Final Exam

1. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and $X \subseteq \mathbb{R}$. Show that if $f(x) = 0, \forall x \in X$ then $f(x) = 0, \forall x \in \overline{X}$. Here, \overline{X} denotes the closure of X.

Solution. Let $x \in \overline{X}$, then by definition, we can find a sequence $x_n \in X$ such that $x_n \to x$, since f is continuous, $f(x_n) \to f(x)$. Since $f(x_n) = 0$, the result follows. \Box

2. Let $f: [0,1] \to \mathbb{R}$ be continuous such that f(0) = f(1). Show that there exists $c \in [0,\frac{1}{2}]$ such that $f(c) = f(c + \frac{1}{2})$.

Solution. Set $g(x) = f(x) - f(x + \frac{1}{2})$, then $g(0) = f(0) - f(\frac{1}{2}) = -g(\frac{1}{2})$. If $g(0) = -g(\frac{1}{2}) = 0$ then the statement is obvious, suppose $g(0) \neq 0$, then by the Intermediate value theorem there exists $c \in [0, \frac{1}{2}]$ such that g(c) = 0.

3. A function $f : \mathbb{R} \to \mathbb{R}$ is periodic if there exists $p \in \mathbb{R}$ such that f(x + p) = f(x) for every $x \in \mathbb{R}$. Show that every continuous periodic function is bounded. [Hint: Use the Extreme Value Theorem.]

Solution. It suffices to prove that f restricted to [0, p] is bounded since f(x+p) = f(x). Since [0, p] is compact, the result follows from Weirstrass Extreme Value Theorem. \Box

4. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable such that for $c, x \in \mathbb{R}$ we have f(cx) = cf(x). Show that f(x) satisfies

$$f(x) = f'(0)x.$$

Solution. Take x = 1, then f(c) = cf(1) for every $c \in \mathbb{R}$, or f(x) = xf(1). Taking the derivative on both sides gives f'(x) = f(1), hence f(x) = f'(0)x.

5. Let $f : \mathbb{R}^+ \to \mathbb{R}$ be given by $f(x) = \frac{\ln x}{x}$. Give the intervals where f increases, and when it decreases. Also, find all the critical points of f. Recall that a point $a \in \mathbb{R}$ is called a critical point of the function f(x), if f'(a) = 0.

Solution. A quick computation shows that $f'(x) = \frac{1-\ln x}{x^2}$, hence x = e is the only critical point (local max) and f is increasing on (0, e) and decreasing on $(e, +\infty)$.

Extra (2 pts). Show that x = 0 in the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 \sin \frac{1}{x} + x$, if $x \neq 0$, and f(0) = 0, is a counter-example to the statement:

'The limit of a sequence of critical points is itself a critical point.'

Solution. A quick computation shows that f'(0) = 1 and $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x} + 1$ if $x \neq 0$. Therefore, x = 0 is not a critical point but $x_n = \frac{1}{2\pi n}$ is a sequence of critical points converging to 0.

 $\mathbf{2}$