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Abstract. Using the techniques introduced in [25], we construct continuous weak so-
lutions to the ideal Hall equation with a given energy profile. This is a first step in the

direction of proving the Onsager’s conjecture for the more general Hall-MHD equations.

1. Introduction

During the past decade there have been a sizeable amount of research about constructing
weak solutions to partial differential equations using convex integration [1, 2, 3, 5, 6, 7, 8,
9, 10, 25, 22, 23, 24, 26, 27, 28]. The idea of using convex integration to attack problems
related to the existence of weak solutions started with C. de Lellis and L. Szekelyhidi Jr
[22], when they showed the non uniqueness of weak solutions to the Euler equations:

(1)

{
∂tu+ (u · ∇)u+∇P = 0

∇ · u = 0

They were motivated by the similarity between this problem and the work of John Nash
on short isometric imbeddings [30]. At the time of their work there was a famous open
problem related to the Euler equations, namely, Onsager’s conjecture on energy dissipation.
In a few words, Onsager conjectured that a Holder continuous weak solution to the Euler
equation would dissipate energy if the Holder exponent was less than 1

3 and would conserve
it otherwise. The energy conservation part was proved many years ago by Constatin & Titi
[15], using an estimate on commutators, the dissipation part on the other hand remained
open until very recently when P. Isett [29] using convex integration techniques finally settled
this question.

A generalization of the Euler equations is the Magnetohydrodynamic (MHD) system of
equations given by:

(2)


∂tu+ (u · ∇)u+ (B · ∇)B +∇p = α∆u

∂tB + (u · ∇)B − (B · ∇)u = β∆B

∇ · u = ∇ ·B = 0

which models the behavior of electrically conducting fluids. Here u is the velocity field, B
is the magnetic field and p a scalar pressure. This system combines Maxwell’s equations of
electromagnetism with the Navier-Stokes equations.

When one considers the Hall effect, mathematically given by ∇ × ((∇×B)×B), in
a conducting fluid, we have what is called the Hall-magnetohydrodynamics (Hall-MHD)
equations:

(3)


∂tu+ (u · ∇)u+ (B · ∇)B +∇p = α∆u

∂tB + (u · ∇)B − (B · ∇)u+ θ∇× ((∇×B)×B) = β∆B

∇ · u = ∇ ·B = 0
1
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In this manuscript we will be interested in the case where u = α = β = 0 and θ = 1. The
resulting system is called ideal Electron-magnetohydrodynamic (EMHD) equation or simply
the ideal Hall equation.

(4)

{
∂tB +∇× ((∇×B)×B) = 0

∇ ·B = 0

This model and its generalization above have been intensely studied in the past decades
[16, 18, 19] with many results on the existence and well-posedness of solutions. Very recently
M. Dai [17] used convex integration with L2 scale to prove some interesting results concerning
the EMHD system.

In these notes we’ll use convex integration with Holder scale instead, closely following
the same approach used in the same result for the Euler equations [25]. We won’t provide a
specific Holder exponent for the constructed solutions but we plan to do so and also discuss
the same ideas for the whole Hall-MHD system in forthcoming works.

We will be interested in the so called magnetic energy, which is a function given by

(5) E(t) = ∥B∥22 =

∫
T3

|B|2(x, t)dx.

If we assume that B(x, t) is a classical solution, then taking the dot product with B on both
sides of the first equation in 4 and integrating over T3 gives:

(6)

∫
T3

∂tB ·B dx +

∫
T3

∇× ((∇×B)×B) ·B dx = 0

Notice that by the Divergence theorem we have:

(7)

∫
T3

∇× ((∇×B)×B) ·B dx =

∫
T3

((∇×B)×B) · ∇ ×B dx = 0

Therefore, we deduce from the above that

(8) E′(t) = 2

∫
T3

∂tB ·B dx = 0.

and the magnetic energy is conserved for classical solutions. This is natural, since the Hall
equation resembles the Euler, and the latter also conserves energy in the case of classical
solutions.

We are then led to the basic question

If we assume lower regularity of the solutions is the energy still conserved?

This is the content of the Onsager’s conjecture, which was proved in the context of the
Euler equation but to the best of our knowledge is not yet know for the Hall equation.
The purpose of this manuscript is to address this question, or more generally the following
conjecture:

Conjecture 1. (Onsager’s conjecture for the Hall equation) Let B(x, t) ∈ C0,α be a Holder
continuous weak solution to the Hall equation. Then

a) If α > 2
3 the magnetic energy is conserved.

b) If α < 2
3 the magnetic energy is dissipated.

The first part of the conjecture, when α > 2
3 , has been known already [20]. We provide

a simple proof which is a simple adaptation of the argument in [15].
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A weak solutions to system 4 is a vector field B on [0, T ] × T3 satisfying for any test
functions φ ∈ C∞

c ([0, T ]× T3), ϕ ∈ C∞
c ([0, T ]× T3,R3) the following system:∫ T

0

∫
T3

B · ϕt + (B ⊗B) : ∇(∇× ϕ) dxdt = 0(9) ∫ T

0

∫
T3

B · ∇φdxdt = 0(10)

Proof of Conjecture 1 a). Let B be a weak-solution. Notice that whenever B is divergence
free, we have ∇× ((∇×B)×B) = ∇× (∇ · (B ⊗B)). Mollify equations 4 to obtain:

(11)

{
∂tBl +∇× (∇ · (B ⊗B)l) = 0

∇ ·Bl = 0

where Bl = B ∗ρl and ρl is a standard family of radially symmetric mollifiers of scale l. The
above system is equivalent to

(12)

{
∂tBl +∇× (∇ · (Bl ⊗Bl)) = ∇× (∇ · [(Bl ⊗Bl)− (B ⊗B)l])

∇ ·Bl = 0

Taking the scalar product with Bl of the first equation above we obtain

(13) ∂tBl ·Bl +∇× (∇ · (Bl ⊗Bl)) ·Bl = ∇× (∇ · [(Bl ⊗Bl)− (B ⊗B)l]) ·Bl

Integrating the above leads to

(14)
d

dt

∫
T3

|Bl|2dx =

∫
T3

[(Bl ⊗Bl)− (B ⊗B)l] : ∇(∇×Bl)dx

Standard Mollifiers properties give us the bound:

(15) |∇(∇×Bl)| ≤ C∥B∥αlα−2

and the main commutator estimate of [15] gives:

(16) |(Bl ⊗Bl)− (B ⊗B)l| ≤ C∥B∥2αl2α

We conclude that

(17)

∣∣∣∣ ddt
∫
T3

|Bl|2dx
∣∣∣∣ ≤ C∥B∥3αl3α−2

and statement a) is proved. □
Similarly to the case of the Euler equation, the second part of conjecture 1 is non trivial

and we hope to provide a proof in the future. In this manuscript we’ll restrict our efforts to
prove the following result which is a step in the direction of part b) of conjecture 1.

Theorem 1.1. Given a function E : [0, 1] → R smooth and positive. There is a continuous
vector field B : T3 × [0, 1] → R3 which solve the ideal EMHD equations 4 in the sense of
distributions and such that

(18) E(t) =

∫
T3

|B|2(x, t)dx.

We assume the existence of a vector potential A such that B = ∇×A. Then the equations
4 implies that A satisfies:

(19)

{
∂tA+ (∇×B)×B = 0

∇ ·B = 0

Given B, A can be recovered from B by the Biot-Savart law A = ∇× (−∆−1)B.
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The main tool to prove theorem 1.1 is to use convex integration in the relaxed system:

(20)


∂tAn +∇ · (Bn ⊗Bn)−∇pn = ∇ · R̊n

∇×An = Bn

∇ ·An = ∇ ·Bn = 0

where pn = |Bn|2
2 and R̊n is a symmetric traceless matrix field.

The main theorem is a consequence of the following proposition.

Proposition 1.2. (Main proposition) Let E(t) be as in Theorem 1.1. Then there are
positive constants η and M with the following property.

Let δ ≤ 1 be any positive number and (A,B, R̊) be a solution system 20 such that for
every t ∈ [0, 1]:

3δ

4
E(t) ≤ E(t)−

∫
T3

|B|2(x, t)dx ≤ 5δ

4
E(t)(21)

∥R̊∥0 ≤ ηδ(22)

Then there is a triple (A1, B1, R̊1) which solves system 20 as well and satisfies:

3δ

8
E(t) ≤ E(t)−

∫
T3

|B1|2(x, t)dx ≤ 5δ

8
E(t)(23)

∥R̊1∥0 ≤ η
δ

2
(24)

∥B1 −B∥0 ≤ M
√
δ(25)

Proof of theorem 1.1. The proof is almost identical to the one found in [25, Proposition 2.2],

we include here for the convenience of the reader. Set (A0, B0, R̊0) = (0, 0, 0), take δ = 1

and apply proposition 1.2 interactively. We get sequences (An, Bn, R̊n) satisfying

3

4

E(t)

2n
≤ E(t)−

∫
T3

|Bn|2(x, t)dx ≤ 5

4

E(t)

2n
(26)

∥R̊n∥0 ≤ η

2n
(27)

∥Bn+1 −Bn∥0 ≤ M

√
1

2n
(28)

(29)

We have that Bn is a Cauchy sequences in C(T3 × [0, 1]) and therefore converge uniformly
to a continuous B, moreover, if that’s the case then An converges to a continuous A as well,
such that ∇ · A = 0 and ∇ × A = B. Also notice that R̊n converges uniformly to 0. We
conclude that B defines a continuous weak solution to the EMHD equations 4 satisfying

E(t) =

∫
T3

|B|2(x, t)dx

□

2. Construction of the perturbations

In order to construct the perturbations, we will need the following lemma whose proof
can be found in [25, Lemma 3.2].
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Lemma 2.1. For every N ∈ N we can choose r0 > 0 and λ0 > 1 with the following property.
There exist pairwise disjoint subsets

Λj ⊂ {k ∈ Z3 : |k| = λ0} j ∈ {1, . . . , N}

and smooth positive functions

γ
(j)
k ∈ C∞(Br0(Id)) j ∈ {1, . . . , N}, k ∈ Λj

such that

a) If k ∈ Λj then −k ∈ Λj and γ
(j)
k = γ

(j)
−k;

b) For each R ∈ C∞(Br0(Id)) we have the identity

R =
1

2

∑
k∈Λj

(γ
(j)
k (R))2

(
Id− k

|k|
⊗ k

|k|

)

There is a strong similarity between the relaxed system for the EMHD equations 20, and
the one for the Euler equations ∂tu + (u · ∇)u − ∇P = 0 of an ideal incompressible fluid,
which in latter case is given by

(30)

{
∂tuq +∇ · (uq ⊗ uq) +∇Pq = ∇ · Sq

∇ · uq = 0

Based on this similarity we construct perturbations for our convex integration scheme follow-
ing the ideas of [25]. Namely, using Beltrami flows. The upshot is that if

∑
|k|=λ0

ak(x)Bke
iλk·x

is a Beltrami flow for some λ0 then
(31)

1

λ

∑
|k|=λ0

akBke
iλk·x− 1

λ2

∑
|k|=λ0

i∇ak(x)×
k ×Bk

|k|2
eiλk·x =

1

λ2
∇×

 ∑
|k|=λ0

−iak(x)
k ×Bk

|k|2
eiλk·x


We fix constants 1 ≤ µ ≤ λ to be defined later. Throughout these notes our amplitude

function ak in the expression for the perturbations will be very similar to the one used in
[25], namely ak(x, t, λt) where ak is defined in our case by

∑
|k|=λ0

ak(y, s, τ)Bke
iλk·x = ρ(s)

8∑
j=1

∑
k∈Λj

γ
(j)
k

(
R(y, s)

ρ(s)

)
ϕ
(j)
k (B(y, s), τ)Bke

iλk·x(32)

R(y, s) = ρ(s)Id− R̊(y, s)(33)

ρ(s) =
1

(2π)3

(
E(s)(1− δ

2
)−

∫
T3

|B|2(x, s)dx
)

(34)

and λ0, γ
(j)
k can be obtained from lemma 2.1 by setting N = 8, and ϕ

(j)
k (B, τ) is a type of

partition of unity satisfying supB,τ |Dm
B ϕ

(j)
k (B, τ)| ≤ C(m)µm, for the definition of ϕ

(j)
k (B, τ)

see [25, sec 4.1].
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Let P denote the mean zero Leray Projection on Divergence free vector fields. Motivated
by equation 31 we define A1 to be:

A1 = A+ P(v) = A+ v + vc(35)

v =
1

λ

 ∑
|k|=λ0

−iak(x, t, λt)
k ×Bk

|k|2
eiλk·x

(36)

vc = −Q(v)(37)

(38)

where Q is the operator defined by Id− P. Similarly, we have the definition of B1:

B1 = ∇×A1(39)

= ∇× (A+ v −∇ϕ−
∫
T3

v)(40)

= B +
1

λ

∑
|k|=λ0

akBke
iλk·x − 1

λ2

∑
|k|=λ0

i∇ak(x)×
k ×Bk

|k|2
eiλk·x(41)

In order to simplify notation, we set

wo :=
1

λ

∑
|k|=λ0

akBke
iλk·x

wc := − 1

λ2

∑
|k|=λ0

i∇ak(x)×
k ×Bk

|k|2
eiλk·x

B1 = B + wo + wc

Notice that ∇ ·A1 = ∇ ·B1 = 0 and B1 = ∇×A1 by construction. Also, in order for ak to
make sense we need ∣∣∣∣∣∣∣∣R(y, s)

ρ(s)
− Id

∣∣∣∣∣∣∣∣ ≤ r0

where r0 is given by lemma 2.1. Motivated by this we set, setm := minE(t) then ρ(t) ≥ cδm
for some numerical constant c. So if we define

η :=
cmr0
2

the amplitude functions ak are well-defined. Similarly, recall that we choose λ ≥ 1 and by
definition we have ρ(t) ≤ δE(t), so we can choose a numerical constant M > 1 depending

only on E(t) such that ∥wo∥ ≤
√
Mδ
2 .

3. Estimates

Lemma 3.1. (Estimate on the energy) The energy satisfies the following estimate

(42)

∣∣∣∣E(t)(1− δ

2
)−

∫
T3

|B1|2(x, t)dx
∣∣∣∣ ≤ C

µ

λ1−α

Proof. The proof follows from the identity

(43) wo ⊗ wo = R(x, t) +
∑

0≤|k|≤2λ0

Uk(x, t, λt)e
iλk·x

where Uk(y, s, τ) satisfies
∥Uk(·, s, τ)∥r ≤ Cµr
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Taking the trace of equation 43 we get

|wo|2 = 3ρ(x, t) +
∑

0≤|k|≤2λ0

ck(x, t, λt)e
iλk·x

for some ck(y, s, τ) such that

∥ck(·, s, τ)∥r ≤ Cµr

Thus, by proposition [??] we have∣∣∣∣∫
T3

|wo|2 − tr(R) dx

∣∣∣∣ ≤ C
µ

λ

Additionally, we have ∣∣∣∣∫
T3

|B1|2 − |B|2 − |wo|2 dx

∣∣∣∣ ≤ C
µ

λ1−α

The proof follows by combining these two inequalities. □

4. Estimate of the Stress tensor

After the following lemma, we’ll have all the tools needed to estimate R̊1.

Lemma 4.1. [25, Collorary 5.3] Let k ∈ Z3\{0} be fixed. For a smooth vector field a ∈
C∞(T3,R3) let F (x) := a(x)eiλ·k. Then we have:

∥R(F )∥α ≤ C

λ1−α
∥a∥0 +

C

λm−α
[a]m +

C

λm
[a]m+α

Recall that R̊1 has to satisfy the equation:

(44) ∂tA1 +∇ · (B1 ⊗B1)−∇|B1|2

2
= ∇ · R̊1

and notice that

∂tA1 +∇ · (B1 ⊗B1)−∇|B1|2

2
= ∂tv + (B · ∇)wo

+∇ · (wo ⊗ wo −
1

2
|wo|2Id+ R̊)− 1

2
∇(2B · wo + 2wo · wc + |wc|2)

+ ∂tvc +∇ · (B1 ⊗ wc + wc ⊗B1 − wc ⊗ wc +B ⊗ wo)

=: Rtransport +Roscillation +Rerror +∇p̃q+1

Lemma 4.2. (transport error)

(45) ∥R(∂tv + (B · ∇)wo)∥α ≤ C

(
µ2

λ3−α
+

µ

λ1−α
+

µ2

λ2−α

)
Proof. Recall that ik ×Bk = λ0Bk. We have:

R(∂tv + (B · ∇)wo)) =
1

λ2
R

−
∑

|k|=λ0

∂sak(x, t, λt)
Bk

|k|2
eiλk·x


+R

 ∑
|k|=λ0

(i(k ·B)ak)(x, t, λt)Bke
iλk·x


+

1

λ
R

 ∑
|k|=λ0

(
λ0

|k|2
∂τak +B · ∇yak

)
(x, t, λt)Bke

iλk·x


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Using Lemma 4.1 with m = 1 in the first expression we have the bound

µ

λ3−α
+

µ2

λ3−α
+

µ3+α

λ3

the same lemma with m = 1, applied to the second expression gives the bound

C

λ1−α
+

µ

λ1−α
+

µα+1

λ

and finally m = 1 in the last expression gives:

µ

λ2−α
+

µ2

λ2−α
+

µ1+α

λ2

Since we choose λ ≥ µ ≥ 1, the result follows. □

The following estimate is identical to [25, lemma 7.3], so we ommit the proof.

Lemma 4.3. (Oscillation error)

(46) ∥R(∇ · (wo ⊗ wo −
1

2
|wo|2Id+ R̊))∥α ≤ C

(
µ2

λ1−α

)
Lemma 4.4. (Estimate on wc)

(47) ∥wc∥α ≤ C
µ

λ2−α

Proof. Follows directly from the expression

wc = − 1

λ2

∑
|k|=λ0

i∇ak(x)×
k ×Bk

|k|2
eiλk·x

□

Lemma 4.5. (Estimate of vc)

(48) ∥R(∂tvc)∥ ≤ C

(
µ2

λ(3−α)
+

µ

λ(2−α)

)
Proof. First notice that R(∂tvc) is R(Q(−∂tv)) and

∂tv =
λ0

λ2

−
∑

|k|=λ0

∂sak(x, t, λt)
Bk

|k|2
eiλk·x

+
λ0

λ

−
∑

|k|=λ0

∂τak(x, t, λt)
Bk

|k|2
eiλk·x


The estimate follows from 4.1 and the fact that RQ is bounded with respect to Cm,α [25,
Proposition 5.1].

□

Lemma 4.6. (Estimate on the error)

(49) ∥R (∇ · (B1 ⊗ wc + wc ⊗B1 − wc ⊗ wc))∥α ≤ C
µ

λ(3−2α)
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Proof. We have:

∥B1 ⊗ wc + wc ⊗B1 − wc ⊗ wc∥α ≤ C(∥B1∥0∥wc∥α + ∥B1∥α∥wc∥0 + ∥wq+1∥0∥wq+1∥α)

(50)

≤ C
µ

λ2−α
(∥B1∥α + ∥wc∥α)(51)

≤ C
µ

λ2−α
(∥B∥α + ∥wo∥α + ∥wc∥α)(52)

≤ C
µ

λ2−α

(
C + C

µ

λ2−α
+

C

λ1−α

)
(53)

Recall that λ ≥ µ ≥ 1, hence µ
λ2−α ≤ 1

λ1−α . □

Lemma 4.7. (Estimate on last part of the error)

(54) ∥R (∇ · (B ⊗ wo))∥α ≤ C
µ2

λ2−α

Proof. We have:

∇ · (B ⊗ wo) = (wo · ∇)B + (∇ · wo)B(55)

=
1

λ

∑
|k|=λ0

[ak(Bk · ∇)B +B(Bk · ∇ak)]e
iλk·x(56)

the result follows by 4.1 with m = 1. □

5. Proof of the main proposition

Suppose we choose µ = λb in such a way that λ
µ ∈ N (due to the definition of ak).

Collecting all the estimates we’ve obtained so far, we obtain:

∥wo + wc∥0 ≤ C

(
M

√
δ

2λ
+

µ

λ2−α

)
(57)

∥R̊1∥ ≤ C
(
λb−(2−α) + λ2b−(2−α) + λb−(3−2α) + λ2b−(1−α) + λ2b−(3−α) + λb−(1−α)

)
(58)

Hence, any choice of α, b satisfying

0 < α ≤ 1(59)

b <
1− α

2
(60)

will force ∥R̊1∥0 ≤ η δ
2 for sufficiently large λ, so that 24 is satisfied, and also ∥wo + wc∥0 ≤

M
√
δ, hence 25 holds.

Finally, according to 42, 23 holds provided that we can find α, b such that Cλα+b−1 ≤
√
δ
2 .

That is indeed the case if we take λ large enough and α, b as described by the inequalities
above. This completes the proof of the main proposition.
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