Let L :=lim /n and consider the subsequence y, = T2, then
L?>=limy, -y, =lim V2n =lim V2/n=1-L=1L

Hence, L=0 or L =1, but L # 0 since x,, > 1.

We

Theorem 126. If limz, = a and a > 0, then Ing such that x, > 0 for
n > ng. An equivalent statement is valid if a < 0, namely, up to a finite

amount of indexes, x,, < 0.

Proof. It’s possible to find ng such that n > ng = |z, —a| < §, in particular,

x> 5 >0if n > ng. The case a <0 is proved similarly.

]

Corollary 127. If x,,y, are convergent sequences and x,, < y, thenlimz, <

lim g, .

Corollary 128. If x, is convergent and x, > a € R then limx, > a.

Theorem 129. (Squeeze theorem) If x,, <y, < z, and lim x,, = lim z,, then

limy, =limz, = lim z,.
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3.4 liminfz, and limsupz,

A number a € R is an accumulation point of the sequence x,, if there is a

subsequence z,, such that lim z,, = a.
k—o0

Theorem 130. a € R is an accumulation point of the sequence x,, if and only
if Ve > 0, there are infinitely many values of n € N such that z,, € (a—e, a+e).

Proof. The implication is clear, we prove the converse only. Take ¢ =

1,%,%,--.,%,..., then it’s possible to find x,, such that |z, —a| < i for

every k € N and moreover nj, < ngy1, in particular, klim Ty, = Q. O
— 00
Example 131. [f limx, = a then x, has only one accumulation point,

namely a € R. This follows directly from theorem [110.

Example 132. The sequence {0,1,0,2,0,3,...} is divergent. However, it
has 0 as an accumulation point, due to the constant subsequence xo, 1 =
0. Similarly, the divergent sequence {1,—1,1,—1,1,—1,...} has only two
accumulation points: 0 and 1. The divergent sequence {1,2,3,4,5,6,...}
doesn’t have an accumulation point.

Example 133. By theorem[94, every real number r € R is an accumulation
point of a sequence of rational numbers.

We shall see below that every bounded sequence has at least two accu-
mulation points, and the sequence converges if and only if they coincide.
Let x,, be a bounded sequence, say m < x, < M, with m, M € R. Set

Xn ={xn, Tng1, ...}

Then X,, C [m, M] and X,,,; C X,,. Define a,, := inf X, and b,, := sup X,,,
then
m<a <a<...<a, <. .<b, <. <by <0y <M,

and the following limits are well defined ¢ = lim a,, = sup a,, and b = limb,, =
inf b,. We define the limit inferior of x, as

liminf z, :=a
and the limit superior of x, as

limsup z,, := b.
We obviously have

liminf z,, <limsup x,.
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Example 134. Consider the sequence =, = {0,1,0,1,0,1,...}. Using the
notation above, a, =0 andb, = 1. Therefore, liminf x,, = 0 and limsup x,, =
1. More generally, we have:

Theorem 135. Let z,, be a bounded sequence. Then liminf x,, is the smallest
accumulation point and lim sup x,, s the greatest one.

Proof. We prove the limit inferior claim, the other part can be proved anal-
ogously. First, we claim that a = liminf z, is an accumulation point. In-
deed, using the notation above, a = lima,, hence given any ¢ > 0, for
n > ng, we have a — € < a, < a + €. In particular, choose n; > ng, then
a—¢€ < ay, < a-+ e Therefore, for n > n; we have a,, <z, < a+e We
conclude that a —e < x,, < a-+e¢, by theorem 130}, a is an accumulation point.
To prove the minimality, let ¢ < a. We claim ¢ is not an accumulation point.
Since ¢ < a = ¢ < ay,, for some ny € N. Hence, ¢ < a,, < x, for n > ny.
Finally, setting € = a,,, — ¢, we conclude that the interval (¢ —e¢, c+¢€) doesn’t
contain any z,, for n > ng, by theorem this concludes the proof. O]

Corollary 136. (Bolzano—Weierstrass theorem) Every bounded sequence x,,
has a convergent subsequence.

Proof. Since x,, is bounded, a = liminf x,, is well defined and is an accumu-
lation point. In particular, there’s a subsequence of z, converging to a. [

Corollary 137. A sequence x, is convergent if and only if liminfz, =
limsup x, (x, has a unique accumulation point)

Proof. 1f z, is convergent, all subsequences converge to the same limit,
in particular liminfx, = limsupx, = limz,. Conversely, suppose a =
liminf x,, = limsup x,,. Then, using the notation above, we can find ng such
that a — e < ap, < a < b,, < a+eand n > ng implies a,, < z, < b,,. We
conclude that a —e < z,, < a +¢. O

Corollary 138. If ¢ < liminf x,, then dng € N such that n > ng = ¢ < x,,.
Similarly, if ¢ > limsup x,, then dn; € N such that n > n; = ¢ > x,.

3.5 Cauchy Sequences

A sequence z,, is called a Cauchy sequence if given ¢ > 0 we can find
ng € N such that for n, m > ng we have

|Ty — x| < €
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In other words, a Cauchy sequence is a sequence such that its terms x,
are infinitely close for sufficiently large n. It’s reasonable to expect that a
sequence with this property converges, and that is indeed true as the theorem
below shows (for sequences in R, we will see in a few weeks when we talk
about topology, that it’s possible to construct a topological space where no
Cauchy sequence converges.)

Theorem 139. FEvery Cauchy sequence is convergent.
The proof is a direct consequence of the two lemmas below.
Lemma 140. Every Cauchy sequence is bounded.

Proof. By definition, we can find ng € N such that m,n > ng = |z, — z,,| <
1. Fix x,, and set M := max{|z1|, |x2|,. .., |Tnol|s|Tm — 1|, |Tm + 1]}, then
2, € [~ M, M]. O

Lemma 141. If a Cauchy sequence x,, has a convergent subsequence x,,

with klim T, = a then it converges and lim z,, = a.
—00

Proof. Given € > 0, it’s possible to find ng such that m,n > ng = |r,—z,,| <
5. Additionally, it’s possible to find mg such that n, > mg = |z,, —al < §,
take one my > ng such that this is true. Then n > ng = |z, — a| <
Ty — Ty, | + |T0, — a] <e. O

Now we prove the converse of the theorem above.
Theorem 142. Every convergent sequence is a Cauchy sequence.

Proof. Suppose a := limz,,. Then it’s possible to find ny and n; such that
n>nyg = |z, —al < §and m >n; = [z, —a| < 5. We conclude that

|2y — Tp| < |2, — a| + |z — a] <,
for m,n > max{ng, n1}. O
We conclude that

Corollary 143. A sequence x,, of real numbers is a Cauchy sequence if and
only if it converges.
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3.6 Infinite limits

A divergent sequence x,, converges to infinity, denoted by lim x,, = +o0, if for
any number M > 0, there is ng > 0 such that n > ng = z,, > M. Similarly,
A sequence x,, converges to negative infinity, denoted by lim x,, = —oo, if for
any number M > 0, there is ng > 0 such that n > ng = z, < —M.

Example 144. The sequence x, = n converges to infinity, since given any
M > 0, take any natural number ng > M, then x, =n > M if n > ng. On
the other hand, the sequence x,, = (—1)"n is divergent but doesn’t converge
to oo, nor to —oo, since it is unbounded from above and below, and as a
consequence of the definition a sequence converges, say to 400, then it’s
bounded from below, and similarly, converges to —oo, then it’s bounded from
above.

The following theorem, similar to theorem [123| gives some properties of
infinite limits. The proof will be omitted.

Theorem 145. (Arithmetic operations with infinite limits)

1. Iflimx,, = 400 and y, is bounded from below, then lim(z,+1y,) = +00
and lim(z,, - y,) = +00 ;

2. If x, > 0 then limz, = 0 if and only if lim é = +00;
3. Let xp,y, > 0 be positive sequences. Then:

(a) If x, is bounded from below and limy, = 0 then lim = 400,

(b) If zy is bounded and limy, = +oo then lim £* =
Example 146. Let z,, = v/n + 1 and y, = —/n. Thenlimz, = oo limy, =
—oo. We have:

Vil AW ETeym) ]

NES Vn+1+n

which gives lim(z, + y,) = 0. However, it’s not true in general that
lim(z, + y,) = limx, + limy, if both sequences have infinite limit. For
example, x, = n* and y, = —n give a counter-ezample, since limx,, = +00,
limy, = —oo, but lim(x,, + y,) = +00.

lim(z,+y,) = limvn + 1—y/n = lim (
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Example 147. Let z,, = [2+4 (—=1)"|n and y, = n. Then limz, = limy, =
+00, but lim $* = lim[2 + (—1)"] doesn’t exists. So it’s not true in general
that lim z—: =1 iflimzx, = limy, = +oc.

Example 148. Leta > 1. Then lim % = +o0. Indeed, a = 1+s with s > 0,

n n(n—l)sg
soa"” = (1+s)" > 1+ns+@32 forn > 2, but lim =22 +00,
hence lim% = 400. Arguing by induction, it’s easy to show that for any

m € N, limg—:l:+oo.

Example 149. Let a > 0. Then lim:—i = +4o00. Indeed, pick ng € N such
that => > 2. Then

n! nn—1)...(ng+ 1)ng! - no!

ar a“va...a amno
N——

n—ng

and it follows that lim :—T'L = +00.

3.7 Series

Given a sequence of real numbers z,,, the purpose of this section if to give
meaning to expressions of the form, x1 + x9 + 3 + ..., that is, the formal
sum of all the elements of the sequence x,,.

A natural way of doing this is to set s, := x1 + ... + x,, called partial

sums, and define
o
E T, = lims,
n=1

o
It’s a common practice to write »  x, instead of Y x,, and to call x,, the

n=1
general term of the series. In these notes we shall adopt these conventions.
Since we define ) z,, as a limit, it may or may not exist. In case )z, =
L € R we say that the series ) x,, converges, otherwise we say > z,, diverges.

Theorem 150. If the series Y x,, converges then limz, = 0.

Proof. Indeed, we have =, = s,, — s,,_1. Therefore, limz,, = lim(s,, — s,,_1) =
lim s, —lims,_1 = 0. ]

The converse of the theorem above is not true. Here’s a counterexample:
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Example 151. (harmonic series) Consider the series Y . We obviously
have lim% = 0, however, we claim Z% diverges. Indeed, in order to prove

that lim s,, diverges, it’s enough to find a divergent subsequence. Take for
example Son :

1 1
—1+1+ 1+1 + 1+1+1+1 +
a 2 3 4 5 6 7 8
>1+1+2+4+8+ +2n_1
2 4 8 16 T on
1
=1 -
+n2

Hence, son > 14n - % and lim s9n = +00.

Example 152. (geometric series) The series Y a", with a € R, diverges if
la| > 1, since the general term x,, = a™ doesn’t satisfy limz,, = 0. If |a| < 1,
then >~ a™ converges. Indeed, we can show by induction that

1— an+1

Sn = )

1—a
and hence Y- a™ =lims, = T, if [a| < 1.
Theorem 153. Given series Y ay, Y by, we have:

1. If >~ a, and > b, converge, then > (a, + b,) converges and » (a, +
bn) =D a, + 3. by.

2. Letc € R. If " a, converges, then ) ca, also converges, and >, ca, =
Y ay.
n n—1
3. Suppose Y a, and ) b, converge, set ¢, := > a;b, + Y a,b;. Then
i=1 j=1
> cn converges and Y e, = (O] an) - (O] bn)-

Example 154. (telescoping series) The series m is convergent. Since
n(nl—‘,-l) = % — n+r1’ we easily see that s, =1 — n+r1’ s0 Y m =1.

Example 155. The series > (—1)" is divergent since the sequence (—1)™ has
two distinct accumulation points, so it’s impossible to have lim(—1)" = 0.
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Theorem 156. Let a, > 0 be a nonnegative sequence of real numbers. Then
> an converges if and only if the partial sum s, is a bounded sequence for
every n € N.

Proof. The implication is clear. The converse follows from the fact that every
bounded monotone sequence converges. O]

Corollary 157. (Comparison principle) Suppose > a, and > b, are series
of nonnegative real numbers, i.e. a,,b, > 0. If there are ¢ € R and ng € N
such that a, < cb, for n > ng, then if > b, converges, Y a, converges.
Moreover, if > a,, diverges then > b, diverges.

Example 158. If r > 1, the series Z# converges. Indeed, the general
term of this series is positive, so the partial sums s, are increasing, hence
it’s enough to prove that a subsequence of s, is bounded. We claim Son_q is
bounded. We have:

1 1
52n,1:1—|—§+...—|—m
:1+<l+i)+<i+i+l+i)+...+;
or 3 7y e 20— 1)y
ST
or qr 87 Q(nfl)r
n—1 9 j
->(3)

j=0

On the other hand, the geometric series » (2%)] converges since 2% <1. We
j=0
conclude that son_1 is bounded and the claim follows.

Corollary 159. (Cauchy’s criteria) The series > a, is convergent if and
only if given € > 0, there is ng € N such that |aps1 + ... + Gpyp| < € for
n > nyg.

Proof. Notice that s, converges if and only if it is a Cauchy sequence (see

Corollary (143)). O

A series > a, is absolutely convergent if > |a,| is convergent. A
series with all of its terms positive (or negative) is convergent if and only if
is absolutely convergent. Hence, in this case the two notion coincide. Here’s
a classical counterexample that shows that they don’t coincide in general:
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Example 160. Consider the series Y % We already know that % X

diverges, however we claim that % converges. Indeed, notice that the
subsequence sop, satisfies

Sg < 8§40 < S < ... < Sop,
and is a Cauchy sequence, hence convergent. Whereas sa,_1 satisfies
81 >83>85 > ...> Sop—1,

so it’s bounded and monotone, hence convergent as well. Set a := lim sy, b :=
lim s9,,_1, then since S, — Sop_1 = % — 0, we necessarily have a = b. We
conclude that s, has only one accumulation point, hence converges. (We will
see later that a = b = log 2)

A series Y a, is conditionally convergent if ) a, is convergent but
> |a,| is divergent. The example above shows that > % is conditionally
convergent.

Theorem 161. Fvery absolutely convergent series y | a, is convergent.

Proof. By hypothesis, > a, is Cauchy, so we can find ny € N such that
n > ng,Vp € N = |ap1| + ... + |ansp| < €. In particular, |a,41 + ... +
Antp| < |@ns1|+. ..+ |antp| <€, the conclusion follows from Cauchy’s criteria

(Corollary [159)). O

Corollary 162. Let > b, a convergent series with b, > 0. If there are
no € N and ¢ € R such that n > nyg = |a,| < cb, then the series > ay, is
absolutely convergent.

Corollary 163. (The root test) If there are ng € N and ¢ € R such that
n > ny = W < ¢ < 1, then the series ) a, is absolutely convergent. In
other words, if lim sup W < 1 then Y a, is absolutely convergent. On the
other hand, if lim sup {L/a_n| > 1, then Y a, diverges.

Proof. In this case, we can compare » _ |a,| with > ¢"; the latter (absolutely)
converges since it’s a geometric series with 0 < ¢ < 1. If {/]a,| > 1 for n
sufficiently large, then lim a,, # 0. O]

Corollary 164. (The root test — second version) If lim {/|a,| < 1, then the
series Y . ay s absolutely convergent. If lim {/|a,| > 1, then the series Y ay,
1s divergent.
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Example 165. Let a € R and consider the series Y na™. Notice that

lim {/na|” = lim {/nlim|a| = |a|. Hence, if |a| < 1 the series > na™ is
absolutely convergent and if |a| > 1 it diverges. If |a| = 1 the series also

diverges, since limna™ # 0 in this case.

Theorem 166. (The ratio test) Let Y a, and Y b, be series of real numbers
such that a, # 0,b, > 0,Yn € N and »_ b, convergent. If there is ng € N

such that n > ng = ‘%’ < (bt

< |7 then > ay is absolutely convergent.

Proof. Consider the inequalities:

QAno+2 bno+2

IN

Anp+1 brg+1

Qny+3 brg+3

IN

Ano+2 bno+2

an<bn

an—1 - bn—l
Multiplying them together, we have:
bn

bn0+1

An

<

Apg+1
Hence, |a,| < ¢b, and the result follows by the comparison principle. ]

an+1

Corollary 167. (The ratio test — second version) If lim sup

< 1, then

an+1

the series . a, is absolutely convergent. Iflim sup > 1, then the series

> ay is divergent.

Proof. For the convergence, take b, = (limsup |“+ )" in theorem (166, If
O
Corollary 168. (The ratio test — third version) If lim || < 1 then Y a,

1s absolutely convergent, if lim > 1 then Y a, diverges.

An41
an
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an+1

Example 169. Fiz © € R and consider the series Zx—T, then

=]
o — 0 regardless of x, and the series is absolutely convergent. We wzll see

later that this series coincides with e*.

Theorem 170. (Root test is stronger than the ratio test) For any bounded
sequence a, of positive numbers we have

.. . . a
1 < liminf /a, < limsup /a, < limsup +

Qn Qn

lim inf a4

In particular, if lim *** = ¢ then lim {/a, = c.

Proof. 1t’s enough to prove that lim sup /a,, < limsup =2+ a"“ , the first inequal-
ity can be proven mutatis mutandis. We argue by Contradiction, suppose
there is a k € R such that

G,
lim sup a,, > k > lim sup s

n

Proceeding as in the proof of theorem [166, we can find ny € N such that
1
n > ng = a, < ck™, which implies that /a, < c¢» k and hence:

limsup a, <k
a contradiction. O

Example 171. A nice application of the theorem above is the computation
of hm . Set x, = *\VLT? and y, = %, then x, = /y,. On the other hand,

Ynt1 __ Ynt1 __ . : n _

o (1 + ) hence lim = and it follows that lim v =
Example 172. Given two distinct numbers a,b € R, consider the sequence
z, = {a,ab,a®b,a®V*,a’b?, ..}, then the ratio - = b if n is odd, and
xgzl =a if n is even, hence the sequence “=L doesn’t com)erge and lim =2

doesn’t exist. On the other hand, we have hm Vx, =Vab. This demonstmtes
that in the theorem above the inequalities can be stmct

Theorem 173. (Dirichlet) Let b, be a nonincreasing sequence of positive
numbers with limb,, = 0, and > a, be a series such that the partial sum s,
is a bounded sequence. Then the series » . a,b, converges.
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Proof. Notice that

a1b1 + a2b2 4+ ...+ anbn = al(bl — bg) -+ (CLl + (lg)(bQ — b3)+
+ (a1 +as+az)(bs—by) + ...+ (a1 + ...+ an)b,

= Z Si—1(bi—1 — b;) + snby,
i=2

Since s, is bounded, say |s,| < k and b, — 0, we have lims,b, = 0.
MOI‘GOVGI‘, |Z?:2 Si—l(bi—l - b2)| S k?| 2?12([)1'_1 - bz)l = k’(bl - bn) So
> 8i—1(bi—1 — b;) converges, and therefore, by comparison, Y a,b, con-
verges as well. OJ

We can weaken the hypothesis limb,, = 0. Indeed, if limb,, = ¢ just take
by := b, — c and use this new sequence instead. We conclude:

Corollary 174. (Abel) If > a,, is convergent and b, is a nonincreasing se-
quence of positive numbers then > a,b, converges.

Corollary 175. (Leibniz) Let b, be a nonincreasing sequence of positive
numbers with limb,, = 0. Then the series > (—1)"b, converges.

Proof. In this case, a,, = (—1)" has bounded partial sum, namely |s,| < 1,
and the result follows directly from theorem [173 O

Example 176. Some periodic real valued functions can be written as a linear
combination of Y cos(nz) and > sin(nx). The properties of such functions
and generalizations are addressed in area of mathematics called Fourier
Analysis. E. Stein’s book on the subject is a wonderful first-read of the
topic.

Take the example of f(x) = > %, we claim that if © # 27k, k € Z
then f(x) is well-defined, i.e. Z% converges. Indeed, let a, = cos(nx)
and b, = %, then b, is decreasing, so by theorem it’s enough to prove
that the partial sums s, of Y a, are bounded. In other words, we need to
show that

Sp = cos(x) + cos(2x) + cos(3z) + ... + cos(nx)
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is bounded. Recall, that ¢ = cos(z) + isin(z). Therefore:
1+ 8, = Re[l 4 € 4 2@ 4 3% 4 | 4 ™7

]

1— 6(n+1)iw

1+ s, = Re] T
_67,33

14s, < —o
T s 11— efz|

It follows that s, is bounded and we conclude that Z@ converges if
x # 2mk.

Given a series »_ a,, we define the positive part of Y a, as the series
> Pn, where p, = a, if a,, > 0, and p,, = 0 if a,, < 0. Similarly, the negative
part of Y a, as the series > q,, where ¢, = —a, if a, < 0, and ¢, = 0
if a, > 0. It follows immediately from the definition that p,,q, > 0 and
Ap = Pn — Gn, |Gn| = Pn + ¢, V0 € N.

Proposition 177. The series Y a, is absolutely convergent if and only if
> Pn and ) g, converge.

Proof. Notice that p, < |a,| and ¢, < |a,|, hence if ) |a,| converge then by
comparison » _ p, and »_ ¢, also converge. The converse is obvious. ]

Example 178. If > a, is not absolutely convergent, then the proposition
is false. Take the example of Z% In this case, Y p, = % and
> G = 55, and both diverge.

Proposition 179. If > a, is conditionally convergent then Y p, and > q,
diverge.

Proof. Suppose not, say »_ ¢, converge. Then > |a,| = D pn + D qn =
> an+ 2 g, also converges, a contradiction. O

Let f: N — N be a bijection and ) a, be a series of real numbers. Set
b, = aymn). We say ) a, is commutatively convergent if > a, = ) b,
for every bijection f : N — N. We will show below that the notion of
commutative convergence coincides with absolute convergence.

Theorem 180. A series Y a,, is absolutely convergent if and only if is com-
mutatively convergent.
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Proof. Suppose ) a, absolutely convergent, and let b, = ay(,) for some
bijection f : N — N. It’s enough to assume that a, > 0, otherwise just use
the fact that a, = p, — qu, for p,,q, > 0, and apply the result for p, and

¢n. Now, fix n € N and let s, = > a; denote the partial sum of »_ a,, and
i=1

tn, = Y b;, the partial sum of Y b,. If we set m := max{f(z);1 <z <n}, it
i=1

follows that t, = > aru) < > a; = Sp,. We conclude that for each n € N it’s
i=1 i=1

possible to find m € N such that ¢, < s,,, and similarly using f~!(y) instead
of f(x), given m € N it’s possible to find n € N, such that s, < t,, which
implies lim s,, = lim ¢,,, hence > a, = >_b,.

Conversely, we want to show that if > a, is commutatively convergent
then it is absolutely convergent. We prove the contra-positive, that is, sup-
pose > a, is not absolutely convergent then ) a, is not commutatively
convergent. Indeed, if ) a, is divergent, just take b, = a,. Otherwise,
> a, is conditionally convergent, say > a, = S € R, and by proposition
both > p, and > ¢, diverge. Moreover, since lima, = 0, we have
limp, = limg, = 0. Take any number ¢ # S, we will show that we can
reorder a, into b, in such a way that > b, = ¢, hence > _ a, can’t be com-
mutatively convergent. Let n; be the smallest natural such that

pL+pa+...+pp >0
and no > nq, be smallest number such that

Prt. ot Pp =@ —G2— ..~ Gy, <C

Proceeding by induction, we obtain a new series > b,, such that the partial
sums ¢, approach c. Indeed, for odd i we have ¢,, — ¢ < p,,, be definition
of n;, and similarly, ¢ —t,,,, < @y,,,. Since limp, = limg, = 0, we have
limt,, = c. A similar argument holds for ¢ even. O

4 Topology of R
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