Fields
A field K is a set "K" together
with two operations:

$$f: KxK \rightarrow K$$
 and $\therefore KxK \rightarrow K$
Salifying:
Given $xiy \in K$ we have: $(Field A xions)$
1. $(x+g) + z = x + (g+z)$
2. $x+g = g+x$
3. There is an element $0 \in K$ such that
 $x+0 = x - 4x \in K$
4. For any $x \in K$, there is an element $g \in K$
such that $x+g = 0$. We define $-x := g$ and
we write $z - x$ indeed of $z + (-x)$.
5. $(X \cdot g) z = x \cdot (g \cdot z)$
6. $x \cdot g = g \cdot x$
7. There is an element $1 \in K$ such that:
 $1 \cdot x = x - 4x \in K$
8. For any $x \neq 0, \exists x' \in K$ such that:
 $1 \cdot x = x - 4x \in K$
8. For an element $1 \in K$ such that:
 $x \cdot x^{-1} = 1$
we write x inheed of $x \cdot g^{-1}$.
9. $x \cdot (g+z) = xy + xz$
Given K, L fields.
 $f: K \rightarrow L$ is a homomorphism

Monday, September 23, 2024

3:48 PM

$$f(x + y) = f(x) + f(y)$$

$$-f(x + y) = f(x) \cdot f(y)$$

$$Jf f: K \rightarrow L has an inverse f:$$

If f: K-it has an inverse f: L-it which is also a homomorphism, we say f: K-it is an isomorphism.

$$C_{X:} (The Radional numbers):
$$\frac{a}{b}, \frac{c}{d} \in Q$$

$$\frac{c}{d}, \frac$$$$

a.
$$\chi \cdot Q = Q$$

b. $\chi \cdot 2 = g \cdot z$ and $z \neq 0$ then $\chi = g$ (Cancellation Law)
c. $\chi \cdot g = D \Rightarrow \chi = 0$ or $g = D$
d. $\chi^2 = g^2 = 0$ $\chi = \pm g$
 $\frac{1}{2}$
 $\frac{1}{2}$

Ex:
$$Z_p$$
, $\overline{I}+\overline{I}+\overline{I}=5 \notin P$
 \mathbb{Z}_p is not ordered

Ch:
$$\mathbb{Q}(4)$$

 $P = i \frac{p(4)}{q(4)}$; the leading well of $p(4)$. $q(4)$ is possible j
 $\frac{1}{1}$, $\frac{2i^{2}+1}{4^{3}-4+a}$, $\frac{-i^{3}+i^{2}+1}{-i^{2}+a^{4}+1}$
($\hat{2}i^{4}$)
 $We write $X > y$ if $X - y \in P$ $X > 0$
 $(y < x)$
 $X \ge y$ $X - y \in P$ or $X = y$
 $(y \le x)$
 $X < 0$
 $Y \le x$
 $Y = y$ $X - y \in P$ or $X = y$
 $(y \le x)$
 $Y = y$ $X = 0$
 $Y = y$ $X = 0$
 $(y \le x)$$

T. X < y and g < z =) X < z

we write MEK

Lef

When
$$1+1+\dots+1=0$$
, we say K has characteristic p^{μ}
if $1+1+\dots+1$ is never zero, we say K has characteristic zero
 $C_{h}: \Phi$
 $1+1+\dots+1 \neq 0$
 $g: \Phi \longrightarrow K$
 $q \longrightarrow f(\alpha) \cdot f(b)^{-1}$
 $N \subseteq \Phi \subseteq K$

Every ordered field "contains" N and
$$\oplus$$
.
Proposition K an ordered field.
 $X \ge -1 = O(1+x)^n \ge 1+n \cdot x$ $\forall n \in W$
Proof: We use induction on nEBN.
A=1
 $(1+x) \ge 1+x$ $(+(K+1)x)$
 $n = K+1$
 $(1+x)^{K+1} = (1+x)(1+x)^K \ge (1+Kx)(1+x)$
 $= (+x + Kx + Kx)^2$
 $\ge (+x + Kx + Kx)^2$
 $\ge (+x + Kx + Kx)^2$