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Preface

This book is intended as a first rigorous introduction to Real Analysis, with a
focus on functions of a real variable. It is written for undergraduate students in
mathematics, but it may also serve as a reference for anyone seeking a clear and
rigorous introduction to the subject. The exposition is self contained and only
assumes a basic background in elementary mathematics.

A distinctive feature of the book is its balance between theory and practice.
Many theorems are followed by worked examples and exercises of varying dif-
ficulty, encouraging the reader to actively engage with the material and develop
problem-solving skills. The style is direct and concise, yet aims to be accessible;
historical notes are included to give context and show the evolution of ideas in
mathematics.

The text begins with set theory and the real number system, then moves
through sequences, limits, continuity, derivatives, and integrals, ending with
more advanced topics such as uniform convergence and power series. Each
chapter blends theory with examples, and includes exercises to reinforce under-
standing and encourage active learning. My goal is to make the subject clear,
precise, and engaging, while maintaining the rigor essential to mathematical
analysis.

I hope readers will not only master the techniques but also appreciate the
beauty and logic that make Real Analysis a central part of mathematics.

San Antonio, TX, August 2025
Genival Silva
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Chapter 1
Naive Set Theory

In this chapter, we will introduce the notions of sets and functions. These are
fundamental notions that will be used extensively throughout the remainder of
the text. In fact, the main goal of this textbook is to study functions of a real
variable defined on subsets of the real number field. We will begin this study
with basic definitions related to sets, then the natural numbers will be introduced,
and finally, we will compare the naturals with various types of sets.

1.1 Sets

A set X is a collection of objects, also called the elements of the set. If ‘a’ is an
element of X, we write a € X. On the other hand, if ‘a’ isn’t an element of X,
we write a ¢ X.

A set X is well defined when there is a rule that allows one to precisely
determine if an arbitrary element ‘a’ is or is not an element of X.

Example 1.1. The set X of all right triangles is well-defined. Indeed, given any
object ‘a’, if ‘a’ is not a triangle or does not have a right angle then a ¢ X. If
‘a’ is aright triangle, then a € X.

Example 1.2. [ The set X of all sets that are not members of themselves is not
well-defined, because we cannot say whether X, as an element itself, is or is not
an element of X. If X is an element of X, then by the definition of X, X is not
in X. Conversely, if X is not in X, then X is in X.

Usually one uses the notation

X={a, b, c, ...}

* This example is known as Russell’s Paradox. After its publication in 1901, Ernst Zermelo proposed
an axiomatic theory of sets where the notion of a set is made more precise.
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to represent the set X whose elements are a,b,c, and so on. If a set has no
elements, we denote it by (), and call it the empty set.
The set of natural numbers 1,2,3, ... will be denoted by

N={1,2,3,...}
The set of integers will be denoted by
Z=A{...,-3,-2,-1,0,1,2,3, ...}

The set of rational numbers, that is, fractions 7, where a, b € Z and b # 0, will
be denoted by

Qz{%la,bez,bth}.

In chapter 2] we will formally define the set of real numbers, denoted by R. For
now, we consider the set R of real numbers to consist of all numbers that have a
decimal representation.

The vast majority of sets in mathematics are not defined by specifying their
elements one by one. What usually happens is that a set is defined by some
property its elements satisfy; i.e., if @ has property P, then a € X, whereas if a
does not have property P, then a ¢ X. One writes

X = {a | a has property P} or X = {a; a has property P}

both notations will be used in the text.

Example 1.3. The set
X={aeN|a>10},

consists of all natural numbers greater than 10, namely, X = {11,12,13,...}.

Given two sets A and B, one says that A is a subset of B, or that A is included
in B (i.e., B contains A), denoted by A C B, if every element of A is also an
element of B.

When one writes X C Y, it is possible that X =Y. In the case where X # Y,
we say that X is a proper subset. The notation X C Y is sometimes used to
indicate that X is a proper subset of Y.
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Fig. 1.1: Picture of a set X as a subset of Y.

Example 1.4. We have the obvious inclusion of sets:

NCZcQcR
Example 1.5. Let X be the set of all squares and Y be the set of all rectangles.
Then X C Y, since every square is a rectangle.

Notice that to write a € X is equivalent to say {a} C X. Also, by definition,
it’s always true that () C X for every set X.
It’s easy to see that the inclusion of sets has the following properties:

1. Reflexive: X C X for every set X;
2. Antisymmetric: if X CYandY C X ,then X =Y
3. Transitive:if X CY andY C Z,then X C Z.

It follows that two sets X and Y are the same if and onlyif X C Y and Y C X,
that is, they have the same elements.
The power set of the set X, denoted by® (X), is defined as the set

PX)={A|ACX}.
The set P (X) denotes the collection of all subsets of the set X. In particular, it

is never empty, as it always contains at least the empty set 0 and the set X itself.

Example 1.6. Let X = {1,2,3} then
P(X) ={0,{1},{2}, {3}, {1,2}, {1,3}, {2, 3}, {1,2,3}}.

Notice that, by using the Fundamental Counting Principle, any set with n ele-
ments has 2" subsets. Therefore, the number of elements of P (X) is 2".

Given two sets X and Y, one can build many other sets. For example, the
union of X and Y, denoted by X U Y, is the set of elements that are in X or Y.
More precisely:
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XUY={alaeXoraeY}.
Similarly, the intersection of X and Y, denoted by X NY is the set of elements
that are common to both X and Y:

XNnY={alaeXandacY}.

If XNY =0, then X and Y are said to be disjoint.
Example 1.7. Let X ={a e N| a < 100} and Y = {a € N | a > 50} then

XUY=Nand XNY ={aeN|50<a< 100}
Example 1.8. Consider the sets
X ={12,{3}} and Y = {{1,2},3}

Then XNY =0, X UY = {1,2,3,{1,2}, {3}}.

Example 1.9. The sets X = {¢ e N|a > 1} andY = {a € N | a < 2} are
disjoint, since there is no natural number between 1 and 2.

The difference between X and Y, denoted by X —Y is the set of elements that
are in X but not in Y, more precisely:

X-Y={alaeXanda¢VY}.

Given an inclusion of sets X C Y, the complement of X in Y is the set Y — X.
The notation X€ is sometimes used when there is no ambiguity about the set Y.

Example 1.10. Let A, B C X. Then AN B = ( if and only if A C B¢. Indeed, if
ANB=0thenx € A= x ¢ B, hence A C B°. Conversely, suppose A C B.
Assume, by contradiction, that AN B # 0, and let x € AN B. Then x € A
and x € B, in particular x ¢ B¢, contradicting the assumption that A C B°.
Therefore, AN B = 0.

Example 1.11. Consider the sets X = {a¢ € N | aiseven} and Y = N. Then
X CYand X¢ = {a € N | aisodd}. A similar example is Q C R, and Q¢ is
the set of all irrational numbers—those numbers that are not rational (i.e., not
expressible as fractions).

Example 1.12. Observe that Z — N is the set of all non-positive integers, in-
cluding zero. Similarly, the set Q — Z consists of all rational numbers that are
not integers. For example, % €eQ-Z.

Theorem 1.13. Given sets A, B, C, D the following properties are true:

1. AUD=A;AND=0

2. AUA=A;ANA=A

3. AUB=BUA;ANB=BNA

4 AU(BUC)=(AUB)UC; AN(BNC)=(ANB)NC
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5. AUB=ASBCA;ANB=A ACB

6. ifACBandC CDthenAUCCBUDand ANCCBND

7. AUBNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC)
8 (A9 =A

9. (AUB) = A°NB°; (AN B) = A°U B°

Proof. We prove the last property, (A U B)¢ = A° N B€. The others are trivial
or can be proved in a similar way.

We show that (A U B) C AN B°. Leta € (AUB)“. Thena ¢ AU B; in
particular, a ¢ A and a ¢ B. Hence, a € A° N B€.

Conversely, take a € AN B°. Thena ¢ Aanda ¢ B,soa ¢ AU B, and it
follows that a € (A U B)“. |

An ordered pair (a, b) is formed by two objects a and b, such that for any
other such pair (c, d):

(a,b) =(c,d) ®a=cand b =d.

The elements a and b are called coordinates of (a, b): a is the first coordinate,
and b the second one.

Remark.

An ordered pair is not the same as a set; that is, (a, b) # {a, b}. Notice that
{a, b} = {b, a}, butin general, (a, b) # (b,a). The cartesian product X xY
of two sets X and Y is the set of all ordered pairs (x, y) such that x € X and
yevY:

XxY={(x,y)|xeXandyeY}.

Example 1.14. The set N x N consists of all ordered pairs (a, b) whose coor-
dinates are natural numbers.

Example 1.15. The sets Z x {0} and Z x {1} are disjoint. Additionally, Nx N C
ZxNCZxQ.

Example 1.16. Consider the sets X = {1,2,3} and Y = {0, 1}, then
XxY ={(1,0),(1,1),(2,0),(2,1),(3,0),(3, 1) }.

Example 1.17. The definition of the cartesian product can be generalized to
more than two sets. For example, given sets X,Y,Z, one may define X XY X Z
as the collection of all triples (a, b, c), such thata € X,b € Y,c € Z. In other
words:

XXYXZ={(x,y,z)|xeX,yeYandze Z}.
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1.2 Functions

A function f : X — Y consists of three components: a set X, the domain; a set
Y, the codomain; and a rule that associates each element a € X with a unique
element f(a) € Y. The value f(a) is called the value of f at a, or the image of
a under f.

Another common notation to denote a function is x + f(x). In this case the
domain and codomain can be identified by the context.

Example 1.18. The function f : N — N given by f(n) = n + 1 is called the
successor function.

Example 1.19. Let X be the set of all triangles. One can define a function
f: X —> Rby f(x) = area of x.

Example 1.20. The correspondence that associates to each real number x the set
of all y satisfying y? = x is not a function, because any x # 0 is associated with
two values, namely ++/x. In order to be a function, each x must be associated
with exactly one value y = f(x).

Example 1.21. A family of sets is a function X : A — Y such that X(n) (also
denoted X,,) is a set for every n € A. The domain A is called the index set, and
when A =N, we call X : N — Y a sequence of sets. It’s customary to denote a
family of sets by

{Xn } neA
For example, the function X : N — $(N) given by

X, ={m;m > n}

defines a sequence of (sub)sets.

The graph of a function f : X — Y is the subset of X X Y defined by
L) ={f(x)|xeX}

Example 1.22. The rule x — e~ defines a function f : R — R. This
function is extensively used in probability theory due to its unique properties. It
is commonly referred to as the Gaussian function.
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2 1 1 2

Fig. 1.2: The graph of the function f(x) = e .

A function f : X — Y is said to be injective (or one-to-one) if, for every
x,y € X, whenever f(x) = f(y), it follows that x = y. Similarly, a function
f : X — Y is said to be surjective (or onto) if, for every y € Y, there exists
an x € X such that f(x) = y. Finally, a function f : X — Y is bijective (or a
bijection) if it is both injective and surjective.

Example 1.23. The function given by f(x) = x> is injective.

0.5 1.0

Fig. 1.3: The graph of the function f(x) = x3.

Example 1.24. Given a set X C R, we denote by max X, the largest element of
X. An example of a function that is not injective is given by the floor function
|x] =max{neZ|n<x}
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Fig. 1.4: The graph of the function f(x) = |x].

Ez&ample 1.25. The function f : (=%,%) — R given byf(x) = sinx is a
bijection.

1.0

Fig. 1.5: The graph of the function f(x) = sinux.

Given a function f : X — Y, the image of a set A C X is defined by

f(A)={yeY|y=f(a),aecA}.

Conversely, the inverse image of a set (sometimes called pre-image) B C Y is
defined by

f'(B)={xeX|f(x)eB}.
Theorem 1.26. Given f : X — Y and subsets A, B C X, we have:

f(AUB) = f(A)U f(B); fT'(AUB) = f~'(A) U f(B)
f(ANB) C f(A)Nf(B); [ (ANB)=f"'(A)n f(B)
if A C Bthen f(A) C f(B) and f~'(A) € f~1(B)
f©@)=0; ;71(0)=0

[y =x

FTHAY = (F1(A)°

AR~
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Proof. These properties follow directly from the definitions. We prove the last
one for clarity of exposition; the others can be established in a similar manner.
The last item follows from the following chain of equivalences:

xe fTHAY) = f(x) €A = f(x)¢gA & x¢ (A
O

Example 1.27. Consider the function f : Q — Z defined by 7 + a - b, where
ged(a,b) = 1. Then, for all n € Z:

F'({n}) = {n, %} ifn#+1, and f7'({£1}) = {1}

Given two functions f : X — Y and g : Y — Z, the composition g o f of g
and f is defined as the function:

(g0 f)(x) =g(f(x)

Example 1.28. The composition of the functions g(x) = sinx and f(x) = ¢* is
the function (g o f)(x) = sin e” depicted below.

Fig. 1.6: The graph of the function f(x) = sine*.

Example 1.29. The function f(x) = In+/x is the composition of Inx and +/x.
Similarly, the function g(x) = sin ﬁ is the composition of sinx and ﬁ The
function 2(x) = f(x) + xg(x) is depicted below.
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15

-2.0

Fig. 1.7: The graph of the function f(x) = In/x + x sin é

Given a function f : X — Y and a subset A C X, the restriction of f to A,
denoted by f|4 : A — Y, is defined by f|4(x) = f(x). Similarly, if X C Z, an
extension of f to Z is any function g : Z — Y such that g|x(x) = f(x).

Given functions f : X — Y and g : Y — X, the function g is called a left
inverse of f if

(go f)(x)=x forallx e X.

Similarly, the function g(x) is called right-inverse of f(x) if
(fog)(x)=x forallxeY.

Finally, if there is a function f~!(x) such that

(fof N =(f"of)x) =x,

then f~'(x) is called the inverse of f(x). Note that any inverse, if exists, is
unique. If g(x) and & (x) are both inverses of f(x) then

g(x) = g(f(h(x))) = (g © [)(h(x)) = h(x).

Theorem 1.30. A function f : X — Y has an inverse f~' 1Y — X & fis
bijective.

Proof. Suppose f has an inverse f~!, and let f(x) = f(y) for some x,y € X.
Applying f~! to both sides, we get

)=o) =x=y,

so f is injective.
To show surjectivity, let y € Y. Since f~! : ¥ — X is defined, setx = f~!(y).

Then
f@ =) =y,

so every y € Y has a preimage in X, and thus f is surjective.
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Conversely, suppose f is bijective. For each y € Y, since f is surjective, there
exists x € X such that f(x) = y. Define f~!(y) = x. Because f is also injective,
this definition is unambiguous. Then,

(fFof N =rON=y and (fof)x)=F"(f(x)=x
so f~!is indeed the inverse of f. |

Example 1.31. Consider the function f : (0,+c0) — (0,+o0) defined by
f(x) = % Then f is its own inverse; that is,

X

(Fo ) = FF)) = f (1) .

Similarly, the function g(x) = In (jiill ) is its own inverse. More generally, any

function whose graph is symmetric with respect to the line y = x is its own
inverse.

1.3 The natural numbers N

The natural numbers are built axiomatically. We begin with a set N, whose
elements are called natural numbers, and a function s : N — N, called the
successor function. For any n € N, s(n) is called the successor of n.

The function s(n) satisfies the following axioms, known as Peano’s axioms:

Axiom 1. The function s(n) is injective; that is, every number has a unique
successor.

Axiom 2. The set N \ s(IN) has exactly one element, denoted by 1; in other
words, every number has a successor, and 1 is not the successor of any
number.

Axiom 3. (Principle of induction) Let X C N be a subset such that 1 € X,
and whenever n € X, it follows that s(n) € X. Then X = N.

Whenever Axiom 3 is used to prove a result, the result is said to be proved by
induction.

Theorem 1.32. For any n € N, we have s(n) # n.
Proof. We proceed by induction. Define the set X c N by
X={neN|sn) #n}.

By Axiom 2, we have 1 € X. Now, assume n € X; that is, s(n) # n. Then by
Axiom 1, it follows that s(s(n)) # s(n), hence s(n) € X. Therefore, by Axiom
3, we conclude that X = N, and the result follows. O

m Giuseppe Peano was an Italian
mathematician. The standard ax-
iomatization of the natural numbers
is named the Peano axioms in his
honor.
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Given a function f : X — X, its powers f" are defined inductively. Specifi-
cally, set f! = £, and for each n € N, define

= fo s

In particular, if we define 2 = s(1), 3 = 5(2), and so on, then we obtain:

fP=fof. fP=fofof,
Now, given two natural numbers m, n € N, their sum m +n € N is defined by
m+n=s"(m),

where s" denotes the n-fold composition of the successor function s.
It follows that m + 1 = s(m), and more generally,

m+s(n) =s(m+n).
In particular, we have the recursive identity:
m+m+1)=m+n)+1.
Lemma 1.33. Foralln,q € N, we have n + q # n.

Proof. We proceed by induction on n, for a fixed ¢ € N. The result is true when
n = 1 by Theorem[I.32] Assume the statement holds for some n € N; that is,

n+gq *n.

We must show that (n+1) +g # n+ 1.
Note that

(n+D)+g=s5(n)+q=s(n+q),
and by the inductive hypothesis, n + g # n. Since the successor function s is
injective, it follows that
s(n+q) # s(n),

ie.,
(n+)+g#n+1.

This completes the inductive step. Since g € N was arbitrary, the proof of the
lemma is complete. ad

More generally, the addition of two natural numbers satisfies the following
properties.

Theorem 1.34. For any m,n,p € N:

1. (Associativity) m + (n+ p) = (m+n) + p;
2. (Commutativity) m +n = n+ m;
3. (Cancellation Law) m+n=m+p = n=p;
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4. (Trichotomy) Only one of the following can occur: m = n, or g € N such
thatm =n+q, or Ar € N such thatn =m +r.

Proof. The first and second properties are straightforward. Suppose m + n =
m + p, then
s"(n) = s"(p),

but since s is injective, s"*"'(n) = s (p) for eachi = 1,2,...,n — 1. This
proves 3. To prove 4, suppose Jg € N such that m = n + g. Then if m = n, we
have n + ¢ = n, a contradiction by Lemma|[I.33|above. Similarly, if there 3r € N
such that n = m + r then m = (m +r) + g, as before, this is a contradiction. 0O

The notion of order among natural numbers can be defined in terms of
addition. Specifically, we write
m<n

if there exists ¢ € N such that n = m + ¢. In this case, we also write n > m.
In particular, for every m € N,

m < s(m),

since s(m) = m + 1 by definition of the successor function.
We define m > n to mean m > n or m = n, and similarly for m < n.
The following corollary is an immediate consequence of Theorem [I.34]

Corollary 1.35. For any m,n,p € N:

1. (Transitivity) m < n,n < p = m < p;
2. (Trichotomy) Only one of the following can occur: m = n, m < n orm > n.
3 m<n=m+p<n+p.

The multiplication operation m - n is defined in a manner analogous to how
addition m + n was defined.

Let a;; : N — N be the "add-m" function, defined by a,(n) = n + m. Then,
the product of two natural numbers m - n is defined recursively as follows:

m-1:=m,
m-(n+1) = (an)"(m),

where (a,,)" denotes the n-fold composition of the function a,,.
For example,

m-2=ap(m)=m+m, m-3=(an)>(m)=m+m+m, andso on.

It follows from this definition that multiplication satisfies the recursive rela-
tion:
m-(n+1)=m-n+m.

More generally, using the same ideas as in the proof of Theorem [1.34] one
can establish the properties below. The proof is left as an exercise for the reader.
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Theorem 1.36. For any m,n,p € N:

m-(n-p)=(m-n)-p;
m-n=n-m;
m-n=p-n=m=p;
m-(n+p):=m-n+m-p;
m<n=m-p<n-p.

1.4 Well-ordering principle

Let X € N. A number m € X is called the minimum element of X, denoted
m =min X,

if m < nforeveryn € X.

The maximum element is defined analogously: m = max X if m > n for all
neX.

Note that not every subset X C N has a maximum. In fact, N itself has no
maximum, since m < m + 1 for every m € N.

Example 1.37. The minimum element of the set

X={neN|n*+1>50}
is 8, i.e., min X = 8. However, X does not have a maximum, since n € X =
n+1eX.

Lemma 1.38. I[f m = min X and n = min X then m = n. A equivalent result is
true for the maximum.

Proof. Since m < p for every p € X, m < n in particular. Similarly, n < m and
hence m = n. i

Although not every subset of N has a maximum, every non-empty subset
does have a minimum.

Theorem 1.39. (Well-ordering principle) Let X C N be non-empty. Then X has
a minimum.

Proof. If 1 € X then 1 is the minimum, so suppose 1 ¢ X. Let
I,={meN|1<m<n},

and consider the set
L={neN|I[, CX}.

Sincel ¢ X = 1€ L.lfne L= n+1 € L, the induction hypothesis would
imply L =N, but L # N, since L € X =N - X, and X # 0. We conclude that
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there is a mg such that mg € L and my + 1 ¢ L. It follows than mg + 1 is the
minimum element of X. O

Corollary 1.40. (Strong induction) Let X C N be a set with the following

property:
Vn e N, if X contains allm <n =n e X.

Then X = N.

Proof. Define Y = X€. The result is equivalent to the statement ¥ = (). Suppose
not, that is, Y # 0. By the Well-ordering principle, Y has a minimum element,
say p € Y. It follows that p € X, a contradiction. |

Example 1.41. Strong induction can be used to prove the Fundamental The-
orem of Arithmetic, which states that every natural number greater than 1 can
be written as a product of prime numbers. (A number p is called prime if p > 1
and whenever p = m - n, then eitherm =1 orn=1.)

Let X = {m € N | m > 1 and m is a product of primes}, and fix n € N with
n > 1. Suppose that X contains all natural numbers m such that 1 < m < n.

If n is prime, then n € X. If n is not prime, then n = p - g for some p, g < n,
and by the inductive hypothesis, both p and g belong to X, so 7 is a product of
primes. In either case, it follows that n € X.

Therefore, by the principle of strong induction, we conclude that X = {n €
N | n > 1}, i.e., every natural number greater than 1 is a product of primes.

Let X be any set. A common method for defining a function f : N —
X is by recurrence (this is sometimes also referred to as "by induction" or
"recursively"). Specifically, one defines (1), and provides a rule that determines
f(m) based on the values of f(n) for all n < m.

In principle, more than one function could satisfy such conditions. However,
one can easily show that the function defined in this way is unique.

Example 1.42. (Factorial) The factorial function n — n! can be defined recur-
sively. Define a function f : N — N by setting:

f(H=1, and f(r+1)=m+1)- f(n).

Then,
fy=2-1, fB3)=3-2-1, ..., f(n)=n.
Example 1.43. (Arbitrary sums/products) So far, we have defined expressions
such as m + n. What about sums involving more terms, such as m + n + p or
general expressions like my + -+ + m,? To define such arbitrary sums (and
similarly products), we use induction.
The sum of n terms is defined recursively as:

my+---+my=(mp+---+my_1) +my.

Similarly, for products:
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1.5 Finite and Infinite Sets

Throughout this section, I,, denotes the set of natural numbers less than or equal
to n:
IL={meN|1<m<n}.

An arbitrary set X is called finite if X = () or there exists a number n € N
and a bijection
f: I, - X.

In the latter case, we say that X has n elements and write
|X| =n.

The function f is called a counting function for X. By convention, if X = 0,
then X is said to have zero elements; that is, |@| = 0.

It remains to show that the notion of “number of elements” is well-defined.
That is, if there exist bijections f : I, — X and g : I,, — X, then it must follow
that n = m.

Theorem 1.44. Let X C I,. If there is a bijection f : I, — X, then X = I,,.

Proof. The proof is by induction on n. The case n = 1 is obvious, suppose the
result true for n, the proof follows if one can prove the result for n + 1.

Suppose X C I,,41 and there is a bijection f : I,;; —» X.Leta = f(n+1)
and consider the restriction f : I, —» X — {a}.

fX—-{a}Cl,thenX —{a} =I1,,a=n+1and X = I,,4;.

Suppose X — {a} & I,,then n+ 1 € X — {a} and one can find b such that
f(b)=n+1.Letg: I,;; — X be the defined by g(m) = f(m)ifm #n+1,a;
g(n+1) =n+1; g(b) = a. By construction, the restriction g : I, » X —{n+1}
is a bijection and obviously X — {n+ 1} C I,,, hence X — {n + 1} = [,, and it
follows that X = I,,,1. O

Corollary 1.45. (Number of elements is well-defined) If there is a bijection
f I, = I, then m = n. Therefore, if f : I, — X and g : I, —» X are
bijections then n = m.

Proof. The first part follows directly from the theorem. For the second part,
consider the composition (f~1 o g) : I,, = I,,. |

Corollary 1.46. There is no bijection f : X — Y between a finite set X and a
proper subsetY C X.

Proof. By definition there is a bijection ¢ : I,, — X for some n € N. Since Y
is proper, A := ¢~1(Y) is also proper in I,,. Let ¢4 : A — Y be the restriction
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of ¢ from I,, to A. Suppose there is a bijection f : X — Y, then the composite
function (,0;‘1 o foy: I, = A defines a bijection, a contradiction. |

Theorem 1.47. Let X be a finite set and Y C X, then Y is finite and |Y| < | X|,
the equality occurs only if X =Y.

Proof. 1t’s enough to prove the result for X = I,,. If n = 1 the result is obvious.
Suppose the result is valid for 7,, and consider Y C [,. If Y C I,,, the induction
hypothesis gives the result, so assume n+ 1 € Y. Then Y — {n + 1} C I,
and by induction, there is a bijection f : I, — Y — {n + 1}, where p < n. Let
g : Ip+1 — Y beabijectiondefinedby g(n) = f(n)ifn € I,,,andg(p+1) = n+1.
This proves that Y is finite, moreover since p < n = p+1 < n+1. It follows by
induction that |Y| < n. The last statement says that if ¥ C I, and |Y| = n then
Y = I,,, but this is a direct consequence of Theorem[I.44] O

The following corollaries are immediate:

Corollary 1.48. LetY be a finite set, and let f : X — Y be an injective function.
Then X is also finite, and |X| < |Y|.

Proof. Indeed, since f(X) C Y and Y is finite, it follows that f(X), and hence
X, is finite and satisfies | X| < |Y]. |

Corollary 1.49. Let X be a finite set, and let f : X — Y be a surjective function.
Then Y is also finite, and |Y| < |X|.

Proof. Since f is surjective, by the proof of Theorem [I.30] f has an injective
right-inverse g : ¥ — X. The result follows by the corollary above. |

A set X that is not finite is said to be infinite. More precisely, X is infinite if
it is nonempty and there exists no bijection f : I,, — X for any n € N.

Example 1.50. The set of natural numbers N is infinite since there is no surjec-
tion from /,, onto N. Indeed, for any function f : I,, — N, the number

JO+fQ)+--+f(m)+1
is not in the range of f.

Example 1.51. Z and Q are also infinite sets since they contain N, which is
infinite.

A set X C N is bounded, if there is a number M € N such that n < M for all
neX.

Theorem 1.52. Let X C N be nonempty. The following are equivalent:

(a) X is finite;
(b) X is bounded;
(c) X has a greatest element.

Proof. The proof is based on the implicationsa = b,b = ¢, c = a.
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(b=¢)
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Let X = {x1,x2,...,x,}. Then
x <M =max{x(,x2,...,X,}

for every x € X. Hence, X is bounded by M.
Consider the set

A={neN|n>xforallxeX}.

Since X is bounded, A # 0. By the well-ordering principle, A has a minimum
element, say m € A.
If m € X, then m is the greatest element of X.
Suppose instead that m ¢ X. Thenm > x forallx € X. Since X # 0, m > 1,
so we can write m = p + 1 for some p € N.
If p > xforall x € X, then p € A, contradicting the minimality of m since
p < m.
Otherwise, there exists x € X such that x > p. But then x > m, which
contradicts m ¢ X unless x = m, which is impossible by assumption.
Therefore, it follows that m € X, and m is the greatest element.

If X has a greatest element, say M, then X C I, which implies X is
finite.

O

Theorem 1.53. Let X and Y be two sets such that |X| = m, |Y| = n, and
XNY =0. Then X UY is finite and

|XUY|=m+n.

Proof. Since | X| = m, there exists a bijection

fily,— X.

Similarly, since |Y| = n, there exists a bijection

g: I,—>7Y.

Because X NY = 0, the sets X and Y are disjoint. Define

by

h:lLpy > XUY

f k), 1<k<m,
glk—m), m+1<k<m+n.

h(k) = {

We claim that 4 is a bijection.

Suppose h(ky) = h(ks).

-If ki, ko < m, then f(ky) = f(k2), so ki = k, since f is injective.

-If ky, ko > m, then g(ky —m) = g(ky —m), so k| = k; since g is injective.
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- If one of k1, ky is < m and the other > m, then h(k{) € X and h(k;) €7,
contradicting X N Y = 0.

It follows that 4 is injective.

Forany x € X UY,eitherx € Xorx € Y. If x € X, then x = f(k) = h(k)
for some k < m.If x € Y, then x = g(I) = h(m + 1) for some [ < n. Thus, & is
surjective.

Therefore, 4 is a bijection and

| XUY|=m+n.

The corollaries below follow immediately from the preceding theorem.
Corollary 1.54. Let X1, X3, ..., Xy, be a finite collection of sets such that each
n
X is finite and X; N X; = Q0 if i # j. Then \J X; is finite and
i=1

n

)

i=1

n

=) Ixil

i=1

Corollary 1.55. Let X1, Xz, ..., Xy, be a finite collection of sets such that each

n
X; is finite. Then | X; is finite and
i=1

n

< Z|Xi|

i=1

n
U
i=1

Proof. Foreachi=1,...,n,setY; = X; X {i}. Then the projection

in the first coordinate is surjective, by Corollaries [1.49] and [I.54] the proof is
complete. O

Corollary 1.56. Let X1, X3, . .., Xy, be a finite collection of sets such that each
X; is finite. Then X1 X ... X X,, is finite and

n

|X1><...><Xn|:1_[|X,~|.
i=1

Proof. 1t’s suffices to prove for n = 2, since the general case follows from this
one. Let X5 = {y1,...,Ym}, notice that X; Xx X, = X; X {y1}U...UXo X{ym},
the result follows by Corollary [I.54] O
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1.6 Countable and Uncountable Sets

A set X is countable if it is either finite or there exists a bijection f : N — X.In
the latter case, since N is infinite, X is infinite, and we say that X is countably
infinite.

Example 1.57. The set X = {2n € N|n € N } of all even numbers is countable.
The function f(x) = 2x defines a bijection between X and N.

Theorem 1.58. Let X be an infinite set. Then X has a countably infinite subset.

Proof. It suffices to construct an injective function f : N — X, since any
injective function is a bijection onto its image.

Choose an element a; € X and define f(1) = a;. Let X; = X \ {a;}. Since
X is infinite, X; is also infinite. Choose an element a, € X; and set f(2) = a».
Proceeding inductively, define a, € X,,_|, where

Xn-1=X\{ar,a2,...,a,-1},

and set f(n) = a, foreachn € N,

To show that f is injective, suppose f(n) = f(m). Then a, = a,,, which
implies n = m, since the elements a1, as, ... were chosen to be distinct. Thus,
f is injective.

O

Corollary 1.59. A set X is infinite if and only if there is a bijection f : X — Y,
where Y C X is a proper subset.

Proof. Suppose X infinite, by Theorem[I.58] X has a countably infinite subset,
say Z = {ay,az,a3,...}.SetY = (X-Z)U{ay, as, ag, . . .} and define f(x) = x
ifx € X -Z,and f(ay,) = as, otherwise. The function f(x), defined this way,
is clearly a bijection. The converse follows from Corollary [I.46| O

A function f : X — Y is called increasing if x <y = f(x) < f(y).
Theorem 1.60. Every subset X of N is countable.

Proof. The proof is very similar to the one in Theorem[1.58] If X is finite then is
countable, so assume X infinite. We define an increasing bijection f : N — X
by induction. Let X; = X, a; = min X (which exists by Theorem [1.39), and
set f(1) = a;. Now, define X, = X — {a;} and f(2) = a» = min X;. By
induction, we define f(n) = a, = min X,,, where X,, = X — {a1,az,...,an,-1}.
The function f(n) is injective by construction, suppose f(n) not surjective.
There is x € X such that x ¢ f(N). So x € X,, for every n, which implies that
x > f(n) for every n, and x is a bound for the infinite set f(IN), a contradiction
by Theorem[1.52] i

Example 1.61. Let X be a countable set. Then by Theorem|[I.60] for any ¥ C X,
Y is countable.
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Example 1.62. The set of all prime numbers is countable, as it is a subset of N.

Example 1.63. Let Y be a countable set and let f : X — Y be an injective
function. Then X is countable. Indeed, since f is injective, it defines a bijection
between X and its image f(X) C Y. As every subset of a countable set is
countable, it follows that f(X), and hence X, is countable. Similarly, if X be a
countable set and f : X — Y a surjective function. Then Y is countable.

Example 1.64. The set Z of integers is countable. Indeed, consider the function
f +Z — N defined by

1, ifm =0,
f(m) =42m, ifm >0,

2m+1, ifm<O0.
This function is bijective, and hence Z is countable.
Example 1.65. The set N X N is countable. Indeed, the function

f(m,n) =2M3"

defines an injective mapping f : N X N — N. Since the image of f is a subset
of N, which is countable, it follows that N X N is countable.
Corollary 1.66. Let X1, Xy, ... be a countable collection of countable sets. Set

X = U X;, then X is countable.
i=1

Proof. Let f; : N — X; be a counting function for each i € N. Then f (i, m) :
fi(m) defines a surjection f : NxN — X. By Example(1.63] X is countable. 0O

Corollary 1.67. If X, Y are countable sets then X X Y is countable.

Proof. Let fi : N — X, f, : N — Y be counting functions. Then f(m,n) :
(f1(m), f(n)) defines a bijection, Example concludes the proof.

O

Corollary 1.68. The set Q of rational numbers is countable.

Proof. Let Z* denote the set of nonzero integers. Define the surjective function
f:ZXxZ" — Qgivenby f(m,n) = . By Example|1.63} Q is countable. O

A set X is uncountable if it is not countable. Given two sets X and Y, if there
exists a bijection f : X — Y, we say that X and Y have the same cardinality,
and write:

card(X) = card(Y).

If there exists an injective function f : X — Y but no surjective function
g : X — Y, then we write

card(X) < card(Y).
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The cardinality of the set of natural numbers N is denoted by
card(N) = No.

If a set X is finite with exactly n elements, we write card(X) = n. By definition,
for any infinite set X, we have:

No < card(X).

Recall that given two sets X and Y, the set ¥ (X,Y) denotes the set of all
functions from X to Y.

Theorem 1.69. (Cantor) Let X and Y be sets, with Y containing at least two
elements. Then there is no surjective function ¢ : X — F(X,Y).

Proof. Suppose a function ¢ : X — F(X,Y) is given and let ¢, = ¢(x) : X —
Y be the image of x € X, which itself is a function. We claim that there is a
f : X — Y that is not ¢, for any X. Indeed, for each x € X let f(x) be an
element different than ¢, (x) (this is possible sice |Y| > 2), then f # ¢, for
every x € X and hence, ¢ is not surjective. |

Corollary 1.70. Given any set X, we have
card(X) < card(P(X)).

In particular,

No < card(P(N)).

Proof. Let Y = {0,1}. Then #(X,Y) is in bijection with £ (X), since each
function f : X — {0,1} corresponds to the subset A = f~!(1) C X. By
Cantor’s Theorem (Theorem [[.69), there is no surjective function ¢ : X —
F(X,Y). It follows that

card(X) < card(F (X,Y)) = card(P(X)).

The inequality Ny < card(#(N)) is a particular case. |

Corollary 1.71. Let X1, X5, ... be a countable collection of countably infinite

(59

sets. Then the infinite cartesian product X = [] X; is uncountable.

i=1
Proof. 1t’s enough to prove the result for X; = N. In this case, X = F (N, N) and
the result follows from Theorem i

Example 1.72. Theset X = ¥ (N, N) = {a,, ; a,, € N} isthe set of all sequences
of natural numbers. By the corollary above, this set is uncountable. Similarly,
the power set of the natural numbers £ (N) is uncountable.

Example 1.73. Any non degenerate interval (a, b) is uncountable. More gen-
erally, the set of all real numbers R is uncountable. This will be proved in the
next sections.
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Exercises

1.

[ R >NV \S)

~N N

10.

11.

12.

13.

14.

15.

Let A, B, X be sets with the following properties:

ACXandBC X
ForanysetYif ACYand BC Ythen X CY.

Show that X = A U B.

. Given A, B C E, show that A C B if and only if A N B = (.

. Give examples of sets A, B, C suchthat ( AUB)NC # AU (BNC).
. Show that A = B if and only if (A N B) U (A° N B) = 0.

. Given two sets A, B we define the symmetric difference AAB by

AAB=(A-B)U(B-A).
Prove that if AAB = AAC, then B = C.

. Show that (AUB) X C=(AXC)U (B xC).
. Show that a function f : A — B is injective if and only if f(A — X) =

f(A) = f(X) forevery X C A.

. Let f : A — B be given. Show that

a. For every Z C B, we have f(f~!(2)) C Z.
b. f(x) is surjective if and only if f(f~!(Z)) = Z for every Z C B.

. Given a family of sets (A4),cr, let X be a set with the following properties:

1. Forevery A € L, we have A, C X.
2. IfAycYforeveryde L,then X CY.

Show that X = |J A,.
AeL
Let f: P(A) — P(A) be a function such that if X C Y then f(Y) C f(X)

and f(f(X)) = X. Show that f(AUL X2) = N f(Xa) and f(pL X)) =

U f(X,). [Here X, Y, X, are subsets of A]
Let 7 (X;Y) denote the set of all functions with domain X and codomain
Y. Given the sets A, B, C, show that there is a bijection

F(AXB;C) = F(A; F(B;0)).

Given two natural numbers a, b € N, prove that there is a natural number
m € N such that m - a > b.

Let a € N. If the set X has the following property: a € X andn € X =
n+1 € X. Then X contains all natural numbers greater than or equal to a.

A number a € N is called predecessor of » € N if a < b and there is
no ¢ € N such that a < ¢ < b. Prove that every number, except 1, has a
predecessor.

Show the following using induction:

a. 2(1+2+...+n)=n(n+1);



24

16.
17.
18.
19.
20.
21.
22.
23.

24.

25.

26.

217.

28.
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b. 1+3+5+...+Q2n+1)=(n+1)?%
c.n>4=n!>2"

Using strong induction show that the decomposition of any number in prime
factors is unique.

Let X be a finite set with n elements. Use induction to show that the set of
all functions f : X — X has exactly n! elements.

Let X be a finite set. Show that a function f : X — X is injective < is
surjective.

Give an example of a surjective function f : N — N such that forall n € N,
the set f~!(n) is infinite.

Show that the power set P (A) of a set A with n elements has 2" elements.
Show that if A is countably infinite then $(A) is uncountable.

Let f : X — X be injective but not surjective. If x € X — f(X), show that
x, f(x), f(f(x)), ... are pairwise distinct.

Let X be an infinite set e Y a finite set. Show that there is a surjective function
f : X — Y and an injective function g : ¥ — X.

Find subsets X; € N and a decomposition

N=XuXU...UX;U...,

such that X; are infinite sets and pairwise disjoints.

Let X C N be infinite. Show that there is a unique increasing bijection
f:N->X,

A sequence of natural numbers {ay, as, as, ...} is called increasing if a; <
a;+1. Show that the set of all increasing sequences of natural numbers is
uncountable.

(Cantor-Bernstein-Schroder theorem) Given sets A and B, let f : A — Band
g : B — A be injective functions. Show that there is a bijection 2 : A — B.
Given a sequence of sets Ay, Ay, As, . .., we define the limit superior as the

set o e
limsup A, = ﬂ (U Ai) .

n=1 \i=n

Similarly, the limit inferior is the set

liminf A,, = O (ﬁ A,-) .

n=1 \i=n

a. Show thatlim sup A,, is the set of elements that belong to A; for infinitely
many values of i. Similarly, show that liminf A, is the set of elements
that belong to A; for every value of i, except possibly, for a finite number
of values of i.

b. Conclude that liminf A, C limsup A,,.
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c. Show that if A, C A, for every n then liminf A, = limsup A,
d. Show that if A,;; C A, for every n then liminf A,, = limsup A,
ﬁ Ap.

e. Give an example of sequence such that liminf A, # limsup A,,.

25






Chapter 2
The real numbers R

This chapter introduces one of the most fundamental algebraic structures in
analysis: the field of real numbers. We begin by presenting the definition of
a field through a precise set of axioms governing addition and multiplication.
These axioms encapsulate, in a formal way, the essential algebraic properties
that we are familiar with.

We then introduce ordered fields, which not only support algebraic opera-
tions but also possess a notion of order. This ordering allows for a meaningful
comparison between elements and enables the study of limits, inequalities, and
convergence.

The chapter continues by exploring intervals, absolute value, and foundational
ideas like bounds, supremum, and infimum within ordered fields. This leads
naturally to the central concept of completeness, which distinguishes the real
numbers R from all other ordered fields.

The final sections delve into the density and uncountability of the real num-
bers, showing that between any two real numbers there lie infinitely many
rationals—and infinitely many irrationals. These results not only underscore the
richness of the real line but also hint at the profound structure underlying the
continuum.

2.1 Fields

A field K is a set K together with two operations, called addition and multipli-
cation,

+.KXK—>K d KX K—>K
an
(x,y) > x+y (x,y) > x-y

satisfying the following properties (also called field axioms):

27
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Axioms of addition
For all x,y,7z € K:

Ux+(y+2)=((x+y)+z (associativity);

Ux+y=y+x (commutativity);

U There exists an element 0 € K such that x + 0 =x  (identity element);

U For each x € K, there exists y € K such that x + y = 0. We define —x :=y,
and write z — x in place of z + (—=x)  (inverse element),

Axioms of Multiplication
For all x,y,z € K:

U x-y)-z=x-(y-z) (associativity),

Ux-y=y-x (commutativity),

U There exists an element 1 € K, with 1 # 0, such that x - 1 = x  (identity
element);

U For each x € K with x # 0, there exists y € K such that x - y = 1. We define
x~! =y, and write < in place of z -x~U (inverse element);

Ux-(y+2)=x-y+x-z (distributivity).

Example 2.1. The set of rational numbers Q, equipped with the operations

E._ad+bc and a ¢ _ac
d~  bd b d bd

+

SR

forms a field.
In this field:
* The additive identity is 0 := ;
* The multiplicative identity is 1 := %;
e The multiplicative inverse of a nonzero element 7 is given by

—lo

_1 b
(%) = . fora # 0.

Example 2.2. Let p be a prime number. The set of integers modulo p, denoted
z,:={0,1,...,p— 1},

equipped with the operations

a+b:=a+b, and a-b:=a-b,
forms a field.
In this field:

* The additive identity is 0 := 0;
* The multiplicative identity is 1 := 1.
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Moreover, for any a € Z,, with a # 0, Fermat’s Little Theorem implies
ar'=1,
so multiplying both sides by @~ ! yields
ar?=a"
Thus, the multiplicative inverse of any nonzero element a € Z, is given by
al=ar>.
Example 2.3. The set of rational functions

_[p@®
Q) = {qu)

where Q7] denotes the ring of polynomials with rational coefficients, forms a
field under the usual operations:

PO 1) _pWs0+ar)  p() () _ pn)r()

(1).q(t) € Ql1l. q(1) 2 o},

q() s qs@®) 7 g s q(0)s@)’
Theorem 2.4. (Properties of fields) Let K be a field and let x, y, z € K. Then:
dx-0=0;

Ulfx-z=y-zandz #0, then x = y;
Ulfx-y=0thenx=00ry=0;
Q Ifx>=y% thenx =y orx = —y.

Proof. Givenx € K,
x-0+x=x-(0+1)=x,

thus, x - 0= 0.
Similarly, if z # 0:

x=x-z-z'=y-z-z7 =y

Next, suppose x - y = 0 but x # 0, then
x-0=0=x-y,

the item above implies y = 0. By symmetry, the result also holds when y # O.
Lastly,
=y =2x2-y2=0= (x-y)(x+y) =0,

and it follows that x = y or x = —y. O
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2.2 Ordered Fields

An ordered field is a field K together with a subset P C K, called the set of
positive elements, such that the following properties hold for all x, y € P:

Ux+yePandx-yeP;
U For every x € K, exactly one of the following holds:

x=0, x€P, or —-x€P.

If we denote —P := {—p | p € P}, then the field K can be written as the
disjoint union
K =PU(-P)U{0}.
Notice that in an ordered field, if x # 0, then x> € P. In particular, this implies
1eP.

Example 2.5. The field of rational numbers Q together with the set
a
P:{EEQ;a-beN}

is an ordered field.

Example 2.6. The field Z, can’t be ordered, since if we add 1, p times, the

resultis 0,i.e. 1 +-+ 1 = 0, but in an ordered field the sum of positive elements
has to be positive, in particular nonzero.

Example 2.7. The field Q(¢) of Example [2.3|together with the set

t
P = { p(1) . the leading coefficient of p(t) - g(¢) is pOSitive}

q(n)’

is an ordered field.

In an ordered field K, if x — y € P, we write x > y (or equivalently, y < x).
In particular, x > 0 implies x € P, and x < O implies x € —P.

Notice thatif x € P and y € —P, then x > y.

The notation x < y is used to indicate that x < y or x = y; similarly, x > y
means x > y or x = y.

Theorem 2.8. Let K be an ordered field and let x,y, z € K. Then:
QIfx<yandy <z, thenx < z;
Ulfx <y thenx+z<y+z

U Exactly one of the following holds: x =y, x < y, orx > y;
UIfz>0,thenx<y=x-2<y-zifz<0,thenx<y=>x-z2>y-2

Proof. The first two properties follow immediately from the definition of an
ordered field. We now prove the last two.
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Assume x # y. Then x —y # 0, and by trichotomy, either x —y € P or
y —x € P. Thus, exactly one of the relations x = y, x < y, or x > y holds.
Now suppose z > 0 and x < y, so that y —x € P. Then

y-z—x-z=(y—-x)-z€P,

since P is closed under multiplication. Hence, x - z < y - z.
If z < 0, the result follows similarly, using the fact that —z € P. |

Given two fields K and L, a function f : K — L is a homomorphism, if
Vx,y € K, the following conditions hold:

Jx+y)=f)+f(y)
fx-y)=f&) - f(y)

We say f is an isomorphism if, in addition, f is bijective and f~! is also a
homomorphism. An automorphism f : K — K is an isomorphism between K
and itself.

Example 2.9. For any field K, the isomorphism i : K — K given by i(x) = x
is an automorphism, often called the trivial automorphism.

Example 2.10. Let K = Z,, for some prime p. Then the function x + x” is
an automorphism of Z,, called the Frobenius automorphism. The Frobenius
automorphism plays an important role in commutative algebra and number
theory, particularly in the study of fields of characteristic p and Galois theory.

Since in an ordered field K, the element 1 is always positive, we have 1 + 1 >
1>0and1+1+1>1+1.Thus, we can define an increasing injection

f:N—>K

n times
——
by f(n) =1+ 1+---+1, ormore precisely, f(1) =1and f(n+1) = f(n) + 1.
Therefore, it makes sense to identify N with f(N) C K, and henceforth we will
simply write
NcK

whenever K is an ordered field.

Notice in particular that f(n) # O for any n € N, so every ordered field
is infinite. More generally, whenever f(n) # O for all n, we say that K has
characteristic zero. Hence, every ordered field has characteristic zero.

If we drop the assumption that the field K is ordered and there exists a number
p such that f(p) =0, then we say that K has characteristic p.

Example 2.11. The field Q clearly has characteristic zero. On the other hand,
the field Z,, has characteristic p. More generally, if a field K has characteristic
p # 0, then p must be a prime number.

Indeed, suppose p is the minimal positive integer such that
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I+14---41=0,
N ———

p times

but p is not prime. Then we can write p = ab for some integers a,b > 1.
Consider

O=1+1+--4+1=1+1+---+1|- {1 +1+---+1].

ab times a times b times

Since K is a field and has no zero divisors, it follows that one of the two factors
must be zero. Thus, either

1+41+---41=0 or 1+1+4+---+41=0,
S—— S——

a times b times

contradicting the minimality of p. Therefore, p must be prime.

We may extend the injection described above to a function f : Z — K,
allowing us to view Z C K as well. Hence, we have

NCZCcK.

Finally, we can use the map f : Z — K to define an injection g : Q — K by
a -
¢(3)=r@-ro),

where a € Z, b € N, and b # 0. In this way, we may identify Q with g(Q) C K,
and write
NCZcQcKk

whenever K is an ordered field.
Notice that if K = Q in the above discussion, then g : Q — Q is the trivial

automorphism. i.e.,
(E) =4
AV A

Theorem 2.12. (Bernoulli’s inequality) Let K be an ordered field and x € K. If
x> —-landn €N, then
(1+x)">1+n-x

Proof. We use induction on n € N. The case n = 1 is clear, suppose the result
valid for n. Then (1+x)™! = (1+x)"(1+x) > (1+n-x)(1+x) = l+x+n-x+x> >
1 +x +n - x, as expected. (Notice that we used the fact that x > —1 in the first
inequality and Theorem ) |

Let K be an ordered field and a < b be elements of K. Any subset of the
following form is called an interval:
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a,b]l ={x € K; a <x < b} (closed interval)
a,b) ={x € K; a <x < b} (open interval)
a,b)={xe€eK;a<x<b}and (a,b] ={x€K; a<x < b}
—o00,b)={xe€K;x<b}land (-o0,b] ={x € K; x < b}
a,0)={xeK;a<x}and [a,0)={x €K ; a <x}

U (—o0,00) =K

When a = b, we define [a, a] = {a} (degenerate interval) and (a, a) = 0.

Let K be an ordered field and x € K. The absolute value of x, denoted by |x/|,
is defined by

Q [a,b]
Q (a,b)
Q [a.b)
Q(
Q (

|x| := max{x, —x},

that is, |x| is the greater of the two elements x and —x.
The following Theorem is an immediate consequence of the preceding defi-
nitions. The proof is left as an exercise to the reader.

Theorem 2.13. Let x, y be elements of an ordered field K. The following state-
ments are equivalent:

(1) ~y<x<y
(2) x <yand —x <y
(3) Ix[ <y

Corollary 2.14. Let x,a, e € K, where K is an ordered field. Then
x—a|l<eeoa-e<x<a+e.
Proof. Suppose |x — a| < &. By definition of absolute value, this means
—£<x—a<fe.
Adding a to each part of the inequality yields
a—-e<x<a+e.
Conversely, suppose a — € < x < a + . Subtracting a throughout gives
-e<x—a<feg,
which implies |x — a| < &, as desired. O
Remark.
The Theorem and corollary remains valid if we exchange < by <.
Theorem 2.15. Let x, v, z be elements of an ordered field K. Then

(1) |x+y| < |x[+]yl;

(2) |x -yl =Ix[-|yl;

(3) x| =yl < x| =yl < |x=yl;
(4) Ix—z| < |x—yl+]y -zl
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Proof. (1) If x and y have the same sign or one of them is zero then we
obviously have |x + y| = |x| + |y|. Otherwise, suppose they have opposite
sign and |x| > |y|. Then |x + y| = |x| — |y| < |x| + |y|. If instead |x| < |y],
we may reverse the roles of x and y and apply the same argument to obtain
the same inequality.

(2) The result is clear if x and y have the same sign or one of them is zero.
Suppose they have opposite sign, say x > 0 and y < 0. Then

x-yl=-x-y=x--y=|x[ ]yl

(3) The first inequality is clear, we prove the second one. Apply (1) with x — y
and y to obtain

[ < lx =yl +Iyl = lx[ = |y < |x = yl.

Similarly, |y| — |x| < |x — y| and the conclusion follows.
(4) Apply (1) with x — z and z — y instead of x and y.
O

Let K be an ordered field and let X € K. An element M € K is called an
upper bound of X if x < M for every x € X. Similarly, an element m € K is
called a lower bound of X if m < x for every x € X.

We say that X is bounded from above if it has an upper bound, bounded from
below if it has a lower bound, and simply bounded if it has both an upper and a
lower bound, that is, if X C [m, M] for some m, M € K.

Example 2.16. The well-ordering principle guarantees that N is bounded from
below when viewed as a subset of the ordered field Q. On the other hand, N is
clearly not bounded from above in Q, since for any n € N, we have n + 1 > n.

Example 2.17. Oddly enough, the set N is bounded from above in the ordered
field Q(7) introduced in Example[2.7] Indeed, for any n € N, the rational function
r(t) =t satisfies r(t) —n > 0. Hence, r(¢) € Q(#) serves as an upper bound for
N, implying that N is bounded from above, and consequently bounded, in Q(¢).

Theorem 2.18. Let K be an ordered field. The following statements are equiv-
alent:

1. N is not bounded from above in K;
2. Forany a,b € K with a > 0, there exists n € N such thatn -a > b;
3. Forany a > 0in K, there exists n € N such that 0 < % < a.

A field K satisfying the above conditions is called Archimedean field.
Proof. The proof is based on the implications 1 = 2,2 = 3,and 3 = 1.

(1 = 2) Since N is unbounded from above in K, for given a, b € K with a > 0, there
exists n € N such that b

—<mn,
a
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hence multiplying both sides by a gives
n-a>b.

(2 = 3) Taking b = 1 in statement 2, we obtain that for any a > 0, there exists n € N

such that
n-a>1,
which is equivalent to
1
- <a,
n
and sincen € N, 1/n > 0, so
1
0<-<a.
n

(3 =1) Given any a > 0, consider % By statement 3, there exists n € N such that

1 1
- <-Sn>a.

n oa
This shows that for every a € K, there is some natural number n greater
than a, so N is not bounded from above.
Similarly, no negative element can be an upper bound of N, because if x < 0,
then —x > 0 and the same argument applies.

O

Remark.
Examples and say that Q is Archimedean but Q(¢) isn’t.

2.3 The real field R

Let K be an ordered field and X € K be a bounded from above subset. The
supremum of X, denoted sup X is the least upper bound of X, in other words,
among all upper bounds M € K of X,i.e. x < M foreveryx € X, sup X € K is
the least of them. Therefore, sup X € K has the following properties:

(i) (upper bound) For every x € X, x < sup X.
(i1) (least upper bound) Given any a € K such that x < a for every x € X, then
sup X < a. In other words, if a < sup X then 3b € X such thata < b.

Lemma 2.19. [f the supremum of a set X exists, then it is unique.

Proof. Suppose a = sup X and b = sup X. By property (ii) above, a < b since
a is the least upper bound of X. Similarly, since b is also the least upper bound,
we have b < a. Therefore, a = b. |
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Lemma 2.20. If a set X has a maximum element, then max X = sup X.

Proof. Indeed, max X is obviously an upper bound and any other upper bound
is greater than or equal to the maximum. |

Example 2.21. Consider the set I,, = {1,2,...,n} C Q. Then
sup I, = max I, = n.

Example 2.22. Consider the set

X={—l;n€N}QQ.
n

Then sup X = 0. Indeed, 0 is an upper bound for X, and given any a < 0, we
can find n € N such that —yll > a, since Q is an Archimedean field. Hence, no
number less than 0 can be an upper bound of X, so 0 is the least upper bound.

Similar to the idea of supremum, the infimum of a bounded from below set
X C K, denoted inf X, is the greatest lower bound. The element inf X € K has
the following properties:

(1) (lower bound) For every x € X, x > inf X.
(ii) (greatest lower bound) Given any a € K such that x > a for every x € X,
then inf X > a.

The lemmas [2.19]and [2.20]extend naturally to the notion of infimum, namely, if
X C K has a minimum element m then m = inf X. Additionally, the infimum is
unique.

This discussion leads to the following Theorem:

Theorem 2.23. Let X C K be a bounded subset of an ordered field K. Then,
infX € X & inf X = min X

and
supX € X & sup X = max X.

In particular, every finite set has a supremum and infimum.

Example 2.24. Consider the set X = (a, b), an open interval in a ordered field
K. Then inf X = a and sup X = b. Indeed, a is a lower bound, by definition
of interval, suppose ¢ > a, we claim ¢ can’t be a lower bound. For instance,
consider d = 43¢ € (a,b). We have d < c if ¢ < b, hence the conclusion.
Example 2.25. Let X = {an | ne N} C Q. Then infX = 0 and sup X = %
Notice that max X = %, so by Lemma , sup X = %

Now, 0 is clearly a lower bound. Suppose ¢ > 0. Since Q is Archimedean, we
can find n € N such thatn +1 > % By Bernoulli’s inequality (Theorem [2.12),
we have
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1
2 =(1+1)">214+n> -,
C

hence ¢ > zin, and so ¢ cannot be a lower bound. It follows that inf X = 0.

Lemma 2.26. (Pythagoras) There is no x € Q satisfying x> = 2.

Proof. Suppose, for contradiction, that x = § € Q satisfies x> = 2, where

p.q € Z,q # 0, and the fraction is in lowest terms. Then

Now, consider the prime factorizations of both sides. Since p? and ¢? are perfect
squares, their factorizations contain an even number of each prime, including
the prime 2. However, 2¢? introduces one additional factor of 2, making the
total number of factors of 2 in 2¢> odd. This contradicts the fact that p> has an
even number of factors of 2. Hence, we cannot have p? = 2¢2, and therefore

V2 ¢Q. O

Theorem 2.27. Consider the sets of rational numbers
X={xeQ|x>0andx*<2} and Y={yeQ|y>0andy>>2}.

There are no rational numbers a,b € Q such that a = sup X and b = inf Y.

Proof. We prove the result concerning the supremum; the statement about the
infimum follows analogously.
First, we claim that X has no maximum. Indeed, given any x € X, choose
r € Qsuch that r < 1 and
2—x?
2+ 1°

< r, and we compute

O0<r<

Note that r < 1 = r2

(x+r)2:x2+2xr+r2<x2+2xr+r:x2+r(2x+l)<x2+(2—x2):2,

Therefore, x + r € X, so x is not a maximum.

Similarly, one can show that Y has no minimum: given any y € Y, there exists
r>0suchthaty —reY.

Also, observe that every element of X is strictly less than every element of
Y. Indeed,if x € X and y € Y, then x2<2< yz, SO

0<y’ -x’=(-00O+x)=>y—-x>0=>x<y.

Now suppose, for contradiction, that there exists a € Q such that a = sup X.
Thena ¢ X, otherwise it would be the maximum of X, contradicting the previous
claim.
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If a € Y, then, since Y has no minimum, there exists b € Y such that b < a.
But then x < b < a for every x € X, contradicting the fact that a is the least
upper bound of X.

We conclude thata ¢ X and a ¢ Y, so a® = 2, implying that a = \5, which
contradicts Lemma , since V2 ¢ Q. Therefore, sup X ¢ Q, and the same
argument applies to inf Y. |

Since every ordered field contains Q, it follows from the Theorem above that
if there exists an ordered field K in which every nonempty subset that is bounded
above has a supremum, then a = sup X exists in K, and this element must satisfy

2
a”=12.

In particular, such an ordered field K must contain an element whose square
is 2. Hence, V2 € K, showing that K properly extends Q in this case.

Example 2.28. (A bounded set with no supremum) Let K be a non-Archimedean
field. Then, by definition, N € K is bounded from above. Let M € K be an
upper bound for N. Son+1 < M foralln € N,butthenn < M —-1land M -1
is also an upper bound. We conclude that if M is an upper bound, M — 1 is one
as well, hence sup N doesn’t exists in K.

We say that an ordered field K is complete, if every nonempty bounded from
above subset X C K has a supremum in K. This motivates the following axiom
(also called the fundamental axiom of mathematical analysis):

Axiom. There is a complete ordered field, represented by R, called the field
of real numbers.

Remark.

Notice that in a complete ordered field K, if X € K is bounded from below
then X has an infimum.

Remark.

From Example [2.28] we conclude that every complete ordered field is
Archimedean.

Theorem 2.29. If K, L are complete ordered fields, then there is an unique
isomorphism F : K — L.

Proof. First we claim that given any complete ordered field F, there exists an
unique isomorphism f : R — F. Let 1’ denotes the unit in F and 0’ its zero
element. For n € N set

n=1+1+---+1" and (-n) =-n'.
~— ————
n times

Define f : R — F by
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0 ifx=0

fo =17 ifx =g €Q\{0}
sup{g—:eF;§<x} ifxeR\Q,
Letx,y € R. If x, y € Q then it’s easy to see that
fx+y)=f)+f(y) and f(x-y)=f(x)-f(y).

Suppose x € R\ Qand y = ¢ € Q. Then

’

f(x+y)=SUP{;i,;p <<x+y>}

q

p . p
:sup{—,;—— <x}

q

-
q N
—sup{Z -T2 e D
qg s q s s
=fx)+f().
Similarly,
pP.p
f(x-y)=sup{—,;—<(x-y)}
q9 q

S|

! 1
:sup{ ,;£—<x}

9 qYy

"1 1
=sup{]i,—,;£—<x}-y’

qay qVy
=fx) - f().

The case where x, y ¢ Q is left as an exercise.
We are left to prove that f : R — F defines a bijection. It suffices to prove
surjectivity (since every nontrivial field homomorphism is injective). Given

reF,ifr = z—: then f (S) = r. Otherwise, consider the bounded set

Xz{EER;p—,<r}.
q q

Then x := sup X satisfies f(x) =r.

We conclude that f : R — F defines an isomorphism. We prove that it is
unique. Suppose g : R — F is another isomorphism. Then H := fog™! : R —
R is an automorphism.
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We claim H is the trivial automorphism. Since H(1) = 1, we already know
that H(x) = x, if x € Q; moreover, H is increasing. Suppose & € R \ Q satisfies
H(h) # h, say H(h) < h. Archimedes’ principle guarantees the existence of
a rational number a € Q such that H(h) < a < h. However, this implies
a = H(a) < H(h), a contradiction. Therefore, H is the trivial automorphism.
and f = g.

Now, let fi : R — Kand f, : R — L beisomorphisms. Wedefine F : K — L
by

F@) = (fro 7)),

Since the composition of bijections is a bijection and the composition of homo-
morphism is a homomorphism we conclude that F is an isomorphism. Unique-
ness of F follows from the uniqueness of f| and f>. |

The Theorem above says that, in some suitable sense, R is the only complete
ordered field. Even though we assumed the existence of R through the funda-
mental axiom of mathematical analysis, it’s possible to construct a complete
ordered field explicitly:

Example 2.30. A Dedekind cut is a nonempty proper subset of the rationals,
A C Q, satisfying the following properties: A has no maximum element, and if
ac€A,beQ,and b < a,then b € A.

Let D be the set of all Dedekind cuts. We define a field structure on D as
follows. The zero element is

0 :={xeQ; x<0}.
Similarly, the multiplicative identity is defined by
I"={xeQ;x<1}.

We define an order on D by A < B if A is a proper subset of B. Hence, the set
P of positive elements is defined by

P ={A € D; A properly contains all negative rationals}.
The sum of two cuts is given by
A+B={a+b;acA,beB}.
The definition of A - B is more elaborate. First, suppose A, B € P. Then we set
A-B={peQ;p<a-bforsomeacA,beB,a,b>0}.

In general, we define
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o ifA=0"orB=0,

—(A--B) ifA>0"and B <(,
—(-A-B) ifA<0 andB>0,
—-A--B ifA<0 and B <.

The set D, together with the operations +, - and the order defined above,
forms a complete ordered field. The proof of this fact is left as an exercise.

Notice that since complete ordered fields are unique up to isomorphism by
Theorem [2.29] there exists an isomorphism f : R — D.

The discussion above leads to the conclusion that although there is no rational
number x € Q such that x*> = 2, there exists a positive real number x € R
satisfying x2 = 2. We denote this number by V2. There is nothing special about
the number 2; indeed, the argument generalizes to any n € N that is not a perfect
square. In such cases, we can similarly conclude that there exists a positive real
number, denoted by /7, such that (v/n)? = n.

We can generalize even further by considering the n root of a natural number
m € N, denoted by {/m. This is defined as the unique positive real number x € R
such that x" = m.

The elements of the set R \ Q are called irrational numbers. As we have just
seen, there are many such numbers; for instance, all numbers of the form W,
with n > 2, are irrational. In fact, we shall see next that irrational numbers are
everywhere in a precise sense—as a subset of the real numbers.

A subset X C R is said to be dense in R if for every paira, b € R witha < b,
there exists an element x € X such that a < x < b. In other words, X is dense in
R if every open, non-degenerate interval (a, b) contains at least one point from
X.

Example 2.31. Let X = R—Z. Then X is dense in R. Indeed, every open interval
(a, b) is an infinite set (since R is ordered). On the other hand, Z N (a, b) is
finite, hence we can always find a number x ¢ Z with x € (a, b).

Theorem 2.32. The set of rational numbers, Q, and the set of irrational numbers,
R\ Q, are both dense in R.

Proof. Let (a,b) C R be a non-degenerate open interval. Since b —a > 0, there
exists a natural number n € N such that % < b — a. Consider the set

X:{meZ:

m
n

> b}

By the Archimedean property of R, the set X is nonempty. Moreover, X is
bounded below by nb € R. By the well-ordering principle, X has a smallest
element, say mgy € X. By minimality of m(, we have my — 1 ¢ X, hence

n’l()—l

< b.
n
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We claim that

m‘jq_] > a. Suppose not. Then

mo—1 mo
<a<b< —,
n n

which implies
my moy — 1 _ 1

n n n

1 4. .
m(; lies in the

contradicting our choice of n. Therefore, the rational number
interval (a, b), showing that Q is dense in R.

To prove that R \ Q is also dense in R, we apply the same argument mutatis
mutandis, replacing ,ll with an irrational number, such as \/75 The rest of the
proof proceeds identically, yielding an irrational number in (a, b). |

Theorem 2.33. (The Nested Intervals Principle) Let L, 2 [, 2 ... 21, 2 ...
be a decreasing sequence of closed intervals of the form I, = [ay, b,]. Then,

ﬂ I, # 0,
n=1
and more precisely,

ﬁ I, =la,b],
n=1

where a = sup a, = sup{a, : n € N} and b = inf b,, = inf{b,, : n € N}
Proof. By hypothesis, we have I, 2 I, for all n € N, which implies the
following chain of inequalities:

ar < ay < <ap<...<b,<...<by <hy.

In particular, the sequence (a,) is increasing and bounded above by b, so the
supremum
a:=sup{a, :ne N} eR

is well defined. Similarly, since (b,) is decreasing and bounded below by aj,
the infimum
b:=inf{b, :ne N} eR

is also well defined.
Since each b,, is an upper bound for the set {a; : k € N}, it follows that
a < b, for all n € N. Hence,

ap,<a<b, forallneN.

By a similar argument, a,, < b < b, for all n € N. Therefore, the closed interval
[a, b] is contained in every I,,, i.e.,
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[a,b] C I, foralln e N.

We now show that no point outside [a, b] lies in the intersection. Suppose x < a.
Then, since a = sup a,, there exists ny € N such that x < a,,, and thus x ¢ [,,,,
implying x ¢ (", In.

Similarly, if x > b, then since b = inf b,,, there exists n; € N such that
x> by,s0x &I, and againx ¢ ()", I,.

‘We conclude that

(o)

() 1n = la.b].
n=1

Theorem 2.34. The set of real numbers R is uncountable.

Proof. Let X = {x1,x2,...} € R be a countable subset of R, which we know
exists by Theorem[I.58] We claim there is always an x € R such that x ¢ X. Pick
aclosed interval /1 not containing x1, this is possible since R is infinite. Proceed
by induction, after setting /,, not containing x,, we select I,4; C I, as a closed
interval which doesn’t contain x,,;. Proceeding this way, we construct a nested
sequence of closed intervals I; 2 I 2 ...I, 2 .... Therefore, by Theorem
[2.33] there is at least one x € R that is not in X. O

Corollary 2.35. Any non-degenerate open interval (a,b) C R is uncountable.
Proof. Define the function f : (0,1) — (a, b) by
f(x)=(b-a)x+a.

This function is clearly bijective. Therefore, it suffices to show that the interval
(0, 1) is uncountable.

Suppose, for contradiction, that (0, 1) is countable. Then the set (0, 1] =
(0,1) U {1} is also countable as the union of two countable sets. Moreover, for
each integer n € Z, the interval

(myn+l]l={xeR :n<x<n+1}
is a translation of (0, 1], and thus countable.

Since
R = U(n, n+1],

we would have that R is a countable union of countable sets, hence countable.
This contradicts the fact that R is uncountable.
Therefore, (0, 1), and hence (a, b), is uncountable. |

Corollary 2.36. The set of irrational numbers R \ Q is uncountable.
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Proof. Suppose, for contradiction, that R \ Q is countable. Since the set of
rational numbers Q is also countable, it would follow that

R=QUR\Q

is a countable union of countable sets, and therefore countable. This contradicts
the fact that R is uncountable. Hence, R \ Q must be uncountable. a

Exercises

kW

10.

11.

. Let K, L be fields. A function f : K — L is called homomorphism when

fx+y)=f(x)+f(y)and f(x-y) = f(x)- f(y), foranyx,y € K. Given
a homomorphism f : K — L show that f(0) = 0. Also, show that only one
of the following happens: f(x) =0,Vx € K or f(1) = 1 and f is injective.
Given a homomorphism f : Q — Q. Show that only one of the following
happens: f(x) =0,Vx € Qor f(x) =x,Vx € Q.

Explain why Z, with its usual operations, is not a field.

Let K be an ordered field and ¢, b € K. Show that a2 +b* =0 < a=b = 0.
Let (X;K) denotes the set of all functions between X and K. Given
f,g € F(X;K), define the following operations on set the set ¥ (X; K):

(f+8)(x) = f(x) +g(x) and (f - g)(x) = f(x) - g(x). Is F(X: K) a field?

. Let x, y be positive elements of an ordered field K. Show that

x<ye x> y_1

Let x € K be a nonzero element in a ordered field K and n € N. Show that
(1+x)>">142n-x

Let K be an ordered field and @, x € K. If a and a + x are positive, show that

(a+x)">a" +n-a"'-x

. Given an ordered field K, show the following are equivalent:

a. K is Archimedean;
b. Z is unbounded from below and from above;
¢. Q is unbounded from below and from above.

Given an ordered field K, show that K is Archimedean © Ve > 0 € K, dn €
N such that 2%, < €.

Let a > 1 be an element of an Archimedean field K. Consider the function
f:Z — K, given by f(n) = a". Show the following:

a. f(Z) is not bounded from above;
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12.

13.

14.
15.

16.

17.

18.

19.

20.

21.
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b. inf f(Z) = 0.
Leta, b, c,d € Q. Show that
a+bV2=c+dV2 o a=c and b =d.

Let a, b € Q be positive numbers. Show that

Va + Vb is rational & both va and Vb are rational.

= {11 €N} Show that inf X = 0.
C B C R be nonempty bounded sets. Show that

inf B <inf A < supA < supB.
Let A € R be a bounded nonempty set. Show that
sup—A = —inf A.
Let A C R be a bounded nonempty set and ¢ > 0, show that

supc-A=c-supA

Let A, B C R be bounded nonempty sets. Show that
sup(A + B) = sup A + sup B;
and similarly, show that
sup(A - B) =supA -supB,

where A-B={x-y;x€ A,y € B}.
Let p > 1 be a natural number. Show the set

X:{ﬂ;mEZandneN}
pn

is dense in R.
A number r € R is said to be algebraic if it is a root of a polynomial
p(x) € Z[x] with integral coeflicients.

a. Show that the set of all polynomials with integral coefficients, Z[x], is
countable.
b. Show that the set of all algebraic numbers is countable and dense in R.

Let X = R— A, where A is a countable subset of R. Show that for each open
interval (a, b), the intersection X N (a, b) is uncountable. In particular, X is
dense in R.
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22.

23.

24.

25.

26.

27.

28.
29.

2 The real numbers R

A number r € R is said to be transcendental if it’s not algebraic. Show that
the set of all transcendental numbers is uncountable and dense in R.

Show that the set of algebraic numbers, usually denoted by Q, can be given
a field structure. This exercise assumes knowledge of Abstract algebra, you
may skip it if you want.

Give an Example of open bounded nested intervals whose intersection is
empty.

Show that the set O of all Dedekind cuts (see Example [2.30) is a complete
ordered field.

Let X,Y be nonempty sets and f : X XY — R a bounded function, i.e.

|f(x)| < c.Let fi(x) =sup{f(x,y);y € Y} and fo(y) = sup{f(x,y);x €
X}. Show that

sup f1(x) = sup f2(y).

xeX yey

In other words, sup commutes with itself:

sup(sup f(x,y)) = sup(sup f(x,y))
X y y X

Generalize the exercise above and show that
sup(inf f(x,y)) < inf(sup f(x,y))
y ¥ X oy

Let x, y € R be positive numbers. Show that \/x -y < %

Show that the function f : R — (—1,1) defined by f(x) = \/1);72 is a
X

bijection.



Chapter 3
Sequences and Series of real numbers

3.1 Sequences

A sequence of real numbers, denoted by x,, := x(n), is a function x : N — R,
There is no universal notation for a sequence, but common ones include

{xn}I’LEN’ Xn’ {XI,XZ, .. -}’ (-xn)
A sequence x,, is bounded if there exist a, b € R with
a<x, <b (neN).

Equivalently, x(N) C [a, b]. A sequence is unbounded if it is not bounded.

It is bounded above if x,, < b for some b € R, and bounded below if a < x,
for some a € R. A sequence is bounded <= it is both bounded above and
bounded below.

Let K C N be infinite. Then K is countable, so there exists a bijection
b:N — K, k — ny. For any sequence x : N — R, the sequence

Xp, =x0b:N—R

is called a subsequence of x;,,.

Example 3.1. If K = {n € N : neven} and b(k) = 2k, then x,, = xp¢ is a
subsequence of x,,. For instance, if x,, = (—=1)", then x5 = 1 for all k.

Every subsequence of a bounded sequence is bounded.

A sequence is nondecreasing if x, < x,41 forall n, and increasing if x,, < x4
for all n. Similarly, it is nonincreasing if x,, > x,1 for all n, and decreasing if
Xp > Xpq for all n.

A sequence that is nondecreasing, nonincreasing, increasing, or decreasing
is called monotone.

Lemma 3.2. A monotone sequence x, is bounded = it has a bounded
subsequence.

47



48 3 Sequences and Series of real numbers

Proof. The forward direction is immediate. For the converse, suppose x,, is a
bounded subsequence of a monotone sequence x,,. Assume x,, is nondecreasing.
Then x,, < b for some b € R. For any n, choose ny > n. Thenx,, < x,, < b,
SO X, is bounded. O

Example 3.3. The sequence x,, = 1, i.e. {1,1,1,...}, is constant, bounded,
nonincreasing, and nondecreasing.

Example 3.4. The sequence x,, = n, i.e. {1,2,3,...}, is an unbounded increas-
ing sequence.

11

Example 3.5. The sequence x,, = %, ie. {l,3,3,...},is abounded decreasing

sequence, since 0 < x, < 1.

Example 3.6. The sequence x, = 1+ (-1)",1.e.{0,2,0,2,...}, is bounded but
not monotone.

Example 3.7. Let a € R with 0 < a < 1. The sequence

1-— n+l
xn=1+a+a2+---+a”=L
l1-a
is increasing (since a > 0) and bounded, since 0 < x,, < ﬁ
Example 3.8. The sequence
_q 1 1 1
Xn + F + E + ;
is increasing and bounded, since
1 1 1
O<xp,<l+l4+-4+—+ -+ < 3.

2 22 2n-1

The sequence y, = (1 + %)” is related: by the binomial Theorem, y, < x,,
hence 0 < y,, < 3.

10 20 30 0

Fig.3.1:y, = (1+1)n
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Example 3.9. Let x; = 0, x = 1, and define x,45 = x,,41 + x, forn > 1. Itis
easy to check that 0 < x,, < 1. A computation shows

1 1 1 1 1 1 1

Thus x,, is bounded but not monotone.

Fig. 3.2: x40 = Xp41 + X5

Example 3.10. Consider the sequence {1, V2, V3, V4, ...} givenby x,, = {/n. It
increases for n = 1,2. We claim that for n > 3 itis decreasing. Indeed, x,+1 < x,
is equivalent to (n+ 1)" < n"™*!, i.e.

n
(1+rll) <n,

which holds for n > 3 by Example 3.8] Hence x,, is bounded.

Fig.3.3: x, = {/n
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3.2 The limit of a sequence

Informally, to say that a € R is the limit of the sequence x,, means that the terms
of the sequence become arbitrarily close to a as n grows large. More precisely:

limx,=a = Ve>0 ngeN (n>ny = |x,—a| <e¢).

n—oo

In words: “The limit of the sequence x, is a if, for every € > 0, no matter
how small, there exists an index ny such that |x,, — a| < € whenever n > ngy.”

Equivalently, every open interval (a — €, a + £) centered at a contains all but
finitely many terms of the sequence.

Remark. It is common practice to omit “n — oo” and write simply lim x,,.
When limx,, = a, we say that x,, converges to a, also written
Xp — 4,
and call x,, convergent. If x,, is not convergent, we say it is divergent, i.e. there
isno a € R with limx,, = a.

Theorem 3.11. (Uniqueness of limits) If limx,, = a and limx,, = b, then a = b.

Proof. Suppose limx, = a and b # a. It suffices to show that limx, # b. Let

= ”’;2“'. Since lim x,, = a, there exists ny such that n > ng = |x, — a| < &.
Hence, for n > ng we have x,, ¢ (b — &, b + €), and therefore limx,, # b. O

Theorem 3.12. Iflim x,, = a, then every subsequence x,, also satisfieslimx,, =
a.

Proof. Given ¢ > 0, choose ng such that n > ng = |x, —a| < &. Since n; > ngy
implies |x,, — a| < &, the same ny works for the subsequence. |

Corollary 3.13. If k € N and limx,, = a, then limx,.;x = a, since xXp4x is a
subsequence of x,,.

In other words, Corollary [3.13] says that the limit of a sequence does not
change if we omit finitely many terms.

Theorem 3.14. Every convergent sequence x,, is bounded.

Proof. Suppose limx,, = a. Then there exists ng such that n > ng = x, €
(a—1,a+1). Let

M =max{lx|,.... |xnl, la = 1], |a + 1]}.

Then |x,| < M for all n, so x,, is bounded. |
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Example 3.15. The sequence {0,1,0,1,0,1,...} is not convergent by Theo-
rem[3.12] since it has subsequences with different limits: x5, = 1 and x2,,_; = 0.
This shows that a bounded sequence need not be convergent, i.e. the converse
of Theorem 3.14] fails.

Theorem 3.16. (Monotone Convergence Theorem) Every bounded monotone
sequence is convergent.

Proof. Assume x,, is nondecreasing (the other cases are analogous). Since x,
is bounded, a = sup{x,} is well defined. Given &£ > 0, choose ng such that
a — & < Xp,. By monotonicity, a — & < x, for all n > ny. Clearly x, < a, so

a—¢&<x, <a+e&forn > ng. Thus limx, = a. O

Corollary 3.17. If a monotone sequence x, has a convergent subsequence, then
Xp IS convergent.

Proof. Suppose x, is increasing (the other cases are analogous) and that x,,
converges. Then x,, is bounded, say |x,, | < M for all k. Given any n € N,
we can choose an index ko such that n < ny,. Since x, is increasing, we
have x, < x,, < M. Thus x, is bounded. By Theorem @, every bounded

monotone sequence converges, and therefore x,, is convergent. |

Example 3.18. Every constant sequence x,, = k € R is convergent and lim x,, =
k.

Example 3.19. The sequence {1,2,3,4,...} is divergent because it is un-
bounded.

Example 3.20. The sequence {1,—1, 1, -1, ...} is divergent because it has two
subsequences converging to different values, namely x5, = 1 and x5, = —1.

Example 3.21. The sequence x, = % is convergent with limx, = 0. Indeed,

since R is Archimedean, given & > 0 there exists ny € N such that nio < &.Then

for all n > ng, we have % <e.

Example 3.22. Let 0 < a < 1. The sequence x, = a" is monotone decreasing
and bounded below by 0, hence convergent. Notice that lim x,, = 0 in this case.

Theorem 3.23. [flimx, = 0 and y, is a bounded sequence, then
lim(x, - y,) =0.

Proof. Since y,, is bounded, there exists ¢ > 0 such that |y,| < ¢ for all n. Let
e > 0 be given. Since limx, = 0, there exists ngp € N such that n > ny —
|x,| < £. Then for all n > ng, we have

IXnynl < [xnl - [ynl < f C=¢g,

which proves that lim(x,y,) = 0. |
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Example 3.24. It follows from the Theorem above that

. sinn
lim =0,

n—oo n

since |sinn| < 1 and% — 0.

Theorem 3.25. Let limx, = a and limy,, = b. Then
1. lim(x, + y,) = a+ b and lim(x,, — y,) =a — b;
2. lim(x, - y,) = ab;

3. 0fb #0, then lim % = 2.
yn b

Proof. (1) Let € > 0. Since limx,, = a and limy,, = b, there exist N;, N, € N
such that

E E
n>N1=>|x,,—a|<§, n>N2=>|yn—b|<§.

Let N = max{Ny, N>}. Forn > N,

E E
|(xn+yn)_(a‘i'b)lS |xn_a|+|yn_b| <§+§:3,

so lim(x, + y,) = a + b. The difference case is identical, since
|(xn = yn) = (@=D)| < |xp —al+ |y, — bl

(2) Convergent sequences are bounded, so there exists M > 0 with |x,| < M
and |y,| < M for all n (one may take different bounds for x,, and y,; use
the larger). Let ¢ > 0. Choose N} withn > Ny = |x, —a| < § and NV,
withn > N, = |y, — b| < 6, where we will specify § > 0 shortly. For
n > max{Ny, No},

|Xpyn — ab| = |xpyn — ayn +ay, —ab| < |x, — al |ya| +lal |y, — bl.
Using the bound |y, | < M, we get
|Xnyn —abl < M|x, —al +lally, - b|.

Choose ¢ > 0 so that M¢ + |a|§ < & (for example 6 = &/(M + |al)). Then for
n > max{Ny, N} the right-hand side is < &, proving limx,y, = ab.

(Alternate standard decomposition: x,y, —ab = (x, —a)(y, — b) + a(y, —
b) + b(x, — a), and each term tends to 0.)

(3) Assume b # 0. Since y,, — b, there exists Ny such that for all n > Ny we
have y,, € (b — %, b+ %), in particular, y,, > 0 for those values of n. Thus the
sequence y,, is bounded away from O eventually, so the quotients are defined for
all large n.
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Let e > 0. Pick Ny withn > Ny = |x, —a| < 61 and N, withn > N, =
|yn—b| < 62, where we will choose 61, 62 > 0below. For n > max{Ny, Ni, N2},
Xpb — ayy

Xy _a _ b —a) —alyn=b)| _ |blba = al + la] ly, - bl

Yu b Yub |ynllB] - [yl

Using |y,| > @ for such n, we obtain

2 2 2)al
W(Ibl lxn —al + lal lyn — bl) = — |x, —a| + e |yn — b|.

Now choose 61, 02 > 0 so that

2 o1+ 2lal 0y <
7701 T 7502 <E,
|b] |b]?
and pick Ny, N, accordingly. For n > max{Ng, N1, N, } the left-hand side is < &.
Hence lim In _ —-. O
yn b

Example 3.26. Let a € R be a positive number. The sequence x,, = {/a is
bounded and monotone, hence converges. We claim that

lim {a =1.

n—oo

Indeed, let L = lim {/a and consider the subsequence y, = Xn(n+1)- Then

. R R N
L =limy, =limag»t) =limagr" »1 = =1.

Example 3.27. Consider the sequence x,, = {/n from Example From
n > 3 onward, the sequence is decreasing (and bounded), hence convergent. We

claim that
lim ¥n=1.

n—oo

Let L = lim {/n and consider the subsequence y,, = x;, = %/2n. Then
L*=limy, -y, = lim ¥2n = lim (V2 - ) =1 - L = L.

Thus L =0or L = 1. Since x,, > 1 for all n, we conclude L = 1.
Example 3.28. The sequence

Xp=l+l4d+. 0 +L

n!

is increasing. It is also bounded since
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2<xp S1+1454. 457 <3

Hence x,, converges. Its limit, denoted by e, is called the Euler constant. Our
discussion shows that 2 < ¢ < 3. The increasing sequence y, = (1 + %)” is also
related to e, since y,, < x, and limy,, = limx, = e.

30 40 s0 "

Fig.34:x, =1+ 1+ % +...+5

Theorem 3.29. If limx, = a and a > 0, then there exists ny € N such that
xn, > 0 for all n > ny. An analogous statement holds if a < 0, namely that
eventually x,, < 0.

Proof. Since limx, = a, there exists ng € N suchthatn > ny = |x,—a| < %.
In particular, this implies x, > § > 0 for n > ng. The case a < 0 follows
similarly. |

Corollary 3.30. If x,, and y, are convergent sequences with x, < y, for all n,
then limx,, < limy,,.

Proof. Let
limx, =a and limy, =>bh.

We want to show that a < b.
Suppose, for the sake of contradiction, that a > b. Then a — b > 0. By
Theorem [3.29] since lim(x,, — y,,) = a — b > 0, there exists ny € N such that

Xp—Yn >0 forall n > nyg,

which implies
Xn >y, forall n > ng,

a contradiction. O
Corollary 3.31. Ifx, is convergent and x, > a € R for all n, then limx,, > a.

Proof. Take x,, = a in Corollary [3.30] O
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Theorem 3.32. (Squeeze Theorem) If x,, < y, < z,, for all n, and
limx, =limz, = L,
then limy, = L.
Proof. Let &€ > 0 be given. Since lim x,, = L, there exists n; € N such that
|x, — L| <& foralln > ny.
Similarly, since lim z,, = L, there exists n, € N such that
|z, —L| <& foralln > ny.
Let ng = max{ny, ny}. Then for all n > ng, we have
L-eg<x,<y,<zp<L+eg,

which implies
lyn — L] <& foralln > ng.

Since € > 0 was arbitrary, it follows that lim y,, = L. O

3.3 liminfx, and lim sup x,

A number a € R is an accumulation point of a sequence x,, if there exists a
subsequence x,, such that

lim x,, =a.
k—o0

Theorem 3.33. A number a € R is an accumulation point of the sequence x,, if
and only if

Ve > 0, there are infinitely many n € N such that x,, € (a —&,a +¢€).

Proof. The forward implication follows directly from the definition. For the

converse, let € = 1, %, %, e %, .... Since there are infinitely many n with
1

X, € (a— at %), we can select indices ny < np < --- < ng < ... such that

1
|xp, —al < T for each k € N.
By construction, klim Xp, = a, so a is an accumulation point. O
—00

Example 3.34. If limx, = a, then x, has exactly one accumulation point,
namely a. This follows directly from Theorem
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Example 3.35. Consider the sequence {0, 1,0,2,0, 3, ... }. Itdiverges, but has 0
as an accumulation point due to the constant subsequence x,,-; = 0. Similarly,
the sequence {1,—1,1,—1,...} has two accumulation points: —1 and 1. The
sequence {1,2,3,4,5, ...} is divergent and has no accumulation points.

Example 3.36. By Theorem [2.32] every real number r € R is an accumulation
point of some sequence of rational numbers.

We shall see below that every bounded sequence has at least one accumulation
point, and converges if and only if it has a unique accumulation point.
Let x,, be a bounded sequence, so that m < x, < M for all n, withm, M € R.
Define the sets
Xn = {Xn, Xnal, X4, - -}

Then X,,41 C X,, C [m, M] for all n. Set
a, =infX,, b, =supX,.
The sequences (a,) and (b,,) are monotone and bounded:
m<ay<ay<---<ap < <b, <o <by<b <M,
so their limits exist. Define

liminfx, := lim a, = sup{a,;n € N}, limsupx, := lim b, =inf{b,;n € N}.
n—oo n—oo

It is immediate that
liminf x,, < limsup x,,.

Example 3.37. Consider the sequence x,, = {0,1,0,1,0,1,...}. Using the
notation above, a,, = 0 and b,, = 1, so liminf x,, = 0 and limsupx,, = 1.

Theorem 3.38. Let x,, be a bounded sequence. Then liminf x,, is the smallest
accumulation point, and lim sup x,, is the greatest accumulation point.

Proof. We prove the claim for lim inf x,,; the proof for lim sup x,, is analogous.

Let a := liminf x,, = lima,. Given any € > 0, choose ng such that a — ¢ <
an, < a+e&.Since ay, = inf{x,,, Xny+1, . . . }, a+&is notalower bound anymore
and there exists n1 > ng such that a — € < x,, < a + &. Repeating this process
produces a subsequence converging to a, so a is an accumulation point.

To see minimality, let ¢ < a. Then there exists ng such that ¢ < a,, < x, for
all n > ng. Choosing & = a,, — c, the interval (¢ — &, ¢ + &) contains no x,, for
n > ng. By Theorem [3.33] ¢ is not an accumulation point. O

Corollary 3.39. If b < liminf x,, then there exists ny € N such that if n > ng
then x,, > b. Similarly, if limsupx, < c then there exists n; € N such that if
n > njy then x,, < c.

Proof. Since liminf x,, is the smallest accumulation point, » can’t be an accu-
mulation point. Hence, there is an open interval containing b which contains
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at most finitely many elements of the sequence x,,. An analogous argument is
valid for the lim sup x,,. O

Example 3.40. The graph of x,, = sinn shown below suggest that liminf x,, =
—1 and lim sup x,, = 1. That is indeed true, the proof however is not elementary.
See Exercise 29.

limsup x,

0.5 °

05}

“AO0fF--e e o S T —— Beccmcccccc e eec o
liminf x,

Fig. 3.5: x,, = sinn

Corollary 3.41. (Bolzano—Weierstrass Theorem) Every bounded sequence x,
has a convergent subsequence.

Proof. Since x,, isbounded, a = lim inf x,, is well defined and is an accumulation
point. Hence, there exists a subsequence converging to a. |

Corollary 3.42. A sequence x, is convergent if and only if liminfx, =
lim sup x,,.

Proof. 1If x, converges, all subsequences converge to the same limit, so

liminfx, = limsupx, = limx,. Conversely, suppose a = liminfx, =
lim sup x,,. Then for any & > 0, there exists ng such thata — & < x,, < a + & for
all n > ng, so x, — a. O

Corollary 3.43. If ¢ < liminfx,, then there exists ngo € N such that n >
ng = c¢ < x,. Similarly, if c > lim sup x,,, then there exists n| € N such that
n>n = c>x,

Proof. We prove the first statement; the second is analogous.

Let a = liminf x,, be the smallest accumulation point of (x,), and assume
¢ < a. Suppose, for contradiction, that for every n € N there exists m > n with
Xm < c. Then we can construct a subsequence (x,, ) with x,, < ¢ for all k.
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Since (x,) is bounded, (x,,) has a convergent subsequence with limit b <
¢ < a. But b is an accumulation point, contradicting the minimality of a. |

A sequence x, is called a Cauchy sequence if, given £ > 0, there exists
ng € N such that for all n, m > ng,

|Xn — x| < €.

In other words, a Cauchy sequence is a sequence whose terms x,, become
arbitrarily close to each other for sufficiently large n. It is reasonable to expect
that a sequence with this property converges, and indeed this is true, as the
theorem below shows.

Theorem 3.44. Every Cauchy sequence is convergent.
Proof. The proof follows directly from the two lemmas below.
Lemma 3.45. Every Cauchy sequence is bounded.

Proof. Let (x,) be a Cauchy sequence. By definition, there exists ny € N such
that
m,n>ny = |x, —xn,| < 1.

Fix x,, and define

M := max {|x1|, 2l oo [Xngls 1Xng = 11, [0, + ll}.
Then for all n, |x,| < M, and hence the sequence (x,,) is bounded. m|
Lemma 3.46. If a Cauchy sequence (x,) has a convergent subsequence (xp, )
with klim Xpn, = a, then (x,) converges to a.

Proof. Let € > 0. Since (x,) is Cauchy, there exists ng such that

&
m,n>ny = |xp,—xm| < 3

Since (xp, ) converges to a, there exists ko such that

e
ng > ng, = |x,, —al < 5

Choose ny > ng satistying this. Then for all n > ny,

E
|~xn_a| < |xn_~xnk|+|xnk _a| <

L £
—+=-=c.
2 2

Hence, limx,, = a. O

By Lemma [3.43] and the Bolzano—Weierstrass Theorem, every Cauchy se-
quence has a convergent subsequence. Therefore, by Lemma[3.46] the sequence
converges. This completes the proof of Theorem 3.44] O
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The converse of Theorem [3.44]is also true:

Theorem 3.47. Every convergent sequence is a Cauchy sequence.

Proof. Suppose a := limx,. Given £ > 0, there exist ng, € N such that

£
n>ny = |xn—a|<§

Then, for m,n > ny,
|Xp — x| < |xn —al+ |xm —al < e.
Hence, x,, is Cauchy. O

Corollary 3.48. A sequence x, of real numbers is a Cauchy sequence if and
only if it converges.

A divergent sequence x,, converges to infinity, denoted by lim x,, = +o0, if for
any M > 0, there exists ny € N such that n > n9 = x, > M. Similarly, x,,
converges to negative infinity, denoted by lim x,, = —oo, if for any M > 0, there
exists ng € Nsuch thatn > ng = x, < -M.

Example 3.49. The sequence x,, = n converges to infinity. Given any M > 0,
take ng > M. Then x,, = n > M for all n > ng. On the other hand, x,, = (-1)"n
is divergent and does not converge to +co or —co, since it is unbounded in both
directions.

The following Theorem is similar to Theorem[3.25] The proof will be omitted.
Theorem 3.50. (Arithmetic operations with infinite limits)

1. If limx,, = +oo and y, is bounded from below, then lim(x,, + y,) = +oo.
Moreover, if the bound is positive, i.e. y, = ¢ > 0, then lim(x,, - y,) = +oo.
2. If x, > 0, then limx,, = 0 if and only if lim é = +oo.
3. Let x,, yn > 0 be positive sequences. Then:
(a) If x,, is bounded from below by a positive constant and lim y,, = 0, then
lim )y‘—: = +o0,
(b) If x,, is bounded and lim y,, = +oo, then lim )yc—: =0.

Example 3.51. Letx,, = Vn+ 1 and y,, = —+/n. Then limx,, = +oco0, limy,, =
—oo. We have

(Vn+1—-+n)(Nn+1++n) 1

lim(x, + y,) = lim =1

im——— =0
Vn+1++/n Vn+1++n

However, it is not true in general that lim(x, + y,) = limx,, + limy, if both
limits are infinite. For example, x, = n? and y, = —n satisfy limx, = +oo,
lim y,, = —oo, but lim(x,, + y,) = +oo.
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..............

Fig.3.6:x, =Vn+1—+/n

Example 3.52. Letx, = [2+ (=1)"]n and y,, = n. Then limx,, = limy,, = 400,
but lim ;—Z =1im[2 + (—1)"] does not exist. Hence, it is not true in general that
lim ;—Z = 1 if both limits are +oo.

Fig. 3.7: x, = [2+ (-1)"]n

Example 3.53. Let a > 1. Then lim % = +o0. Indeed, write a = 1 + s with
s>0.Thena" = (1+s)" > 1+ns+ @ﬁ forn > 2, and

1+ns+ Ms2
lim 2 = +00.
n

By induction, one can show that for any m € N, lim ZTZ = +00.

Example 3.54. Let a > 0. Then lim ;‘—,', = +oo. Indeed, pick ng € N such that
20 > 2. Then for n > ny:
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.
.

e ° e .o . .
2 4 ] 8 10 12

Fig.3.8: x, =Vn+1—-+/n

n_!: n(n—1)---(ng+1)np! S n_o!zn_nO
an ava---a amno ’
——
n-ngp

and it follows that lim 2‘—,'1 = +o00.

3.4 Series

Given a sequence of real numbers (x,), the purpose of this section is to give
meaning to expressions of the form

X1 +Xx2+x3+:--,

that is, the formal sum of all the terms of the sequence (x;,).
A natural way to do this is to define the sequence of partial sums

Spi=X1+X2H o+ Xy,

and then set

(o)

Zx,, = lim s,
n—oo

n=1

whenever this limit exists.
[
It is common practice to write simply >’ x, instead of } x,, and to call x,,
n=1
the general term of the series. We shall adopt these conventions in this book.
Since the definition of ) x, involves a limit, the series may or may not

converge. If
Dlxn=LeR,

we say that the series ) x, converges to L. Otherwise, we say that )’ x, diverges.
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Theorem 3.55. If the series ), x,, converges, then limx,, = 0.

Proof. Indeed, since x,, = s, — s,—1, We obtain

lim x, = lim (s, — s,_1) = lim s, — lim s,,_; = 0.
n—oo n—oo n—oo n—oo

The following Corollary is just the contrapositive of the statement above.
Corollary 3.56. (Divergence test) If lim x,, # O then ), x,, diverges.
Example 3.57. The series X (—1)" diverges, since (—1)" does not tend to 0.

The converse of the Theorem[3.55]is not true, as the following counterexample
shows.

Example 3.58. (Harmonic series) Consider the series ), % We clearly have

lim% = 0. However, we claim that ), % diverges.
To prove that lim s,, diverges, it suffices to exhibit a divergent subsequence of
s,. Consider the subsequence son:

1
S2n—1+§+ ‘+2—n
:1+l+(l l)+(l l l 1)4_
2 \3 4 5 6 7 8
>1+1+ +—+§+ +2n_1
2 4 8 16 2n
1
:1+I’l'§.

Hence, son > 1+ %, and therefore lim son = +o0. Thus the harmonic series
diverges.

Example 3.59. (Geometric series) Consider the series ), a” with a € R.

If |a| = 1, then the general term x,, = @ does not satisfy lim x,, = 0, so the
series diverges.

If |a| < 1, then the series converges. Indeed, by induction one shows

l_an+1
Sn = l1—-a
Taking the limit as n — oo gives
00 ., ' 1
Za = lim s, = ——,  (Ja| < 1).
n—oo 1—-a
n=0

Theorem 3.60. Let a,, and b,, be real sequences and consider the series Y, a,
and Y. b,. Then:
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1. If ¥, a,, and Y, b, converge, then . (a, + b,) converges and

Z(an +b,) = Zan+2bn.

2. Forany c € R, if }, a,, converges then Y (c a,) converges and

E ca,=c E a.

Proof. The proof follows dlrectly from the properties of limits as shown below.
(1) LetS, = Z apand T, = Z by be the partial sums of the two series, and
=1

suppose S, — S and T, — T. The nth partial sum of }\(a, + b,) is S, + T,
hence
lim (S, +7,)=lim S,,+ lim 7, =S+ T,
n—00 n—o00 n—o00
so >, (a, + b,) convergesto S +T.
n
Q) If S, = >, ax — S, then the nth partial sum of ) c a, is ¢S,, and

k=1
lim ¢S, =c¢ lim S, = ¢S,
n—0oo n—0o
SO Y, ¢ a, converges to cS. m|
Example 3.61. Consider Z n(n e Since
1 1 1
nn+1l) n n+1
we obtain
S (1 1 ) 1
Sp = - - =1-
= k k+1 n+1
Hence Z =1.

n(n+1)

Theorem 3.62. Ifa, > 0, then ), a,, converges <= the sequence s, = Y, dy
k_
is bounded.

Proof. Since sp+1 — sp = ane1 = 0, the sequence s, is monotone. If }’ a,
converges, then s,, — s, so s, is bounded. Conversely, if s, is bounded and
monotone, it converges. |

The following Corollary is an immediate consequence of the Theorem above.
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Corollary 3.63. (Comparison principle) Let a,, b, > 0. Suppose there exist
¢ € R and ng € N such that a, < cb, for n > ng. Then }, b,, convergent
= Y a, convergent. If 3, a, diverges, then ), b, diverges.

Example 3.64. (p-Series) If p > 1, then ), n% converges. Indeed, s,, is increas-
ing, so using Lemma [3.2]it suffices to show s»»_; is bounded. We have

ARSI ANR R 1
Son_1 =1+ 2_P+3_]7 + 47+5_P+6_P+7_P +“'+2(11T)p’

2 4 on-l1 n-1 2 J
j:

. b J .
Since 2% <1, 'Zo (2%,) converges and so»_ is bounded, hence ) an converges.
]:
Corollary 3.65. (Cauchy’s criteria) The series ). a, is convergent if and only
if given & > 0, there is ng € N such that |ap41 + ... + anep| < € for n > ny,.

Proof. Notice that s, converges if and only if it is a Cauchy sequence (see
Corollary [3.48). O

A series ) a,, is absolutely convergent if )’ |a,| converges. If all terms a,, are
nonnegative (or all nonpositive), then )’ a,, converges <= 3 |a,| converges.
In this case the two notions coincide. The following example shows that they do
not coincide in general.

Example 3.66. Consider ), % Since }; % diverges, the series is not abso-
lutely convergent. We claim )} %
Note that s,,, is monotone:

converges.

§2 < 854 <8¢ <+ < S,

1 1
Sop < — < —.
an Z n(n+1) Z n?
The latter is convergent since it is a p-Series. It follows that s, is monotone and

bounded, hence convergent.
Similarly,

and moreover

S§1>83>85> > 8u-1,

S0 s7,—1 is monotone decreasing and bounded, hence convergent.
Let a = lim s7,,, b = lim 57,,_1. Since

1
San = San-1 = 5o = 0,
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we have a = b. Thus s, also converges. (We will later see that the sum equals
log2.)

A series ), a, is conditionally convergent if } a, converges but ) |a,|
diverges. The above example shows that )’ % is conditionally convergent.

Theorem 3.67. Every absolutely convergent series Y, a, converges.

Proof. 1f ) |a,| converges, then s, is Cauchy. Thus for every £ > 0 there is ng
such that n > ng, p € N = |ap41| + -+ |ansp| < &. Hence

|an+1 +- +an+p| < |an+1| +--+ |an+p| <eg,
so ), a, is Cauchy, hence convergent. |

Corollary 3.68. Let Y b, converge with b,, > 0. If there exist nyp € N, ¢ € R
such that |a,| < cby, for n > ny, then Y, a, converges absolutely.

Proof. Apply Corollary to |a,| and b,,. O
Corollary 3.69. (Root test) If limsup |a,| < 1, then Y, a, converges abso-

lutely. If limsup +f|a,| > 1, then Y a, diverges. In other words, if there is ng
such that n > ng = f|a,| < ¢ < 1 then is Y, a,, absolutely convergent.

Proof. Compare ) |a,| with Y ¢, where ¢ = limsup {/|a,| < 1. If /|a,| > 1
for large n, then lima, # 0.

Corollary 3.70. (Root test, second form) If lim A/|a,| < 1, then ), a,, converges
absolutely. If im /|a,| > 1, then Y, a,, diverges.

Example 3.71. Let a € R. Consider }, na". Since
lim {/n|a|® = lim ¥ - |a| = |a],

the series converges absolutely if |a| < 1, and diverges if |a| > 1.

Theorem 3.72. (Ratio test) Let a, # 0, b,, > 0, and ), b, converge. If there
exists ngy such that

a b
el < 22 (> ng),
al’l n
then Y, a,, converges absolutely.
Proof. Multiplying inequalities
|ano+2| bn0+2 |ano+3| bn0+3 |an| b
—_ ) _ 9 s e ey S D)
|an0+l| bn0+l |an0+2| bn0+2 |an—l| bn—l

we obtain
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lan| < bn .
|an0+l | bn0+l
Thus |a,| < cb,, and the comparison principle applies. |
Corollary 3.73. (Ratio test, second form) If lim sup aa”—;‘ < 1, then 3}, a, con-
verges absolutely. If lim sup a;’—: > 1, then ) a, diverges.

Proof. For convergence, take b, = (limsup |a,+1/an|)" in Theorem [3.72] If
lim sup |@,+1/an| > 1, then a, 4 0. m]

Corollary 3.74. (Ratio test, third form) If lim |a,+1/an| < 1, then Y a, con-
verges absolutely. If im |a,,41/ay,| > 1, then Y, a,, diverges.

Example 3.75. Fix x € R. For ¥ % we have

|x|
n+1

An+l
dan

— 0,

so the series converges absolutely for all x. (We will later identify it with e*.)

Theorem 3.76. (Root test is stronger than the ratio test) If a, is a bounded
sequence of positive numbers, then

Ap+l . . . An+l
" < liminf {fa, < limsup {/a, < limsup ——

lim inf .
an an

. s el . B
In particular, if lim a—; = ¢, then lim {/a,, = c.

Proof. Tt suffices to prove limsup {/a, < limsup “2:L; the other inequality is

dn

analogous. Suppose not. Then there exists k € R such that

An+l
a,

lim sup {/a,, > k > limsup

As in the proof of Theorem [3.72] using Corollary we can find ng such that
n>ny= a, <ck". Hence

Ya, < "k,
and so limsup {/a,, < k, a contradiction. O
The following example gives an interesting application of the Theorem above.

Example 3.77. Consider the limit lim % Setx, = %, Vi = ’,‘1—’;, S0X, = V.

1
yn—+1:(1+—)n—>e.
Yn n

By Theorem [3.76] lim x,, = e.

Now
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Example 3.78. Let a # b € R be positive numbers and define
Xp = {a,ab,azb, a’b?, a’b?,a’b?, a*b? . . .}

Then

Xn+l {b, n odd,

Xn a, neven.

Thus % does not converge, but
n

lim {/x,, = Vab.

Hence in Theorem the inequalities can be strict.

Theorem 3.79. (Limit Comparison Test) Let ), ay, ), b, be two series whose
general terms satisfy a,, > 0 and b, > 0. If

. ap
lim — =c,

bn
with 0 < ¢ < +oo, then either both series converge or both series diverge.

Proof. Given £ > 0, one can find ng such that
n>ny= (c—e)b, <a, < (c+e)b,.

It is possible to choose & such that ¢ — & > 0. The result then follows by
comparison. |

Example 3.80. The series ), n2]+n converges since ), # converges (p-series)
1
. 2
and lim 25 — 1.
vl
n

Theorem 3.81. (Dirichlet) Let b, be a nonincreasing sequence of positive
numbers with lim b,, = 0, and }, a,, be a series such that the partial sum s, is a
bounded sequence. Then the series Y, a,b,, converges.

Proof. Notice that

a1b1 +a2b2 + ... +anbn = al(bl - bz) + (a1 +a2)(b2 - b3)+
+(ai+ay+az)(bs—by)+...+ (a1 +...+a,)b,

= Z Si—1(bi—1 = b;) + s,by.
i

Since s, is bounded, say |s,| < k and b,, — 0, we have lim s,,b,, = 0. Moreover,

’z”: si—1(bi-1 = b;)
P

<k ) (bim1 = bi) = k(b1 = by).
i=2
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So X, si—1(bj—1 — b;) converges, and therefore, by comparison, 3’ a,b, con-
verges as well. O

We can weaken the hypothesis lim b,, = 0 if we assume instead that ) a,
converges. Indeed, if lim b, = ¢, set b}, := b,, — ¢ and apply the theorem to b;,.
We conclude:

Corollary 3.82. (Abel) If ) a,, is convergent and by, is a nonincreasing sequence
of positive numbers then ), a,b, converges.

Corollary 3.83. (Leibniz) Let b, be a nonincreasing sequence of positive num-
bers with lim b,, = 0. Then the series Y,(—1)"b,, converges.

Proof. Here a, = (—1)" has bounded partial sums, namely |s,| < 1, and the
result follows directly from Theorem [3.81] O

Example 3.84. Some periodic real-valued functions can be written as linear
combinations of ) cos(nx) and Y sin(nx). The study of such functions and
their generalizations is the subject of Fourier Analysis.

As an example, consider f(x) = ), %.We claimthatifx # 2nk fork € Z,
then f(x) is well-defined, i.e. the series converges. Indeed, let a,, = cos(nx) and
b, = % Since b, is decreasing, by Theorem g@l, it suffices to show that the
partial sums ‘

s, = cos(x) + cos(2x) + cos(3x) + ... + cos(nx)
are bounded. Recall e'* = cos(x) + i sin(x). Therefore:

L+s, =R [1+e™ + e + 3™ + .+ "]
[1 _ e(n+l)ix}

1_eix

so that
2

I+s, < —F7.
1 sl < o

cos(nx)

It follows that s, is bounded, and hence }, =~ converges for all x # 2rk.

Given a series ) a,, define the positive part as ), p,, where p, = a, if
a, > 0, and p,, = 0 otherwise. Similarly, define the negative part as ), qy,
where g, = —a, if a, < 0, and g, = 0 otherwise. Clearly p,, g, = 0 and

an = Pn — qn, la,| = pn+qn, VYneN.

Theorem 3.85. The series Y a, is absolutely convergent if and only if Y, pn
and Y, q, both converge.
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Proof. Since p,, < |a,|and g, < |a,|, if 3 |a,| converges, then by comparison
>, pn and )’ g, also converge. The converse is immediate. |

Example 3.86. If } a, is not absolutely convergent, the proposition may fail.
For instance, take ), -

rll)n . In this case

1 1
ZPnZZZ’ an:ZZn—l’

and both diverge.

Theorem 3.87. If ) a, is conditionally convergent, then ), p, and }’ q, diverge.

Proof. Suppose not; say Y g, converges. Then

Dllanl =D pu+ D an=) an+2) qn

also converges, a contradiction. |

Let f : N — N be a bijection and ) a, a series of real numbers. Set
bn = ayrn). We say } a, is unconditionally convergent if )’ b,, is convergent

and
Y=Y

for every bijection f : N — N. We show below that commutative convergence
coincides with absolute convergence.

Theorem 3.88. A series Y ay, is absolutely convergent if and only if it is uncon-
ditionally convergent.

Proof. Suppose ) a, is absolutely convergent, and let b, = ay(,) for some
bijection f : N — N. It suffices to assume a,, > 0 (otherwise, decompose
a, = pn — qn and apply the result separately). For n € N, let s, = 3}"" | a; and
th = 2y by If we set m := max{f(x) : | <x < n}, then

n m
t, = Zaf(i) < Zai =Sm-
i=1

i=1

Thus, for each n € N, there exists m € N such that ¢, < s,,. Similarly, by using
f ~1, for each m we can find n such that s,, < f,,. Hence lim s,, = lim#,,, and so
2 an =2 by.

We prove the converse statement by proving its contrapositive: if Y a,, is not
absolutely convergent, then it is not unconditionally convergent. If )" a,, diverges,
the claim is trivial. Otherwise, suppose » a, is conditionally convergent, say
Ya, = S € R. By Theorem both Y, p,, and Y ¢, diverge, and since
lima, = 0, we have lim p,, = limg,, = 0.
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Fix ¢ # §. We can construct a rearrangement ). b,, such that ) b, = c.
Indeed, let n; be the smallest integer such that

pr+p2+...+pp >¢,

and let n, > n; be the smallest integer such that

pr1+...+Pp —q1—9g2—...—(qn, <C.

Proceeding inductively, we obtain a rearrangement ), b,, whose partial sums ¢,
approach c. More precisely, for odd i we have

tnv1 <C <tp,and0 <t,, —c < pp,,
where the second inequality follows from the minimality of n;. Similarly,
0<c—tys1 < qnisr-
Since lim p, = lim g, = 0, it follows that lim #,,, = c¢. Now, for odd i we have:
ni <n <njy] = I+l <ty <y,

and for even i:
n, <n<ni+ = tnl— < tn < tn,—+la

Hence, lim ¢, = ¢ and } a, is not unconditionally convergent. |

Exercises

1. If limx, = a, show that lim |x,| = |a|. Show that the converse can be false
by giving a counter example.

2. Suppose limx, = 0. Let y,, = min{|x{], |x2], ..., |x,|}. Show that lim y, =
0.

3. If limxy,, = a and lim x5,,_1 = a, show that lim x,, = a.

4. Give an example of a sequence x, and a infinite decomposition of N =

N; U...UNg U..., such that for every k € N, the subsequence (x,),en,

has limit ¢ € R but limx,, # a.

If limx,, = a and lim(x,, — y,) = 0, show that lim y,, = a.

Show that x,, = (1 — %)" is increasing. Hint: Use the inequality of arithmetic

and geometric means involving the n + 1 numbers 1 — %, AU %, 1.

7. Letx, = (1+ %)", yn=(1- ﬁ)"”. Show that limx, y,, = 1 and conclude

that lim(1 - 1)" = e~

Leta > 0,b > 0. Show that lim ¥a” + b" = max{a, b}

9. Let x, be a bounded sequence. If lim a,, = a and each a,, is an accumulation
point of x,,, then a is an accumulation point of x;,.

A

o



34

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.
20.

21.

22.
23.

24.

25.
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Let x,, y, be bounded sequences. Set
a = liminf x,, A = limsupx,, b = liminf y,, B = limsup y,

Show that:

a) limsup(x, +y,) < A+ Band liminf(x, +y,) > a + b;
b) limsup —x,, = —a and liminf —x,, = —A;
¢) Ifx, >0,y, = 0,thenlimsup(x,-y,) < A-Bandliminf(x,-y,) > a-b.

Foreachn e N,let 0 < ¢, < 1. If limx,, = lim y,, = a, show that

lim[t,x, + (1 —ty)yn]l =a

Let x; = 1 and x,,41 = 1 + /x,,. Show that x,, is bounded and find lim x,,.
Show that x,, doesn’t have a convergent subsequence if and only if lim |x,,| =
+o00.

Let y, > 0 for every n € N, such that ), y,, = +o0. If x,, is a sequence such
that lim {* = a, show that lim {13 fy‘" =a

(Stolz- Cesaro Theorem) Let y,, be an increasing sequence and lim y,, = +oo.

Show that

. Xn+l — Xn . Xn
lim—— =g = lim— =a.

Yn+l — Yn Yn
Hint: Use the exercise above.
Show that
. 1P +2P + 4+ nP 1
lim = .
np+l p+1

Hint: Use the exercise above.
Show that foreveryn € N, 0 < e — (1 + 5 2i +...+ #) < anl Conclude
that e ¢ Q.
Show that lim L \/(n +1)(n+2).. = 4 Hint: Use the last part of theo-
rem[3.76]
Suppose the sequence x,, satisfies n! = n"e~"x,,. Show that lim {/x,, = 1.

+00
Show that the series )’ 1 -, diverges.

n=

+00
Let p > 1. Show that the series ni—:z m converges.

Show that the series ), 12—2" converges.

Theseries1—%+%—%+%—}T+%—%+...isofthef0rm2(—1)”bn,
where b, — 0. However, it is divergent. Why this isn’t a contradiction to

Corollary [3.83]?

Let >} a, and ) b,, be series with positive elements. Show thatif ) b, = +co
and 3ng € N such that <2 "*‘ for n > ng, then 3. a, = +oo.

Let p(x) € R[x] be a polynomlal of degree 2 or more. Show that the series
> > (1n) converges.
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26.

27.

28.
29.
30.

31.
32.

33.

34.
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If [x| < 1 show that lim (")x" = O for every m € R, where (") :=

n—oo
m(m—1)...(m—-n+1)
n! .

(1:17)" converges and find its sum.

Let a € R. Show that the series ),
n=0

Show that for every fixed p € N, the series }’ converges.

1
n(n+l)...(n+p)
Prove thatif Y, a, converges and a,, > Othen Y, a2 and 3}, 7%=

T+ alsoconverge.

Prove that if ) a%l and ) b%l converges then ), a,b, converges. Hint: You

k 2k k

may use Cauchy-Schwarz inequality (Z anbn) < > a2y bl

n=1 n=1 n=1
Show that if a,, is decreasing, a,, > 0 and ), a, converges then lima, -n = 0.
(Cauchy Condensation Test) If a,, is nonincreasing with a,, > 0, show that
>, a, converges if and only if ) 2" - a>» converges.
Show that the set of accumulation points of the sequence x, = sinn is
the closed interval [—1, 1]. First show that if x € R\ Q then the set
{nx (mod1); n € N} is dense in [0, 1). Now take x = ﬁ and conclude
that {n + 2kn;n € N,k € Z} is dense in [0,2r). Use the fact that
|sinx — sin y| < |x — y| to conclude the proof.
Leta; >a>>...>0ands, =a; —ax+...+(=1)""'a,. Show that s, is
bounded and

limsup s, — liminf's,, = lima,



Chapter 4
Topology of R

4.1 Open sets

Let X ¢ R. A point p € X is called an interior point of X if there exists an
open interval (a, b) such that p € (a, b) C X. In other words, p is interior if all
points sufficiently close to p belong to X.

It is easy to see that p € X is interior if and only if there exists & > 0 such
that (p — &, p + €) C X, or equivalently, such that |[x — p| < = x € X.

The set of all interior points of X, denoted by int(X) (or X°), is called the
interior of X. By definition, int(X) C X.

A set X c Ris open if X = int(X); that is, every point of X is interior.

Example 4.1. By definition if X has an interior point then it contains an open
interval, in particular it is an infinite set. Hence, if X = {x,...,x,} is finite
then it has no interior points. Moreover, if int(X) # 0 then X is uncountable
since it contains an interval. Therefore,

int(N) = int(Z) = int(Q) = 0,

and they can’t be open sets. Similarly, since Q is dense, any open interval
containing an irrational point also contains a rational point, hence

int(R-Q) =0,

and it’s not open as well.

Example 4.2. The open interval (a, b) is open. Indeed, any x € (a, b) is an
interior point because (a, b) itself contains x. On the other hand, the closed
interval [a, b] is not open because int([a, b]) = (a,b) # [a, b]. Indeed, any
open interval containing the endpoints necessarily contain points outside [a, b],
so the endpoints can’t be interior points. Similarly, if X = [a, b) or X = (a, b]
then int(X) = (a, b)

Example 4.3. The empty set (0 is open since its interior is also empty, i.e.
int(0) = 0.

73
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Example 4.4. The union of two open intervals X = (a,b) U (¢, d) is open.
Indeed, any interior point of X has to be an interior point of (a, b) or (c, d).

Theorem 4.5. a) If A, B C R are open then A N B is open

b) Given an arbitrary set L. If {A;}icL is a family of open sets, then U Ajis
open. ek

Proof. a) Letx € AN B, then we can find a, b, c,d € R such thatx € (a,b) C
A and x € (c¢,d) € B. Let m := min{a,c} and M := max{b, d}, then
xe(m,M)C ANB.

b) Let x € (J A;, then there is at least one iy € L such that x € A;,. Since

ieL
A;, is open by definition, we can find a neighborhood (a, b) > x such that
(a,b) € A;; € U A;. We conclude that every point is an interior point.
ieL
O

Corollary 4.6. Every open set X C R is a union of open intervals.

Proof. For each x € X, take an open interval I, > x such that I, € X. Then

X=U IL. m|
xeX

Corollary 4.7. If A1, Ay, ..., A, are open sets then Ay N Ay N...NA, is an

open set.

The corollary above is false for countably infinite intersections, take for

example the open intervals A, = —%, %). Then (N A; = {0}, which is not open
i=1

(since it’s finite).

Example 4.8. Let ¢ € R, then the set X = R — {a} is open. Indeed, set

A = (—o0,a)and B = (a, +c0). Thenboth A and B are open and X = AUB, hence

X is open. More generally, we can use induction to show that R — {ay,...,a,}

is open.

Before proving the next Theorem, we need the following Lemma:

Lemma4.9. Let {I;} jc1 be a family of open intervals containing a point x € R.
Then I = \J I; is itself an open interval.
JjeL
Proof. Suppose I; = (aj, b;). By hypothesis,
aj <x<bj,VjelL.

Seta :=infa; and b := sup b; (Notice that it’s possible that a = —co, b = +00.)
We claim that I = (a, b). The inclusion I C (a, b) is clear. Conversely, let
y € (a, b). Then by definition of supremum and infimum, we can find a; and
by such that a; < y < by, if y < bj then y € I;. Otherwise, y > b, and
aj < b; <y, which implies that ay < y < by, and y € Ii. In conclusion,
(a,b) C I,hence I = (a, b). |
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Theorem 4.10. (Structure of open sets) Every open set X C R can be written
uniquely as a countable union of pairwise disjoints open intervals, called the
interval components of X.

Proof. Given x € X, let I, be the union of all open intervals /; contained in
X such that I; > x. By Lemma [4.9] I, is an open interval. For any x,y € X
we claim that either I, NI, = 0 or I = I,. Indeed, if I, N I, # ( then by the
Lemma above I, U I, itself is an interval containing x, hence I, U I, C I, and
I, C I,. Similarly, I, U I, C I, = I, C I, and it follows that I, = I,.

Define L = {x € X;x ~ yif I, = I, }, that is, L is constructed by identifying
elements of X who have the same component. Then X is the union X = (J Iy

XeL
of pairwise disjoints open intervals. In order to prove that this union is countable

we define a function that associates to each x € L a random rational number
r(x) € Q contained in I. Since I, # I, = I, N1, =0 = r(x) # r(y), hence
the function  : L — Q is injective and L is countable.

We are left to prove uniqueness. Suppose X = |J Jx, where Ji are open
i=1

intervals, say J; = (ax, bx), pairwise disjoints. We claim the endpoints of J

are not in X. Indeed, if a; € X then 3J; such that a; € (ay, b;), but then if we set

b := min{byg, b;}, we have (ay, b) C Jr N J;, a contradiction since Jr N J; = 0.

Therefore, for each x € Jyi, Jy is the largest open interval containing x inside X,

and we must have J; = I,. O

Corollary 4.11. (Connectedness of intervals) Let I C R be an open interval. If
I =AU B, where A and B are open and A N B = 0, then either A=1or B=1
(B=0orA=0.)

Proof. Suppose that they are both nonempty. Then the decomposition of both in
open intervals would produce at least two disjoint open intervals, a contradiction
by the uniqueness established in Theorem .10 O

4.2 Closed sets

We say a point a € R is adherent (or closure point) of the set X C R if it is limit
of a sequence of points in X. Every point of X is adherent to itself, since any
point x € X is the limit of the constant sequence x,, = x.

Example 4.12. Consider X = (0, +c0). Then 0 ¢ X but 0 is an adherent point,
since 0 = lim x,,, where x,, = % € X.

Theorem 4.13. A point a € R is adherent of the set X C R if and only if for
everye >0, (a—eg,a+e)NX #0.

Proof. Suppose a is an adherent point, say limx, = a, where x,, € X. Given
any £ > 0, we can find nyp € N such that n > ngo = x, € (a —&,a +¢), in
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particular, (a — &,a + &) N X # (. Conversely, suppose (a —g,a+&)NX # 0
for every € > 0. By choosing € = % for each n € N, we are able to construct a
sequence x, € X such that x,, € (a — % a+ %), and hence limx,, = a. O

Corollary 4.14. A point a € R is adherent of the set X C R if and only if every
open interval I > a we have I N X # 0.

Corollary 4.15. Suppose X C R is bounded, then sup X and inf X are adherent
points.

Proof. Leta =supX.Foranyn e N, a — % is not an upper bound. Hence, there

exists x,, € X such that a — % < xp < a.Therefore, x,, — a. A similar argument
shows that inf X is an adherent point as well. |

The set of all adherent points of X, denoted by X is called the closure of X.
A set X C Ris closed if X = X. In other words, a set X is closed if and only if
it contains all of its adherent points.

Notice that a set X C R is dense in R if and only if X = R.

Example 4.16. The closed interval [a, b] is a closed set. Indeed, for any se-
quence x, € [a,b], we must have ¢ < limx, < b, hence [a,b] = [a,b].
Similarly, (a, b) = [a, b], since in this case the endpoints aren’t in (a, b); but

still, we have a = lim(a + 1) and b = lim(b — 1).

Example 4.17. Using the density of the rationals in R we have Q = R and
R-Q=R.

Example 4.18. The only sets that are open and closed simultaneously are R and
0. Indeed, if A is both open and closed then R = A U (R — A) is the union of
disjoint open sets, by Corollary .11} either A = 0 or A =R.

Theorem 4.19. A set X C R is closed if and only if X€ is open.

Proof. X is closed if and only if X¢ doesn’t contain any adherent points, which
is the case if and only if Vx € X¢,3e > 0 such that (x — &,x + &) C X¢, that is
to say, X€ is open. |

Corollary 4.20. If A and B are closed sets then A U B is closed.
Proof. Notice that (A U B) = A° N B is open. o
Corollary 4.21. Let {A;} jer be a family of closed sets. Then (| Aj is closed.

JjeL

C

Proof. Notice that ( N A j) = U Aj Since each A;.' is open, the result follows.
JjeL jeL -

O
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Example 4.22. Arbitrary union of closed sets need not to be closed. For example,

for each x € (0, 1), the set {x} is closed since it’s finite, but | J {x} =(0,1)
x€(0,1)
is open.

Theorem 4.23. Let X C R be an arbitrary set. Then X is closed. (i.e. ? =X)

Proof. Take any x € X°, then we can find an open interval I 3 x such that
~ . . . . el
I N X =0, hence x in an interior point of X . |

Example 4.24. R itself is closed, and so is 0. Every finite set {x,...,x,} CR
is closed, since its complement is open. Similarly, Z is closed.

Example 4.25. The sets Q, R — Q, (a, b], [a, b) are not open nor closed.

Theorem 4.26. Every set X C R has a countable dense subset D, i.e. D=X.

Proof. Notice that, if we fix n € N, we can write R = |J | £, pT“) For each
PEZ

n’> n n’> n

neNandp € Zif X N [ﬁ p—“) # 0, choose a number x,,,, € X N [ﬁ p—”),

and let D be the set of all such x,,,,. By construction, D is countable. We claim

D = X. Indeed, let I be an open interval of length £ > 0 containing a point
x € X. For n sufficiently large such that % < g, we can find a p € Z such that

[%,pTH) C I, and hence x,,), € I. O

A point a € R is an accumulation point of the set X C R if for every £ > 0,
(a—&,a+¢&)N X contains a point other than a itself. The set of all accumulation
points of X is called the derived set of X, denoted by X’.

Theorem 4.27. Let X C R and a € R. The following are equivalent:

(1) aeX'.

(2) There exists a sequence x,, € X — {a} such that limx,, = a.

(3) For every € > 0 the interval (a — &, a + €) contains infinitely many points of
X.

Proof. Suppose a € X’. For each n € N, there exists x, # a such that x,, €
(a - %,a + %), thus limx, = @ and (1) = (2). Now, suppose (2) and let
g > 0 be given. By the definition of limit, there exists nyp € N such that
n>ny= x, € (a—e¢,a+e). We claim the set {Xp,+1,Xng+2, Xng+3s - - -} 18
infinite. Otherwise, the sequence would be constant up to finitely many terms,
but since x,, # a, that constant is not a, a contradiction since x,, — a, hence
(2) = (3). The implication (3) = (1) is obvious. O

From item (3) above, we deduce:
Corollary 4.28. if X’ # 0 then X is infinite.

Example 4.29. Let X = {1, 3, §,...}. Then X’ = {0}.
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Example 4.30. (a,b)’ = [a, b]. Also,Q" = (R-Q)’ =R’ = R, whereas Z’ = 0.

Given a point a € R and a set X € R. We say a is an isolated point of X if
a is not an accumulation point. In other words, a is isolated if we can find an
open interval / > a such that I N X = {a}. A set whose points are all isolated is
called a discrete set.

Example 4.31. Every natural number n € N is isolated. More generally, every
n € Z is isolated. In other words, the sets N and Z are discrete sets.

Theorem 4.32. For every X C R, we have
X=XUX'.

Proof. Since X C X and X’ C X, wehave XU X’ C X. Conversely, let a € X.
Then every open interval / containing a also contains points of X, either a itself
or a point different from a, hence a € X U X’. |

Corollary 4.33. A set X is closed if and only if X’ C X.
Corollary 4.34. If all the points of X are isolated then X is countable.

Proof. Let D be a countable dense subset of X, i.e. D = X,and x € X. By
definition, any interval containing x contains points of D, since x is isolated,
that can only happen if x € D. Hence X = D. |

We need the following Lemma to prove the next Theorem.

Lemma 4.35. Let X C R be a closed nonempty set with no isolated points. Then
Vx € R, 3l C X, a closed bounded nonempty subset with no isolated points,
such that x & I.

Proof. Since X is infinite, we can find a point y € X, with y # x. Take a interval
(a,b) C Rsuchthatx ¢ [a,b] and y € (a,D). Set A = (a,b) N X, then A C X
is bounded and nonempty. The set I, = A satisfies the desired properties. |

Theorem 4.36. Let X C R be a nonempty closed set such that X’ = X (X has
no isolated points). Then X is uncountable.

Proof. The proof is based on Lemma [#.35applied inductively in the following
way: Let {x1,x2, ...} be any countable subset of X. We use the Lemma to find
Iy € X such that x; ¢ I, and proceed inductively by finding 1,, C I,_; such
that x,, ¢ I,,. Choose y, € I, for each n. Then the sequence y,, is bounded, by
Bolzano-Weierstrass Theorem, it has a converging subsequence, say y,, — y.
For n sufficiently large we have y € I,,, hence y € I, for every n € N, since
the /,, are nested, and moreover y # x, by construction. We conclude that it’s
impossible for X to be {x;, x>, ...}, a countable set. O

Corollary 4.37. If X is a closed countable nonempty set then X has an isolated
point.

Proof. This is the contrapositive of the statement of Theorem [4.36] O
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4.3 The Cantor set

The Cantor set is a bounded set K C [0, 1] defined as follows. Start with the

interval [0, 1] and remove the open middle third (%, %). We are left with two

closed intervals [0, %] and [%, 1]. Proceed inductively: at each step remove the

open middle third from every interval obtained in the previous iteration. The set
of points that remain after infinitely many steps is the Cantor set K.

For example, the points
1212

32329292
which are endpoints of the removed intervals at each stage, belong to K. Hence
K contains a countable subset. Surprisingly, these are not the only points of
K—in fact, most points of K are not endpoints, and as we shall see, K is actually
uncountable.

Since at each step we remove finitely many open intervals, the total collection
of removed intervals is countable. If we denote these intervals by (/;) cw, then

K=[0,1\ J; =10, 1]n|R\[ 1]
j=1 j=1

Both [0,1] and R \ Ujf’:l I; are closed, so K is closed as well.

Lemma 4.1 K has no interior points; that is, int(K) = 0.

Proof. After each iteration, the remaining intervals have length 37", which tends
to 0 as n — oo. Therefore no open interval of positive length can be contained
in K. Hence int(K) = 0. O

Lemma 4.2 Let R be the set of all endpoints of the intervals removed in each
iteration. Then R is dense in K, i.e. R = K.
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Proof. Letx € K and & > 0. We prove that forevery € > 0, (x—&,x+&)NR # 0.
Ife > %, the claim is clear, so assume & < % Then, at least one of the intervals
(x —&,x] and [x,x + &) is in [0, 1], say [x,x + &). For n large, after the n-th
iteration, the remaining intervals have length %n < &. Hence, some open interval
will be removed or has been removed already from [x, x + £). Either way, the
left endpoint of that removed interval lies in R and within distance < € of x.

Thus (x —&,x+&)NR £ 0. |
Corollary 4.1 K is uncountable.
Proof. This follows directly from Lemma|4.1{and Theorem |4.36 |

The elements of the Cantor set have an interesting characterization when
written in base 3 as we now describe. Recall that any real number a € R has
decimal representation

T R B
a=n.aaxazad4 ... =N+ —+—+—= —

: 10 1027 103 10%
where a; € {0,1,2,3,...,9}. More generally, we can use any natural number
k > 1 instead of 10:

L
a=n+— —+—=+...,
ko k2 K
where a; € {0,1,2,3,...,k — 1} and we write a = n.ajasas. In particular,
taking k = 3 and a € [0, 1] we obtain:
a a4z as

a=30.a1a2a3... — a=—

+ =+ —=+...
3 32 33

where a; € {0, 1,2}.

In the first stage of the construction of the Cantor set K, the interval ( 12

3°3
removed. Except by %, numbers having a; = 1 in their decimal representation
were removed. Similarly, in the second stage numbers of the form 0.01azay . . .
and 0.21asay . . . were removed. More generally, the elements of the Cantor set
are numbers in [0, 1] having only 0 and 2 in their base 3 representation, except
possibly by those having last digit 1, e.g. % = 0.01, % = 0.1. In the latter case,
notice that L 2 2

—==+=+...=0.0222. ..

3 32 33
With this convention, K can be described simply as

) was

K={xe[0,1]; x =3 0.x1xpx3... and x; € {0,2}}.
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4.4 Compact Sets

A open cover of a set X C R is a collection C = {U,}je; (not necessarily
countable) of open sets U; C R, such that X € (J U;. A subcover C’ of C is

jeL
a collection formed by sub-indexes L’ C L, thatis, C' = {U;} e, such that
Xc U Uj.

JEL’

A set X C Ris called compact, if every open cover has a finite subcover, that
is to say, we can take L’ a finite set in the definition above.
Example 4.38. Let X = (2, 1). The sets Uy = (0,1),U> = (1, 2), U3 = (3,1)
form a (finite) open cover of X, since X C U; U U, U Us. Also, U, = (}1, %) and
Us = (%, 1) form a subcover, since it is still true that X € U, U Us

6 0. l25 0“50 0,‘75 1;00
Example 4.39. Consider the set X = {1, % % ...}, which has all of its points
isolated, so it’s possible to find an open interval /,, around each point % € X,
such that I, N {1} = {1} Therefore, C = {I,,}nc forms an open cover of X,
and moreover, C doesn’t have any open subcover, since if we remove at least
one I,, of C, it ceases to be a cover.

80 =80 Ol O

Theorem 4.40. (Borel-Lebesgue Theorem — simple version) Any closed interval
[a, b] C R is compact.

Proof. We need to prove that any open cover C = {/;} jer, of [a, b] has a finite
subcover. We may assume that /; are open intervals, since each I is open, so it
has to contain an interval around each point.

Let X be the set of all points x € [a, b] such that [a,x] can be cover be
finitely many /;. Notice that X # 0, since a € X. Set ¢ = sup X, we claim ¢ = b.
First, we prove ¢ € X. Indeed, ¢ < b, so we can find I, = (ao, bo) covering c.
Since ¢ > ag, we can find ap < x < ¢ such that [a,x] € I; U...U [,, but then
[a,c] € 1U...UIL, Ul hencec € X.If ¢ < b, then we can find ¢’ € I, such
that ¢ < ¢’ < b. But then [a, ¢’] would still be covered by I U ... U1, U},
and c isn’t an upper bound, a contradiction. |

Corollary 4.41. (Borel-Lebesgue Theorem — classical version) Any bounded
and closed set X C R is compact.
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Proof. Since X is closed, its complement X¢ = R — X is open. Moreover, we
can find [a,b] 2 X, because X is also bounded. Let C = {I;};er be a open
cover of X, then C U X¢ is an open cover of [a, b], by the Theorem above we
can extract I;, U...UI; U X€, afinite subcover of [a, b]. Thus I; U...UI;,
is a finite subcover of X. |

Example 4.42. The real line R is not compact. Indeed, consider the cover

R = U (-n, n). Any finite subcover would be equal to the largest interval since
n=1
they are nested, and hence can’t cover the whole line. Similarly, (0, 1] is not

[Se]

compact either, if we consider the nested cover |J (%, 2), we can argue like
n=1

before.

Theorem 4.43. (Heine—Borel Theorem) Let K C R. The following are equiva-
lent:

1. K is closed and bounded;

2. K is compact;

3. Every infinite subset of K has an accumulation point in K;

4. (Sequential compactness) Every sequence x, € K has a convergent subse-
quence with limit in K.

Proof. We already know that 1 = 2. We first prove 2 = 3. It’s easy to show
the contrapositive of 3, namely, if X C K doesn’t have accumulation points in
K then X is finite. Indeed, we can find for each x € K an interval I, such that
I, NnX=0ifx¢ X,and I, N X = {x} if x € X. Then |J I, is a cover of K, by
compactness, we extract a finite subcover, say I, U. .. I, , but this would force
X ={x1,...,x,},l.e. X is finite.

We now show 3 = 4. Considerthe set X = {x1, x, ...} formed by elements of
the sequence x,, € K. If X is finite then at least one member of the sequence repeat
itself infinitely many times, hence forms a constant (convergent) subsequence.
Otherwise, by hypothesis we have some a € X’ that is also in K. Equivalently,
every neighborhood of a € K contains point of the sequence x,, hence a
subsequence of x,, converges to a.

Finally, we show 4 = 1. The proof is by contradiction, namely, suppose K is
not bounded or not closed. If K is not closed, at least one sequence x,, converges
to a point outside K, so any subsequence of this sequence would also converge
to point not in K, a contradiction. If K is not bounded we can easily construct an
unbounded sequence, say K is unbounded from above, then construct a sequence
satisfying x, + 1 < x,41, and any subsequence would also be increasing and
unbounded, hence can’t converge. |

Corollary 4.44. (Bolzano-Weierstrass alternative version) Every infinite bounded
set X C R has an accumulation point.

Proof. Apply Theorem to X. |
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Corollary 4.45. Let K| 2 Ky 2 ... be a nested sequence of nonempty compact

sets. Then (" K, is compact and nonempty.
n=1

Proof. The set () K,, is clearly closed and bounded. We claim it is nonempty.
n=1

Choose elements x,, € K, for each n € N. Since K,, 2 K,.1, x, € K; for

every n € N. The compactness of K; implies that there exists a convergent

subsequence x,, € K\, say limx,, = a € K. Now, given n € N arbitrary, let

n, € N be an index of the subsequence x,,, satisfying n,,, > n. For ny > n,, we

have K,,, € K,,,, C K, thus x,,, € K,, if ngx > n,;,, and since K,, is compact,

a = limx,, belongs to K,,. It follows that a € " K,,.
=1
" O
Example 4.46. The Cantor set K is compact since it’s closed and bounded.
Every finite set is compact. Z is not compact because it’s unbounded. Q N [0, 1]
is bounded but it’s not compact because it’s not closed.

Exercises

1. Show the following: A set X C R is open if and only if for every sequence
X, converging to a € A, x,, € A for n sufficiently large.
2. Let X € R be open. Show that if a € R, then a + X is also open, where
a+X={a+x;x € X}.
3. Show that int(X NY) = int(X) N int(Y), but in general int(X UY) #
int(X) U int(Y). Given an example which illustrates the latter fact.
. Let A be open and a € A. Show that A — {a} is open as well.
. Show that every collection of nonempty open sets, pairwise disjoints, is
countable.
. Show that the set of accumulation points of a sequence is closed.
. Let C be closed and X C C. Show that X C C.
. Iflimx, =aand X = {x{,x3,...}, show that X = X U {a}.
. Let I be a closed interval and suppose I = A U B, where A, B are closed and
disjoints. Show that either A =1 or B = 1.
10. Show that }l is an element of the Cantor set K. [Hint: Convince yourself that

TN

O 03 N

th is an accumulation point]

11. Let X C R be countable. Construct a sequence whose accumulation points is
the set X. Use this to show that every closed set is the set of all accumulation
points of a sequence. [Hint: Write N as a countable union of infinite disjoints
subsets. |

12. Let K denote the Cantor set. Show that [0, 1] = {|x — y|;x,y € K}. [Hint:
Use the fact that proper fractions whose denominator are power of 3 are
dense in [0, 1].]
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13.

14.

15.

16.
17.
18.

19.

20.
21.
22.
23.

24.
25.

26.

27.

28.

29.
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Given any @ > 0. Show that we can find elements xj, xp,...,x, of the
Cantor set such that @ = x1 +x2 + ... + x,. [Hint: Use exercise 12.]

Show that X UY = X UY, butin general X NY # X NY. Given an example
which illustrates the latter fact.

Give an example of nested sequence F; O F, D ... of closed nonempty sets
such that (" F; = 0.

J
Show that a set X is dense in R if and only if X has empty interior.
Give an example of open set A such that Q € A and R — A is uncountable.
Given an example of an uncountable closed set containing only transcen-
dental numbers. [Hint: Use exercise 17.]
Given a nonempty set X C R and point a € R, we define the distance of a
to X as the number d(a, X) = inf{|x — a|;x € X}. Show that

l.d(a,X)=0 & aecX
2. If X is closed then we can find b € X such that d(a, X) = |a — b|

Show that if X is bounded from above then X is as well. Moreover, show
that sup X = sup X. Prove the equivalent result for inf X.

Show that if X is bounded then sup X and inf X are adherent points.

Show that for every X C R, the derived set X’ is closed.

Show that a is an accumulation point of X if and only if it is an accumulation
point of X.

Show that (X UY) = X" UY’.

Let X C R be an open set. Show that every point of X is an accumulation
point of X.

Let X € Rbeaclosed set and a € X. Show that a is an isolated point if and
only if X — {a} is closed.

Explain the meaning of the following sentences. You can’t use the words in
italic in your explanation.

a € X is not an interior point of X;

a € R is not an adherent point of X;

X € Ris not an open set;

X C Ris not a closed set;

a € R is not an accumulation point of X;
X' =0

X C Y but X is not dense in Y

int(X) = 0;

XnX =0,

X C Ris not a compact set;

PR e a0 o

—

(Lindelof Theorem) Let X € R. Any open cover of X has a countable
subcover.

Let X C R be an infinite closed countable set. Show that X has infinitely
many isolated points.



4.4

30.

31.
32.

33.

34.

35.
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39.
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Show that every real number is the limit of a sequence of pairwise disjoint
transcendental numbers.

Show that if X is uncountable then X N X’ # 0.

Obtain an open cover of Q that doesn’t have a finite subcover. Do the same
for [0, +00).

Show that the following are equivalent:

a. X is bounded;

b. Every infinite subset of X has an accumulation point (which could be
outside X);

c. Every sequence x,, € X has a convergent subsequence.

(Baire Category Theorem) If Xi, X», X3,... are closed sets with empty

interior, then their union (J X; has empty interior.

j=1
Show that Q is not the intersection of a countable collection of open sets.
Let X C R. Show that if X is uncountable then X is also.
Show that for any X C R, the set X — X’ is countable.
A point a € R is called condensation point of X, when every open interval
containing a, contains uncountable points of X. Let X. denotes the set of
all condensation points. Show that X, is a perfect set, i.e. closed with no
isolated points, and that X — X, is countable.
(Bendixson Theorem) Every closed set X C R can be written as a union of
a perfect set and a countable set. [Hint: Use the exercise 38.]






Chapter 5
Limits

5.1 The limit of a function

Let f : X € R — R be a function of a real variable, and a € X’. We say the
number L € R is the limit of f(x) as x approaches a, denoted by

lim f(x) =1L,
xX—a
if given € > 0, we can find ¢ > 0, such that for every x € X:
O<|lx—-al<do=|f(x)-L| <e.

In other words, f(x) can be made arbritarily close to L by choosing x # a in a
sufficiently small neighborhood (a — 6, a + §) of a.

Notice that a € X’ is an accumulation point, so the definition makes sense
even if a ¢ X. In fact, most interesting cases are when a ¢ X. If a is not an
accumulation point, i.e. an isolated point, then the same definition would imply
that every number L € R is a limit! Hence, the definition only makes sense if
acX.

Theorem 5.1. (Uniqueness of limits) Let X C R, f : X > Randa € X'. If
lim f(x) = L and lim f(x) =M, then L = M.

xX—a xX—a

Proof. Given any € > 0, we can find ¢, y such that

|x—a|<5=>|f(x)—L|<§, and|x—a|<y:|f(x)—M|<§

Let @ = min{é, v} then
k-al<a=|L-M < |L-fO|+]f@) -M <5+ =¢.
This is only possible if L - M =0= L =M. |

87
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Theorem 5.2. (Restriction of limits) LetY CX CR, f: X >R ae X' NnY".
Consider the restriction g : Y — R given by g(x) = f(x) (Also written as
fiy X)) If lim f(x) = L then lim g(x) = L.

x—a xX—a

Proof. Self-evident. i

Theorem 5.3. (Local boundedness) If lim f(x) = L, then AM > 0,6 > 0 such
XxX—a

that0 < |x —a| < 6 = |f(x)| < M.

Proof. Take € = 1 in the definition. Then we can find 6 > 0 such that 0 <

x—al<dé=|fx)-Ll<1=|fx)|<|Ll+1= M. |

Theorem 5.4. (Squeeze-theorem) Let X C R, f,g,h: X - Randa € X'. If
Joreveryx # a:

J(x) < g(x) < h(x),

then
lim f(x) = lim h(x) =L = lim g(x) = L
XxX—a XxX—a XxX—a

Proof. We can find 6,g > Osuchthat 0 < [x —a| <d = |f(x) - L| <e >

L-e< f(x),and0< |x—a|<y=|h(x)-L|<e>= h(x)<L+e.
Hence, if we set @ = min{d,y} then0 < [x —a| <a = L - < f(x) <

gx) <h(x)<L+e=|g(x)—al<e. O

Theorem 5.5. (Monotonicity preservation) Let X C R, f,g : X — R and
a €X' If lim f(x) = Land lim g(x) = M and L < M then there exists § > 0,
x—a xX—a
suchthat0 < |x —al < 6 = f(x) < g(x).
Proof. Set ¢ = % There exists 6§ > 0 such that 0 < |[x —a| < § =
|f(x) = L| <eand|g(x) — M| < e. It follows that, f(x) <e+L <g(x). O
Corollary 5.6. If lim f(x) > O, then there exists 6 > 0 such that 0 < |x —a| <
xX—a
6= f(x)>0.
Corollary 5.7. If f(x) < g(x) for every x, then lim f(x) < lim g(x).
x—a xX—a
Theorem 5.8. (Equivalent definition of limit) Let X C R, f : X — R and
a € X’'. Then lim f(x) = L if and only if for every sequence x,, € X — {a}, with
XxX—a

Xn, — a, we have lim f(x,) = L.
xX—a

Proof. Suppose lim f(x) = L and x,, — a. Given ¢ > 0, there exists § > 0
xX—a

andng € Nsuchthat 0 < [x —a| <d = |f(x) - L| <eandn > ny = 0 <
|x, — a| < 6. Therefore, n > ng = |f(x,) — L| < €.
Conversely, suppose f(x,) — L for every x, — a but lim f(x) # L.
xX—a

There exists € > 0, such that we can find a sequence x,, € X — {a} satisfying
0<|x,—al|< % = |f(x,) — L| = &, but then this sequence converges to a, yet
it’s not true that f(x,) — L, a contradiction. m]
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Corollary 5.9. (Properties of limits) Let X C R, f,g: X > Randa € X'.
1. lim[f(x) £ g(x)] = lim f(x) = lim g(x)
x—a x—a x—a

2. lim [f(x) - g(x)] = lim f(x) - lim g(x)

lim f(x)
3. Suppose lim g(x) # 0 then lim fx) _ xoa
x—a x—

as(x) ~ Tmg)

4. Suppose lim f(x) =0and |g(x)| £ M then lim [ f(x) - g(x)] = 0.
xX—a X—a

Proof. We proved the equivalent result for sequences, the result then follows by
theorem [5.8] 0

Example 5.10. It follows from the definition of limit that lim x = a. Similarly,

xX—a
using the properties of limits (Corollary|5.9)), we obtain lim x> = a?. Proceeding
xX—a

by induction, we conclude that lim x" = a”, and hence for every polynomial
Xx—a

p(x)
q(x)’

p(x) € R[x], }1_{1}1 p(x) = p(a). Similarly, for any rational function r(x) =

: :o p(x) _ p(a)
if g(a) # 0 then )}1_{1}1 e = g

Example 5.11. Consider the function:

(L ifreQ
f(x)‘{o, ifxeR-Q

Then for any @ € R, the limit lim f(x) doesn’t exist. Indeed, given any real
xX—a

number a we can construct two sequences x,, € Q and y, € R—Q, withx,, — a
and y, — a. Therefore, f(x,) — 1but f(y,) — 0,s0 lim f(x) doesn’t exist.
X—a

Example 5.12. Consider the function f : R— {0} — R givenby f(x) = sin(%).
We claim lin}) f (x) doesn’t exist. It’s enough to find two sequences x,, — 0 and
x—

€1
nm

yn — 0 such that f(x,) and f(y,) converge to different limits. Take x,, =
and y, = (5 +2n7)~", then f(x,) — O but f(y,) — 1.

5.2 One sided and infinite limits

Let X C Rand a € R. We say a is accumulation point to the right (or one-sided
right accumulation point) if for every € > 0, (a,a + &) N X # 0. Similarly, a is
accumulation point to the left if for every € > 0, (a —g,a) N X # 0.

We denote X (X”) , the set of all accumulation points to the right (left) of
X. The definition of limit can be extended in this scenario as well. For example,
let X CR, f: X — Randa € X}, then we write
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lim f (x)=L

IfVe>0,30 >0,0<x—-a<d=|f(x)—L| <e. Wedefine lim f(x)=1L
x—a~
analogously.
Theorem 5.13. Let X CR, f: X »> Randa € X'. Then lim f(x) = L if and
xX—a
onlyif lim f(x) = lim f(x)=L.
x—at x—a~
Proof. The conditional implication is trivial, we prove the converse. Suppose
lim f(x) = lim f(x) = L. Then we can find §,y > 0 such that given &£ > 0,
x—a* x—a”

O<x-—a<dé=|f(x)-Ll<eand0<a—-x<vy=|f(x)-L| <e Ifwe
set @ =min{d, v}, then0 < [x —a| <a = |f(x) - L| < e. |

Example 5.14. Consider the function sign : R — {0} — R given by

) X
sign(x) = m
Then lim sign(x) = —1 but lim sign(x) = 1, so lim sign(x) doesn’t exist.
x—0~ x—0* x—0

Example 5.15. Consider the function f(x) : R — R given by f(x) = e .

Then 11151 f(x) =0but lirgl f(x) doesn’t exist.
x—0* x—0~

Recall that a function is increasing if x < y = f(x) < f(y), nondecreasing
ifx <y = f(x) < f(y). We define decreasing, nonincreasing in a similar way.
Finally we say a function is monotone if satisfies any of the above conditions.

Theorem 5.16. Let X C Rand f : X — R a bounded monotone function.
Givena € X,,b € X', the one sided limits lim f(x) and liril f(x) exist.
x—at x—b~

Proof. Without loss of generality, suppose f(x) increasing. We prove lim f(x)
x—at

exist, the other limit is analogous. Set L := inf{f(x);x > a}. We claim
lim f(x) = L.Indeed, given & > 0 the number £+ L is not a lower bound, hence
x—a*

we can find > O such that L < f(a+8) < L +&. Since f(x) is increasing, it
follows thata <x <a+6 = L < f(x) < L + ¢, as required. m|
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Let X C R be a set unbounded from above. Given f : X — R we write

lim f(x)=L,

X—+00

if there is a number L € R such that
Ve>0,IM >0, M <x = |f(x) - L| < &.

The limit lim f(x) is defined analogously. Notice that both infinite limits
X——00

are, in a way, one sided limits. In particular, the limit of a sequence x, is an
infinite limit when we consider the sequence as a function x : N — R, i.e.
limx, = lim x(n).

n—+

i
Example 5.17. We have lim % = lim % = (0. Also, lim e* = O but

X——00 X—+00 X——00

lim e* doesn’t exist.

X—+00

Let X CR, f: X > Randa € X’'. We write
lim f(x) = +4oo,
xX—a

ifYM>0,30 >0,0< |[x—a|<e= f(x) > M.
The definition of lim f(x) = —oco, lim f(x) = o0, and lim f(x) = +o0
x—a X—+00 x—a*

can be given mutatis mutandis.

Example 5.18. With the definitions above we have, for example, lim e* =

Xx—+00

400, lim 27 = +eo, lim (L3) = —oo, lim () = +oo.
X——00 x—2- \ X~ x—2+ \ X~

The theorem below can be proven using the same arguments we used to prove
their finite counterpart, so the proof will be ommitted.

Theorem 5.19. (Properties of infinite limits) Let X C R, f : X — R and
acX.

- (Uniqueness) If lim f(x) = +co then it’s impossible to have lim f(x) = L
x—a x—a

Jor LeRor L =—co.
- (Restriction) If lim f(x) = +4oo, then for every Y C X, if we set g(x) =
xX—a

fiy (x), we still have lim g(x) = +oo.
XxX—a
- (Unboundedness) If lim f(x) = +oo, then f(x) is not bounded in any
X—a

neighborhood of a € X.
- (Monotonicity) If f(x) < h(x) and lim f(x) = +oo, then lim h(x) = +oo.
xX—a xX—a

- (Preservation of the sign) If lim f(x) = L and lim h(x) = +oo, then 36 > 0
xX—a xX—a

suchthat0 < |x —a| < 6§ = f(x) < h(x).
- (Equivalent definition) lim f(x) = +oo if and only if for every sequence
xX—a

Xn € X — {a} withlimx,, = a, we have lim f(x,) = +oo.
n—oo
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Let XCR, f: X —> Randa € X’'. We say f is bounded in a neighborhood
of a, if there is k, 6 > 0 such that

O<|x—al<d=|f(x)| <k

A number ¢ € R is an adherent value of f at a if there exists a sequence
X, € X such that limx, = a and lim f(x,) = c¢. In particular, if a function has a
limit lim f(x) = L, then L is the only adherent value.

X—a

Given a € X’ and 6 > 0, we denote by Is the §—neighborhood around «
givenby Is = X —{a} N (a—-9,a+59).
Theorem 5.20. A number c € R is an adherent value of f at a if and only if for
every 6 > 0 we have ¢ € f(Is).

Proof. Suppose ¢ € R is an adherent value. Then a = limx,, and ¢ = lim f(x,,).
Since Is > a, x;,, € Is for n sufficiently large, so f(x,) € f(Is). Conversely,

suppose ¢ € f(Is) for every 6 > 0. We can take ¢ of the form § = %, forn € N,
to obtain a sequence x, € [1, such that |f(x,) —c| < % We conclude that

limx, = a and lim f(x,) = c. |
Let’s denote the set of all adherent values at a of a function f by AV(f, a).
Corollary 5.21. AV(f,a)= () f(Ils)
6>0

Corollary 5.22. AV(f,a) is a closed set. If f is bounded in a neighborhood of
a, then AV (f,a) is compact and nonempty.

n( L
Example 5.23. Let f(x) = sin(y) whose graph is shown below.

X bl

y

Every ¢ € R is an adherent value of f at 0, that is, AV(f,0) = R. Indeed, given
any ¢ € R and an open intervals (¢ —&,c+¢&) 3> c and I5 := (=6,9) 3> 0, we

in(L
claim (c—g,c+e)N f(Is) # 0, or equivalently, c—& < # < c+e¢ for some
a € (-8,08), which is easily true by the periodicity of sin(x) and the behavior
of L.
X

Example 5.24. Let f(x) = %, then AV(f,0) = 0.
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According to corollary [5.22] if f is bounded in a neighborhood of a, the set
AV(f,a) # 0 is compact, hence has a maximum and minimum value.

We call the maximum value of AV(f,a) the limit superior of f at a and
denote it by

lim sup f(x).
XxX—a

Similarly, the minimum value of AV (f, a) is called the limit inferior of f at a
and denote it by

lim inf f(x).

xX—a

We use the convention that when f is not bounded around a, we write
lim sup f(x) = +o0 and lim inf f(x) = —co.
xX—a xX—a

Example 5.25. Let f(x) = sin ()1—() then AV(f,0) = [-1,1]. Indeed, for a
fixed a € [~1,1] consider x, = (a + 27n)~!, then f(x,) = a. Therefore,
lim inf f(x) = —1 and lim sup f(x) = 1.

X—a

xX—a

Theorem 5.26. Let f be a bounded function in a neighborhood of a. Then given
g > 0, there exists 6 > 0 such that

O<|x—al <éd= liminf f(x) —e& < f(x) < lim sup f(x) +&.
xX—a xX—a

Corollary 5.27. lim f(x) = L if and only if f has only one adherent value at
xX—a
a, namely L itself.

5.3 Continuity

Intuitively, a continuous function is a function whose graph has no gaps or holes.
More precisely, let f : X — R be a real valued function and a € X. We say f
is continuous at a if

Ve>0,36 >0; |x—a|<d=|f(x) - f(a)| <&

If f is continuous for every a € X we simply say f is continuous.

Notice that if @ € X is an isolated point then any function f : X — R
is continuous at a. In particular, if X’ = 0 then any function f : X — R is
continuous.

Example 5.28. Any function f : Z — R is continuous, since Z’ = 0.

Theorem 5.29. If a € X', then f is continuous at a if and only if lim f(x) =
xX—a

f(a).

Proof. Self-evident. |
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By using the already proven properties of limits we conclude:

Theorem 5.30. If f : X — R is continuous then for any Y C X the restriction
fiy is also continuous. Conversely, if Y = I N X for some open interval I
containing a point a € X, then if f, is continuous at a, f is also continuous at
a.

In other words, theorem [5.30] says that continuity is a local property. More
precisely, if f coincides with a continuous function in a neighborhood of a € X,
then f itself is continuous at a.

Corollary 5.31. If f is continuous at a € X, then f is bounded in a neighbor-
hood of a.

Corollary 5.32. If f,g are continuous at a € X and f(a) < g(a), then
f(x) < g(x) in a neighborhood of a.

Corollary 5.33. If f is continuous at a € X and f(a) < k (f(a) > k), for
some k € R, then f(x) < k (f(x) > k) in a neighborhood of a.

Using the alternate definition of limit we can prove:

Theorem 5.34. f is continuous at a € X if and only if for every sequence
X, — a, we have f(x,) — f(a).

Theorem 5.35. f, g are continuous at a € X, them f +g,f — g, and f - g are
also continuous at a. If g(a) # 0 then f/g is also continuous at a. Moreover,
the composition of continuous function is also continuous.

Example 5.36. The function f(x) = x is clearly continuous, hence its self-
product x™ is also continuous, and so is any polynomial p(x) = a,x" + ...+
ai1x + ap. A rational function p(x)/g(x) is continuous at points where g(x) # 0.

Example 5.37. The function f(x) = |x| is continuous on the open interval

(0, +o0) since it is constant there, for the same reason it’s also continuous in

(=0, 0). Finally, it’s continuous at 0, since lim |x| = lim |x| = 0. On the
x—0~ x—0*

other hand, the function defined by g(x) = |§—|, if x # 0, and g(0) = 1, is not
continuous at the origin since lirgl glx)y=—-1+# lirg glx)=1.
x—0~ x—0*

Theorem 5.38. Suppose X C A U B, where A,B C R are closed sets. If the
function [ : X — R satisfies f,., is continuous and f|, , is continuous, then
f itself is continuous.

Proof. Let a € X and € > 0 be given. Suppose first a € A N B. Then there
are 6,y > Osuchthat Vx € XN A,|lx—a|l <6 = |f(x) — f(a)] < & and
Vx € XNB,|lx—a|l <y = |f(x) = f(a)] < &. Set @ = min{4,y}, then
Vxe X, |x—a|l <a=|f(x)— f(a)| < &, which implies f is continuous at a.

Now suppose a € A but a ¢ B. There exists 6 > 0, such that Vx € X N
A, lx —al <6 = |f(x) - f(a)| < &. Since B is closed, B = B, and we can find
v > 0 such that |x — a| < y = x ¢ B. As before, if we set @ = min{éd, v}, then
Vx e X,|x—a|l <a= |f(x)- f(a)| < &, as desired. The case a ¢ Abuta € B
can be proven analogously. |
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Corollary 5.39. Suppose X = A U B, where A, B C R are closed sets. If the
restrictions f|,, fi of a function f : X — R are continuous, then f itself is
continuous.

We can generalize the result above if we take the cover A U B to be open.
In fact, a stronger result is valid. (The proof follows directly from theorem[5.30]
and will be omitted.)

Theorem 5.40. (Sheaf property) Let X C |J A, be an open cover of X. If the
A€eL
restrictions f|y, 4, of a function f : X — R are continuous, then f itself is

continuous

Corollary 5.41. Suppose X = |J A, where each A, is open. If the restrictions
A€eL

i Ay of a function f : X — R are continuous, then f itself is continuous

Example 5.42. Consider again f(x) = Iﬁ_l but this time with domain X =

(—00,0) U (0,+00). Then f is continuous by the corollary above.

Let f : X — R be areal valued function and a € X. If f is not continuous at
a, we say it is discontinuous at a.

Example 5.43. (Thomae’s function)The function f : R — R given by:

F) = %, .iferandx:§,peZ,q€N,gcd(p,q):l
0,ifxeR-Q

The graph of f(x) on the interval (0, 1) is shown below.

y
05

=, ¥
0 0.5 1

Notice that f(x) is periodic, since f(x + 1) = f(x). We claim that f is dis-

continuous at any @ € Q. Indeed, we can find a sequence, say x,, = a + % of

irrational numbers, with x,, — a but f(x,) — 0, since f(a) # 0 in this case, f
can’t be continuous at a.
Surprisingly enough, f is continuous at every a ¢ Q. Equivalently, we must

have lim f(x) = 0. Since f is periodic, it’s enough to prove the continuity for
xX—a

aec(0,1)Nn(R-Q).
Suppose € > 0 is given. Using the Archimedean property of R, there is
n € N such that % < &. Decompose (0, 1) into k subintervals of length %,
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for k = 1,2,...,n. Then ‘a’ will be in one of these intervals, for each k, say

a € (%, mi“)‘ Let §x = min {la - k|, la - m’;’:l |}, the minimum distance

P Mty and define § ;= min 6.
1<k<n

Given x € (a —6,a +6) if x ¢ Q then f(x) = 0 < &. Otherwise, x = s and

by minimality of §, we must have ¢ > n, hence f(x) = é <L < ¢ and we

conclude that lim f(x) = f(a) =0.

between a and the endpoints of (

It’s impossible to have a function which is discontinuous at every irrational
number, see the exercises.

Example 5.44. If f : R — R is given by:

1,ifxeQ

f(x):{o, ifxeR-Q

Then f is discontinuous at every a € R, since the limit lim f(x) doesn’t exist.
xX—a

Example 5.45. Consider f : R — R given by f(0) = 1 and f(x) = x> — i if
x # 0. Then f is discontinuous at O only.

y

x
P pp—
Ix1

Example 5.46. Let K be the Cantor set. Consider the function f : [0,1] - R
given by
0, ifxek

Fo) = {1, ifx ¢ K

Then f is discontinuous at every point @ € K and continuous at the open set
K°. Indeed, f is constant, hence continuous, at every a € K€.

Suppose now a € K. Since every point of K is an accumulation point, it’s
possible to find a sequence x, ¢ K such that x,, — a, hence f(x,) — 1 #0, so
f is discontinuous at a.

Example 5.47. The function f(0) = a and f(x) = sin )lc if x # 0 is discontinu-
ous at 0, regardless of a € R, since lil’l’(l) f(x) doesn’t exist.
X—
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1 L
0.5 1

oL
blnx

Example 5.48. The function f(0) =0 and f(x) = o if x # 0 is discontinu-

+eX
ous at 0, since lim f(x) doesn’t exist. In this case, lim f(x) = 0 however.
x—0~ x—0t

y

Example 5.49. The function f(0) = 0 and f(x) = 1 1 + if x # 0 is discontinu-

+ex
ous at 0, since lim f(x) = 1but lim f(x)=0. ‘
x—0~ x—0*

Let f : X — R, a € X and suppose f is discontinuous at a. Then we say
a € X is a jump discontinuity, if both one sided limits lim f(x) and lim f(x)
x—a?* x—a~

exists but are different. If at least one of the one sided limits doesn’t exist, then
we say a € X is an essential discontinuity.

Theorem 5.50. A monotone function f : X — R can’t have essential disconti-
nuities.

Proof. Suppose f nondecreasing and a € X. If x + § € X then f is bounded in
[x,x + 0] N X. The result then follows from theorem O

Theorem 5.51. Let f : X — R be a function having only jump discontinuities.
Then the set of discontinuities of f is countable.

Proof. Define the jump function j(x) : X — R of f by:
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0, if a is isolated.
|f(a) = lim_f(x)|, if a € X] only.
, _ x—a*
@) =3\ f(a) - Jim_f(x)l, ifa € X" only,
max{|f(a) — lim f(x)[,|f(a) - lim f(x)[}, ifa e X, NX.
x—a* x—a~

Intuitively, j(x) measures the length of the ‘jump’ of f(x). Consider the set
1
C,={xeX;jlx) = -}.
n

The set of discontinuities of f(x) is the set | J C,, hence if we can prove that

each C,, is countable then we’re done. We claim that for each n € N, the set C,,
has only isolated points, hence it’s countable (see corollary [4.34).

Leta € C, and suppose a € X;. By using the definition of one sided limit, if
we set L := lim+ f(x)wecanfind§ > Osuchthat0 <x—a <8 = |f(x)-L| <

xX—a
ﬁ = L- ﬁ < f(x) <L+ ﬁ, hence if x € (a,a + 6) then j(x) < ﬁ, which
istosay (a,a+9d6)NC, =0.1If a ¢ X;, we can just choose 6 > 0 such that
(a,a+8)NX = 0. In any case, we can find 6 > 0 such that (a,a +8) N C, = 0.
A similar argument implies we can find y > 0 such that (¢ —y,a) N C,, = 0.
We conclude that a € C,, is isolated. O

Corollary 5.52. The set of discontinuities of a monotone function f is countable.

5.4 Continuous functions defined on intervals

The next result highlights the fact that continuous functions can’t have gaps, in
other words, if two numbers a # b are in the range, then [a, b] is also in the
range.

Theorem 5.53. (Intermediate Value Theorem) Let f : [a, b] — R be a contin-
uous function and d € R be a number such that f(a) < d < f(b). Then there
is ¢ € |a, b] such that d = f(c).

Proof. Define X = {x € [a,b]; f(x) < d}. This set is nonempty because
f(a) < f(d), and due to the continuity of f(x), X doesn’t have a maximum
element. Set ¢ = sup X, then ¢ ¢ X. However, since c is an adherent value, there
is a sequence x,, — ¢, which implies f(c) < d. We conclude that f(c¢) =d. O

Corollary 5.54. Let f : I — R be a continuous function, where I is an interval
(not necessarily bounded). If a,b € I and f(a) < d < f(b), then there exists
¢ € I such that f(c) = d.

Corollary 5.55. Let f : I — R be a continuous function, where I is an interval.
Then f(I) is an interval.
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Proof. 1f we set ¢ = inf f(x) and d = sup f(x) then f(I) is an interval with
endpoints ¢ and d (not necessarily bounded, nor open/closed). O

Example 5.56. Let f : I — R be a continuous function such that f(I) C Y,
where Y has empty interior. Then f is constant. Indeed, it follows by [5.55] that
f(1I) is an interval, so it must be of the form [c, c], otherwise, f (/) would have
an interior point. In particular, every continuous function f : I — Z is constant.

Example 5.57. Every polynomial p(x) = az,_1x>"~'+. . .+ag of odd degree has

at least one real root. Indeed, in this case p(x) is a continuous function defined
on the interval (—co, +00), so its image is an interval. Since lim p(x) = +oo,
X—+00

that interval has to be (—co, +0), hence p(x) is surjective.

A function f : X — Y is a homeomorphism, if f is a continuous bijection
having a continuous inverse f~!.

Theorem 5.58. Let f : I — R be a continuous injective function defined on a
interval 1. Then f is monotone, and if we set J = f(I), then f : I — Jisa
homeomorphism.

Proof. 1t’s enough to prove the result for I = [a, b]. Suppose f(a) < f(b),
we claim f is increasing. Suppose not, that is, we can find ¢, d € [a, b] such
that ¢ < d but f(c) > f(d). Either f(a) < f(d) or f(a) > f(d).If f(a) <
f(d) < f(c), by theorem[5.53] we can find p € (a, c¢) such that f(p) = f(d),
a contradiction by the injectivity of f. For the same reason we can’t have
f(d) < f(a) < f(b). Hence, f has to be increasing.

Using corollary [5.55, we see that J is an interval, hence f~' : J — I is an
increasing function (since f is) whose image is an interval. Suppose f~! is not
continuous at a point y € J, say M := lim f~'(x) # L := lim f~!(x). Then

x—y* xX—Yy

f ') e (L,M) and (L,M) N1 = {f'(c)}, which implies I has an isolated
point, a contradiction. |

Theorem 5.59. Let f : X — R be a continuous function. If X is compact then
f(X) is compact.

Proof. We claim f(X) is sequentially compact, which is equivalent to com-
pactness by theorem Let y, = f(x,) be a sequence in f(X), we claim it
has a converging subsequence. By the compactness of X, there is a converging
subsequence x,, — x € X. If we set y,, = f(xp,), then y,, — f(x), since f
is continuous. o

Corollary 5.60. (Weierstrass Extreme Value Theorem) Let X C R be compact
and f : X — R be a continuous function. Then f achieves its maximum and
minimum value, that is to say, there are a, b € X such that f(a) < f(x) < f(b)
for every x € X.

Theorem 5.61. Let X C R be compact and [ : X — R be a continuous injective
Sfunction. If we set Y := f(X), then f : X — Y is a homeomorphism.
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Proof. Lety € Y, we claim f~! is continuous at y = f(x). Suppose y, = f(x,)
is a sequence of points in Y such that y,, —» y = f(x), we claim x,, — x. It’s
enough to prove that any converging subsequence of x,, converges to x. Let x,,
be a converging subsequence, say x,, — a € X. Then y,, — f(a), but since
¥n, 1s a subsequence of y,, it also converges to f(x), by the injectivity of f we
deduce that a = x. |

We say a function f : X — R is uniformly continuous if
Ve>0,36 >0:Vx,ye X, |x—y|<d=|f(x)— f(y)]| <e

It follows that every uniformly continuous function is continuous. The converse
is false, as the example below illustrates.

Example 5.62. The function f(x) = )1_( is continuous on (0, +c0) but is not
L

uniformly continuous. Indeed, given &, > 0, take a point 0 < x < min{J, e

andy:x+g.Then|x—y| < 6 but

> E.

NS
s x(2x +6) 36x

700~ FO)] = ‘}C—x .

Example 5.63. Linear functions f(x) = mx + b are continuous. Indeed, given
& > 0 just take 6 = ﬁ, sothat |x —y]| < 6 = |f(x) = f(y)| = Im(x — y)| <
|m||—,;’fl| =e&.

Example 5.64. A function f : X — R is called Lipschitz if there exists a
constant C > 0 such that | f(x) — f(y)| < Clx — y|. Any Lipschitz function is
obviously uniformly continuous. For example, linear functions f(x) = mx + b
are Lipschitz, and if X is bounded, f(x) = x" is Lipschitz.

Theorem 5.65. If f : X — R is uniformly continuous and x, is a Cauchy
sequence then f(x,) is also Cauchy.

Corollary 5.66. If f : X — R is uniformly continuous and a € X' then
lim f(x) exists.

XxX—a

Example 5.67. The functions f(x) = sin)l—C and g(x) = % can’t be uniformly
continuous because the limit when when x approaches 0 doesn’t exist.

Theorem 5.68. Let X C R be compact and f : X — R continuous then f is
uniformly continuous.
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Exercises

1.

Consider the following typo in the definition of limit:
Ve >0,36 >0,xe X,0< |x—a|l<e=|f(x) - L| <6.

Show that f satisfies this condition if and only if it is bounded around each
interval centered in a € X. In the affirmative case, L can be any real number.

. Let f : R— {0} — R be given by

1

1+ex .
Compute lir(r)l f(x) and 1ir8 f(x).
x—0~ x—0*
Let f(x) = x + 10sinx. Show that lim f(x) = +coand lim f(x) = —c0.
X—+00 X——00

4. Let f : X — R be a monotone function. Show that the set of points a € X’

such that lim f(x) # lim f(x) is countable.
x—a~ x—at

5. Leta > 1 and f : Q — R given by f(g) = 7. Show that lirr(l)f(x) =1
xX—

6. Leta > 1 and f : R — R given by f(x) = a*. Show that lim f(x) =+
X—+00

10.

11.

12.

and lim f(x)=0
X——00

. Let p(x) € R[x] be a polynomial. If the leading coefficient is positive, show

that lim p(x) = +oo.
X—+00

. Find the set of adherent points at 0 of the function f : R—{0} — R be given

by /() = 25

+eXx
I lim f(x) = L, show that lim |f(x)| = |L|, and that the set of adherent
xX—a xX—a

points at a is {L},{—-L} or {-L, L}.

Given a nonempty compact set K C R and a point a € R. Give an example
of a function f : R — R whose the set of adherent points at a is K.

Let f : R — R be a function given by

x, x¢Q
f(x)=40, x=0
q, xz;andgcd(p,q):l,p>0

Show that f is unbounded in any non-degenerate interval.
Recall that the floor function |x] : R — Z is given by | x| := largest integer
less than or equal to x. Show that if a, b € R are positive numbers then
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

5 Limits

Let f, g : X — R be functions bounded in a neighborhood of a € X’. Show
that

lim sup(f +g) < lim sup f(x) + lim sup g(x),
x—a xX—a xX—a

and also that
lim sup(—f(x)) = — lim inf f(x)
XxX—a x—a

Let f : R — R given by f(x) = x + ax sin(x). Show that

lal < 1= lim f(x)==c0
X—>+00

Let f : R — R be continuous. Show that the zero set of f

Z(f) =A{x; f(x) =0}

is a closed set. Conclude that if f, g : R — R are continuous then the zero
set {x; f(x) = g(x)} is closed.

Let f : X — R be continuous. Show that for every k € R, the set of all
x € X such that f(x) < k is of the form C N X, where C is closed.

Let f : X — R be a function and X C R an open set. Show that f is
continuous if and only if the sets {x; f(x) < ¢} and {x; f(x) > ¢} are open
for every ¢ € R.

Let f : X — R be a function and X C R an open set. Show that f is
continuous if and only if the set £~ (A) is open for every open A C R.

Let f : X — R be a function and X € R a closed set. Show that f
is continuous if and only if the set f~!(C) is closed for every closed set
CCcR.

Let S € R be nonempty. Consider the function f : R — R given by

f(x) =inf{|x — s|; s € S}

Show that f is Lipschitz: Vx,y e R = |f(x) — f(¥)]| < |x — y|.

Let X C Rbeaclosed setand f : X — R continuous. Show that there exist
a continuous function g : R — R such that g, = f.

Give an example of a bijective function f : R — R which is discontinuous
atevery a € R.

Show that there is no continuous function f : R — R that takes every
rational number to an irrational number, and vice-versa.

Let A be the set of all nonnegative algebraic numbers, and B be the set of
negative transcendental numbers. Let f : AU B — [0, +o0) be a function
defined by f(x) = x2. Show that f is a continuous bijection, whose inverse
f~!is discontinuous at every point, except zero.

(Brouwer Fixed Point Theorem) Let f : [a,b] — [a, b] be a continuous
function. Show that there exists a point x € [a, b] such that f(x) = x. [We
call such point a ‘fixed point’.]
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26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
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Let f : R — R be continuous. If for every open set A C R, the image f(A)
is open, then f is injective, hence monotone.

Fix X € R. If every continuous function defined on X is bounded then X is
compact.

Let f : R — R be continuous. Suppose xgmm f(x) = xl_i)r)rrlm f(x) = +oo.

Then f achieves its minimum value, i.e. there is a € R such that f(a) <
f(x),Vx e R.

Show that f : (=1,1) — R given by f(x) = I—lel is a homeomorphism.
Classify all intervals of R up to homeomorphism. For example, all open in-
tervals, whether or not bounded, are homeomorphic, hence should represent
the same object.

Show that the inverse of f given in exercise 15, is uniformly continuous.
(Notice that f isn’t)

Show that f : R — R given by f(x) = sinx is uniformly continuous, but
g(x) = sinx? isn’t.

Show that a polynomial p : R — R is uniformly continuous if and only if
has degree at most one.

Show that f(x) = x" is Lipschitz in any bounded set. Moreover, prove that
if n > 1 and f is defined on an unbounded interval, then f is not even
uniformly continuous.

Give an example of sets A, B open and a continuous function f : AUB — R
such that f|,, f, are uniformly continuous but f is not.

Given a function f : X — R. Suppose that for every £ > 0, there exists
g : X — R continuous, such that Vx € X, |f(x) — g(x)| < &. Show that f
is continuous.






Chapter 6
Derivatives

6.1 Definition and first properties

Let X CR,ae XNX', and f : X — R be a real valued function. We say f is
differentiable at a € X if the following limit exists:

@) e tim L) @

X—a X —da

6.1)

The number f”(a) is called the derivative of f at a. If f is differentiable at every
a € X, we simply say f is differentiable (in X).

Intuitively speaking, for x # a, the number w is the slope of the
secant line connecting the points (x, f(x)) and (a, f(a)), hence when x — a,
this number becomes the slope of the tangent line.

Similarly to one-sided limits, we can define one-sided derivativesderivative!one-

sided, f/(a) := lim, L=/ g e XN X, and £/ (a) = lim. f)-fla) g

xX—-a ’ x—a
X N X”. We can easily see that f’(a) exists for some a € X N X, N X’ if and
only if f](a) and f’ (a) exist and f’ (a) = f](a). In particular, a function is not
differentiable if its graph has sharp corners, since this implies f” (a) # f;(a) at
the corner.
If we set h := x — a in equation then we can see that f’(a) can be
equivalently defined by

’ 1 f(a+h)_f(a)
f(a) = }1113}) I . (6.2)
Sometimes the latter definition is more convenient for computational purposes.

Ifa € X, buta ¢ X’ ,and f/(a) exists, wecanset f’(a) := f/(a) and consider
f to be differentiable at a. A similar convention holds for a € X’. According
to this convention, the function f : [a,b) — [a,b), given by f(x) = x, is
differentiable.

105
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Example 6.1. Let f : R — R be linear, f(x) = mx + b. Then f’(x) = m. In
particular, if m = 0 and f(x) = b is constant, then f’(x) = 0.

Example 6.2. Consider f(x) = |x|. Using the definition of one-sided derivatives
we obtain f/(0) = 1 and f’(0) = —1. Therefore, f is not differentiable at 0. On
the other hand, we easily see that f/(x) = 1,ifx > 0, and f’(x) = —1,ifx < 0.

Example 6.3. Let f : [0,+00) — R be defined by f(x) = /x. Using equation
[6.2] for x > 0, we obtain:

Vadh-vx _ h 1

= 11m =
h =0 h(Vx + h++x) 2%

On the other hand, at x = 0 the quotient \/TE = \/Lﬁ — +o00 as h — 0%, hence

f7(0) doesn’t exits. Intuitively, this is clear since the tangent line being a vertical
line has ‘infinite’ slope.

f/(x) = lim

y
1k

— X
1

Example 6.4. (Sawtooth function)Let f : R — R be defined by
f(x) =inf{|x —n|;n € Z}

X
2 4

. n LK)
Notice that the graph of f has sharp corners at every n, 7, for n € Z, hence it’s

not differentiable at those points. Otherwise, the function is differentiable with
f’(x) = 1, depending whether or not the fractional part of f(x) is less than
0.5.
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Example 6.5. Let f : R — R be defined by f(0) = 0 and f(x) = x +
2x2 sin(1/x), if x # 0. Despite this seemly complicated definition, this function
is indeed differentiable everywhere and f’(x) = 1 — 2 cos(1/x) + 4x sin(1/x)

y

0.1

0.05

1 1 . 1
-0.1 -0.05 0.05 0.1

-0.05F

Example 6.6. (Weierstrass function) Given 0 < @ < 1 and b € N, such that
ab > 1+ %n. Let f : R — Rbedefined by f(x) = ), a" cos(b"nx). The figure

n=1
below is the graph of f(x). It is an example of a continuous function that is
nowhere differentiable.

VAL VW

2t

Moreover, the graph of f(x) is self-similar if we zoom in, in the sense, that if
we restrict the the domain of f(x) to [—%, %] and take n bigger and bigger, the
shape of the graph doesn’t change. We will prove these claims later, when we
discuss series of functions.

Theorem 6.7. A real valued function f : X — R is differentiable at a € X if
and only if there is number C € R and a real valued function r(x), such that if
a+helX:

fla+h)=f(a)+Ch+r(h), (6.3)
and r(x) satisfies }lir% % = 0. Moreover, C = f'(a).

Proof. The implication is clear. We prove the converse. Suppose that there is
C € R satisfying (6.3). Then

fla+h)— f(a)—r(h)=Ch (6.4)

Dividing both sides by 4 and taking the limit when 2 — 0 we obtain
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o flaxh) = f(@

)
= R
h—0 h CEeR,

as required. |

The theorem above says that f is differentiable at a if and only if in a
neighborhood of a, f can be approximated by the linear function p(x) = f’(a)x+
f(a) with error r(x) that goes to zero faster than g(x) = x. We will see soon that
the more derivatives f has, the better we can make this approximation using a
polynomial p(x) whose degree is equal to the number of derivatives of f.

If f: X — R differentiable at a € X N X’, we define the differential at a,
denoted by df, : R — R, as the linear transformation given by

dfa(h) = f'(a)h. (6.5)
In this notation, equation [6.3|becomes
fla+h) = f(a)+dfs(h)+r(h). (6.6)

Theorem 6.8. Ifthe f : X — R is differentiable at a € X then f is continuous
ata € X.

Proof. Indeed, we have

lim [f(x) - f(a)] = lim M(x —a)| = lim M] - lim (x — a)
x—a x—a X —-a x—a X —a x—a
= f'(a)-0=0.
(6.7)
.. f is continuous at a. d

The theorem below follows directly from the definition of derivative and the
properties of limits we have already proved.

Theorem 6.9. (Properties of derivatives) If f,g : X — R are differentiable at
acXNX then f+g, f-g flg(if g (a) # 0) are also differentiable at a.
Moreover,

(f£8)(a) = f'(a) £ g'(a)
(f-8)(a) = f"(a)-g(a)+ f(a) - g'(a)
Y F@g@ - f@g'(a)
(Cl) - 2 .
g g(a)
Theorem 6.10. (The Chain Rule) Let f : X — Rand g : Y — R be real

valued functions, such that f(X) C Y. If f is differentiable at a € X, and g is
differentiable at b := f(a), then g o f : X — R is differentiable at a, moreover

(g0 f)(a) =g (b)f (a).

(6.8)
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Proof. By hypothesis, we have

(gof)la+h) =glf(a+hm)]=glf(a)+ [ (a)h+r(h)]
=g[f(@] + g [f(@ILf (@h+r(h)]+s(f (a)h+r(h))
=g(b) +g' (D) [f (a)h] + &' (B)[r(M)] +s(f(a+h) = f(a)).

Since

(B)[r(h h) - h ) —
]lli%g ( )[}”( )]+S(hf(a+ ) f(a)) :g'(b)}lll{(l)r(h)_'_}llli)%s(f(a"' h) f(a)) o
The proof is complete by theorem O

Corollary 6.11. Let f : X — Y C R be a bijective real valued functions. If f is
differentiable at a € X, and f~' 1 Y — X is continuous at b := f(a), then f~!
is differentiable at b if and only if f'(a) # 0, moreover, if that’s the case, then

(£ (b) = 7y

Proof. If f~! is differentiable at b, we can apply the Chainruleto 1 = (f~!o

'Jf?l’(a) = (f~1(b) f’(a). Conversely, suppose f’(a) £ 0, set g(y) = f~1(y).
en

i 8 =g L g -a (f[g(y)] —f(a))‘1 _ 1
y=b y=b y=b flg(W)] - f(a) y—=b\ g(y)-a f(’6(ag))
. g'(b) = % and the theorem is proved. . |

Example 6.12. (The Sigmoid function) Consider the function f : R — R given
by f(x) = m;—x’ whose graph is shown below.

y
1L

0.75

0.5

-10 -5 5 10

Using the chain rule, we have that
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6.2 Maximum and minimum points

The derivative of f : X — R at point @ € X tells us crucial information about
the behavior of the function in a neighborhood of a.

Let f : X — R be a real valued function and a € X. We say f has a local
maximum at a if there exists § > 0, such thatx € (a—6,a+6) = f(x) < f(a).
If the strict inequality f(x) < f(a) is true, then a is called strict local maximum.
Similar definitions are given to local minimum and strict local minimum.

Example 6.13. The function cos : R — R has (strict) local maxima at points
of the form a = 27n, n € Z.

1

. . L . . . . Lox
-4 \ -3 [ -2 -7 s 2 3 4
—05L
1+

Similarly, cos x has (strict) local minima at points of the form (2n— 1)z, n € Z.

Example 6.14. The constant function given by f(x) = C has (non-strict) local
maxima and minima at every point of its domain.

Example 6.15. Consider the function f : R — R given by f(0) = 0 and
f(x) =x%(1 +sin %), whose graph is shown below.

y

0.015
0.010 -
0.005

X

-0.10 -0.05 0.05 0.10

By definition, f(x) > 0, Vx € R. Moreover, any neighborhood of 0 contains
points whose image is 0. Hence, the point 0 is a (non-strict) local minimum.

Theorem 6.16. Let f : X — R be differentiable from the right ata € X N X},
i.e. f{(a) exists. If f/(a) > O then we can find § > 0 such that x € (a,a +96) =
f(x) > f(a). Similarly, if f/(a) < O0then 36 >0 :x € (a,a+06) = f(x) <
f(a).

Proof. Follows directly from Corollary [5.6| O
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A similar result is valid in the case f” (a) > O or f/(a) < 0.

Corollary 6.17. Let f : X — R be differentiable at a € X N X; N X_.
If f'(a) > 0 then we can find 6 > 0 such that for all x,y € X, we have
a-6<x<a<y<a+d= f(x) < f(a) < f(y).

Notice that the corollary above is not saying that f is locally increasing.

Corollary 6.18. Let f : X — R be differentiable ata € X N X; N X". If f has
a local maximum or minimum at a € X then f’(a) = 0.

Example 6.19. The converse of Corollary is false. The function f(x) = x°
and a = 0 gives a counter-example.

Example 6.20. Consider the continuous function f(x) = x?sin % +7ifx #0
and f(0) =0.

0.04 -

0.02-

1 1 L L
-0.10 -0.05 0.05 0.10

-0.02

-0.04

We have f/(0) = % > 0, but f is not increasing in any neighborhood I of 0.

Indeed, f’(x) = 2x sin% - cos)—lc + %, so we can pick x € I sufficiently small

N 1 _ : reoy — 1
sucl’l that_ sin - = 0 ;md cos - = 1, for this x € I we have f’'(x) = -5 <0, s0 f
can’t be increasing in /.

6.3 Derivative as a function

Let f : I — R be a differentiable function defined on a interval /. We associate
to f its derivative function f’ : I — R, whose value at each x € I'is f’(x).

When [’ is continuous, we say f is continuously differentiable. The set of
all continuously differentiable functions on a interval I is denoted by C'(I). In
case [ = (—00, +00), we simply write f € C! and say f is of class C!.

Example 6.21. The function defined by f(x) = x?sin i ifx #0and f(0) =0
is differentiable but f ¢ C!.
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At x = 0 we have f/(0) = 0. However, f’(x) = 2x sin)l—c - cos% and lin}) f(x)
X—
doesn’t exists. Therefore, f’ is not continuous at 0.

If f:1 — Ris of class C!, then we can apply the Intermediate Value
Theorem to f’ to conclude that: Given a, b € I such that f’(a) <y < f’(b) for
some y € R, then there exists ¢ € I such that y = f’(¢).

The following theorem strengthens the above by removing the continuity
assumption of f’.

Theorem 6.22. (Darboux’s theorem) Let f : [a,b] — R be differentiable. If
f'(a) <y < f'(b), then there exists ¢ € I such thaty = f'(c).

Proof. 1t suffices to prove the result when y = 0 and then consider g(x) =
f(x) — yx. From the fact that f'(a) < 0 < f’(b), we know that f(x) < f(a)
in a neighborhood of a, and f(x) < f(b) in a neighborhood of b. That implies
that f achieves its minimum (see corollary at a point ¢ € (a,b), by[6.18
we must have f”(c) = 0. o

Example 6.23. The corollary above says that the Dirichlet function f(x) = 1,
ifx e QN [0,1], f(x) =0if x € (R—Q) N [0, 1] can’t be the derivative of a
function defined on [0, 1].

Corollary 6.24. Let f : I — R be a differentiable function on an interval I.
Then f’ doesn’t have jump discontinuities.

Proof. Weclaim that givenapointa € I,if the one sided limits lim f’(x), lim f’(x)
x—at x—a~
exist, then f’(x) is continuous at a. Suppose R = lim f’(x) exists but
x—at
R # f’(a), say R > f’(a). Take y € R such that f’(a) < y < R. Then
there exists 6 > 0 such that x € (a,a +8) = f’(x) > y. In particular,
f'(a) <R < f'(a+ %) but there is no ¢ € (a,a + g) such that f'(c¢) = R,

a contradiction. Using a similar argument, we conclude the equivalent result if
lim f’(x) exists. |
x—a~

Example 6.25. The corollary above says that the floor function f(x) = |x],
can’t be the derivative of a function defined on R.
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Theorem 6.26. (Rolle) Let f : [a,b] — R be continuous satisfying f(a) =
f(b). If f is differentiable on (a,b) then there exists ¢ € (a,b) such that

f'(c) =0.

Proof. If f is constant then f’(x) = 0, so suppose f not constant. Since f is
continuous on [a, b], it achieves its maximum and minimum in [a, b]. Since
f(a) = f(b), the maximum/minimum can’t be at an endpoint, otherwise the
function would be constant. Hence, the function has at least one maximum or
minimum in the interior (a, b), at that point the derivative must be zero by

Corollary [6.18] O

Notice that we didn’t use f’(a) or f’(b) in the proof, hence the requirement
that f be differentiable in (a, b) and not in [a, b].

Example 6.27. The absolute value function f(x) = |x| when defined on [—1, 1]
is continuous and satisfies f(—1) = f(1), but there is no point ¢ € [—1, 1] such
that f”(c) = 0. This is not a counter-example to Theorem [6.26] because f is not
differentiable at 0 € [—1, 1].

Example 6.28. The function f(x) = V1 — x2 is continuous on [0, 1] but it’s dif-
ferentiable only in (0, 1), since it’s derivative f’(x) = — \/1)“72 is discontinuous
—X

at +1, as the picture below suggests.

L L
0.5 1.0

Still, Rolle’s theorem guarantees the existence of a point ¢ € [0, 1] with f’(¢) =
0. Indeed, ¢ = 0 in this case.

Example 6.29. (The headphone function) The function f : [-1, 1] — Rdefined
by
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0, if |x| = 1
(1 —x2%)sin -, if x| # 1

1-x2°

f(X)={

is another example of function continuous on [—1, 1] but differentiable only in
(-1, 1).

-02}

Theorem 6.30. (Lagrange’s Mean Value Theorem) Let f : [a,b] — R be
continuous. If f is differentiable on (a, b) then there exists ¢ € (a, b) such that

f(b) - f(a)
- :

—a

fe) =

Proof. Set g(x) = W(x —a) + f(a). Then g satisﬁe_s g(a) = f(a) and
g(b) = f(b). If we set h(x) = f(x)—g(x), the function 4 satisfies h(a) = h(b),
hence by Rolle’s theorem A’ (¢) = 0 for some ¢ € (a, b). The result follows. O

Corollary 6.31. Let f : [a, b] — R be continuous such that ' (x) = 0 for every
x € (a,b). Then f is constant.

Corollary 6.32. Let f,g : [a,b] — R be continuous functions such that
f'(x) = g’(x) for every x € (a,b). Then f(x) = g(x) + C, for some constant
ceR

Corollary 6.33. Any function f : I — R defined on a interval such that
x el =|f"(x)| <C for some C € R, is Lipschitz.

Corollary 6.34. Let f : I — R be differentiable in an interval I. Then ' (x) > 0
if and only if f is nondecreasing in I. In case f’(x) > 0, then f is increasing.
Equivalent statements are true if f'(x) < 0 and f nonincreasing.

Proof. Suppose f’(x) = 0 and x,y € I such that x < y. By the Mean Value
Theorem, f(y) — f(x) = f'(c)(y —x) = 0, and we conclude that f(x) < f(y).
Conversely, if f is nondecreasing then for every x € [ such that x + h € I,
we have that the ratio w is always nonnegative, hence its limit when
h — 0 is also nonnegative. The same argument mutatis mutandis applies in the
strict inequality. |
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Example 6.35. As a nice application of the Mean Value theorem we show that
lim(Vn + 1 — 4/n) = 0. Consider the function f : [n,n+ 1] — R given by
f(x) = 4/x. Using the Mean Value Theorem we can find ¢ € (n,n+ 1) such that

NRE

file) = i+ )-n

or equivalently
1
Vit l—Vin=—< —
2C 2n’

Using the Squeeze theorem we conclude that lim(Vn + 1 — 4/n) =

6.4 Taylor’s Theorem

Let f : I — R be a real valued function defined on an interval /. The n-th
derivative of f, if exists, is defined inductively by setting f""(x) = (f’)’(x) and
F (x) = (f*=D) (x) for n € N. By convention, we set fO(x) = f(x).

We say that f is of class C¥ in I, denoted by f € C¥(I), if f¥) exists and
is continuous in . When I = R, we simply write f € CK. Recall that f € C°,
means f is continuous, so the definition makes sense even if k is zero.

In case f € CK(I) for every k € N, we say that f is smooth and write
f € C*(I). Equivalently, a function f is smooth if £ exists for every n € N.

The following example generalizes example [6.21]

Example 6.36. The function f : R — R given by f(x) = |x|x is C! but it’s not
C?. Indeed, we can easily check that its derivative is given by

2x, x =0
-2x, x<0

f'(x) ={

which is continuous everywhere. Whereas, f’ has a jump discontinuity at zero,
so f ¢ C?. More generally, the function g(x) = |x|x" is in C" but g ¢ C"*1.

Example 6.37. (Standard Mollifier) Consider the function defined by:

1
e R x| <1
X) =
&) {0, x| > 1
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015 1,‘0
We can easily see that f € C*™ and the set where f # 0 is bounded, hence has

compact closure. This type of function and its higher dimensional generalization
are extensively used in the field of differential equations.

Example 6.38. Since sin’x = cosx and cos’x = —sinx, we deduce that
sinx,cosx € C*. Similarly, e*,logx and any polynomial are examples of
smooth functions.

Let f : I — R be a real valued function defined on an interval / C R having

derivatives up to order n at a € I, i.e. £ (a) exists. The polynomial p(x)
defined by

()

n!

f"(a)

2
> (x—a) +...

p(x) = f(a)+ f'(a)(x —a) + (x—a)" (6.10)

is called the Taylor polynomial of order n of f at a.
Equivalently, the n-th order Taylor polynomial of f at a is the unique poly-
nomial p(x) of degree n, such that fK) (a) = p®®) (a) for k = 1,2,...,n.

Theorem 6.39. (Taylor’s Theorem) Let f : I — R be a real valued function
having derivatives up to order n at a € I, and p(x) be the n-th order Taylor
polynomial at a. Then the function r . I — R, defined by r(x) = f(x) — p(x),
ie.

” (n)
FO) = f@)+ Fa)c—a)+ L 2(”‘) (ma)+.. . +L n!(“) (x = a)" +r(x),
satisfies )%L)n}, (;f);))n =0.

Proof. Recall that the case n = 1 was proved in theorem[6.7} Suppose n = 2, we
use the Mean Value Theorem to obtain ¢ between x and a such that:

rix) _r(x)-r(a@ r'(c)x-a) r(c) [r'(c)-r'(a)l(c—-a)

x-a)? (x-a)?  (x-a)? x-a (c—a)(x—a)
lim (;E);))z =0, since #? (a) = 0 and |<=%| < 1. Using the same argument,
xX—a

we can prove the result for any value n. |
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Corollary 6.40. (L’Hopital’s rule) Let f,g : I — R be real valued functions
having derivatives up to order n at a € I, such that %) (a) = g*) (a) = 0, for
k=0,1,2,...,n—1, but f" (a) and g™ (a) are non-zero. Then

S _ )
e g

Proof. By Taylor’s formula and the hypothesis of the corollary, we have:

fW9a) | r(x)
f(x) _ m T (x—a)*

g(x) g"(a) | _s(x)
n! (x—a)™

for some r(x), s(x), satisfying (xrf;)),, — 0 and (x’f);))n — 0, when x — a. The

corollary is then immediate. |

Corollary 6.41. Let f : I — R be real valued function having derivative up
to order n at a € int(I), such that f¥)(a) = 0, for k = 1,2,...,n — 1, but
F (a) # 0. Then if n is odd, the point a is not a local maximum or minimum,
and if n is even, two outcomes are possible: "™ (a) > 0 implies the point a is a
strict local minimum; " (a) < 0 implies the point a is a strict local maximum.

Proof. Notice that in this case Taylor’s formula can be written as

2| (@) r(a+h)
n! *

fla+h) = f(a)=h -

for h € Rsuchthata + & € I. Since r(;’l—zh) — 0 when h — 0, for A sufficiently
small, say 0 < |h| < &, the expression in the square brackets has the same
sign as £ (a). Hence, if n is odd, we can always find A, hy € I such that
fla+hy)—f(a) >0and f(a+hy) — f(a) <0, so a can’t be a local maximum
or minimum.

Now, suppose 7 is even. Then if £ (a) > 0, the above discussion implies
fla+h)— f(a) > 0for0 < |h| <6, hence a is a local minimum. Similarly, if

£ (a) < 0 we must have f(a+ h) — f(a) < 0, and a is a local maximum. O

We can enhance Taylor’s Theorem if we require f to be of Class C" and
having the f("*!) derivative, instead of just having the f” derivative, which is
not necessarily continuous.

Theorem 6.42. (Taylor’s Theorem with Lagrange Remainder) Let f : [a, b] —
R be a real valued function such that f € C" and "V (x) exists in (a,b).
Then there exists ¢ € (a, b) such that

f() = f(a)+ f'(a)(b-a)+...+ f(':'(a)(b -a)" + M

wrn P a)™.
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Proof. Define g : [a, b] — R by

f (x)

g(x)=f(b)—f(x)=f(x)(b—x)+...+ (b—x)"™",

(b—x)"+

C
(n+1)!

where C is the unique number such that g(a) =0

The function g is continuous on [a, b], differentiable in (a, b), and satisfies
g(a) = g(b). Therefore, by Rolle’s Theorem, there exists ¢ € (a, b) such that
g’(¢) = 0. On the other hand, a quick computation gives:

_ f(n+l)
g =L

We conclude that C = £+ (¢), and the theorem becomes the statement g (a) =
0. O

Let f : I — R be a smooth function, i.e. f € C*°, and a € I°. Using Taylor’s
Theorem with Lagrange remainder, for each n € N we have:

£ ()

TR a)" ' +r,(x),  (6.11)

f(x)=fla)+f(a)(x—a)+...+

(n) . .
where r,,(x) = fn—,(c) (x —a)™ and c is between x and a. It is then natural to ask
what happens when we let n — +oo in (6.11).

The series f(a)+f’(a)(x—=a)+. . +L2 (“)(x _a), f( >(a)( o

is called the Taylor Series of f at a € I. Notice that it’s not entlrely clear that
the Taylor Series of f at a has to coincide with f(x), in fact, it’s possible for the
Taylor Series to diverge and even if it converges, it could converge to a number
other than f(x).

A function f : I — R is called Analytic if for every a € I, there exists § > 0

such that ©
|x—a|<6=>f(x)=zf @
n=0 nt

— a)”’

In other words, a function is analytic if it coincides with its Taylor series in
a neighborhood of every point of its domain. Notice that it follows from (6.11)
that a function is analytic if and only if for every x € I, we have lim r,(x) =0
n—oo
Example 6.43. Any polynomial p(x) is clearly analytic, since p" (x) vanishes
for sufficiently large n € N.

Example 6.44. The exponential function f(x) = ¢~ is perhaps one of the most
famous analytic functions. We use Taylor’s theorem (with a = 0), to obtain:

2 X" n

T=l4x+—+.. .+ —+en
2 n! n!
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. . . n .
with [c,| < [x|. Since lim 25 = 0, the Taylor series for e at 0 converges to e*.
Moreover, notice that e*** = e*e?, hence the Taylor series for e* converges at
any point a € R, and e* is analytic.

Example 6.45. Let x € R, then

T4x+x2+.. . +x" 1+ =

Consider the function f : (0,1) — R givenby f(x) = ﬁ Then using Taylor’s
Theorem we obtain r,(x) = % in this case, so lim r,(x) = 0, which implies
n—oo

f(x) = Y x". Hence, f(x) agrees with its Taylor Series at 0.

n=0
Example 6.46. Let f : R — R be defined by f(x) = cosx. Using Taylor’s
theorem around the origin (with a = 0), we can write

)C2 x4 x2n

_ _ T T _ n
cosx =1 2!+4! oo+ (=D) )

+ rop41 (X)

where r,(x) = [cosx(”)](c)’;—?. Notice that

|x|2n+1

0<|ry <,
< IOl < 2

|x|2n+1

and recall that by example|3.54] lim

Nn—oo (2n+1)!
0 and it follows that

= 0. We conclude that lim r,(x) =
n—o0o

2 it a2
cosx:1—5+m—...+(—l) )1

+....

Hence, the Taylor series of cosx at O converges to cosx at every point x € R.
The same argument can be applied if if the Taylor series is not centered at zero
(a # 0). In conclusion, the function cos x is analytic.

Example 6.47. Consider the function f : R — R defined by

pa— e_
f(x) = {0’

L
x2

=
>
o =
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0.8
0.6
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)
n

Using the fact that lirr%) e; = 0 for any n > 0, we can see that £ (0) = 0,
X—

and the function f is smooth. However, the Taylor series at O is identically zero,
. S fm . . ey - .
since ), fn—!(())x" = 0. In particular, since x # 0 = f(x) # 0, it’s impossible

n=0
for f(x) to be analytic on R.
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Exercises

1.

10.

Let f,g,h : X — R be functions such that, for every x € X we have f(x) <
g(x) < h(x). Show that if there is a point a € X N X’ such that f(a) = h(a)
and f’(a) = h'(a) then g’ (a) exists and g’ (a) = f’'(a) = I’ (a).

. Let p : R — R be an odd degree polynomial. Then there exists ¢ € R such

that p”’(c¢) = 0.

. Let f : X — R be differentiable at a € X N X’. If x,, and y,, are sequences

in X such that limx, =limy, = a and x,, < a < y, for every n € N, show

that
L) = £ )
Yn —Xn

= f'(a).

. Show that the function given by f(0) = 0, f(x) = x? sin% if x # 0,

is differentiable. Find sequences x,, and y, such that x, # y,, limx, =

lim y,, = 0 but lim w doesn’t exist.
Yy X,

.Letf:I —Rbe differentiable on an interval I € R. We call a € I a critical

point if f’(a) = 0. We say a critical point a is non-degenerate it f" (a) # 0.

a) If f € C!, show that the set of all critical points contained in a closed
interval [c, d] C I is closed.

b) Show that local maximum and minimum points of f are critical points.
Moreover, any critical non-degenerate point is a maximum or minimum.

c) Show that there are C™ functions with isolated degenerate local max-
imum/minimums. Moreover, there are critical points of C* functions
that are not local maximum/minimum points.

d) Show that every non-degenerate critical point of f is isolated.

e) Let f € C', suppose that the critical points of f contained in a closed
interval [c¢,d] C I are non-degenerate. Show that there are finitely
many of them. Conclude that f has at most a countable number of
non-degenerate critical points in /.

f) The function f(0) = 0, f(x) = x* sin% if x # 0 has infinitely many
non-degenerate critical points in [0, 1]. Wouldn’t this be a contradiction
to 5.4? Why/why not?

. Let f : I — R be a function defined on interval / C R. If there is C,a > 0

such that Vx,y € I = |f(x) — f(y)| < Clx — y|?%, we say f is Holder
continuous. Show that if @ > 1 then f is constant.

. Let f : I — R be differentiable on an interval / C R. Show thatif f'(x) =0

for every x € [ then f is constant.

. Show that a differentiable function f : I — R is Lipschitz, i.e. |f(x) —

f(»)] £ Clx —y|, if and only if | f'(x)| < C.

. Give an example of a function f : R — Rsuchthat f € C*, f(x) # x, Vx €

Rand |f'(x)] < 1.
Let f : [0, 7] — R be defined by f(x) = cos(cos(x)). Show that | " (x)| <
¢ < 1 for some c € R.
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11.

12.

13.

14.

15.
16.

17.

18.

6 Derivatives

Let f : (a,+00) — R be differentiable. Show that if lim f(x) = b and
X—>+00
lim f’(x) = ¢, then ¢ = 0. [Hint: Apply the Mean Value theorem on

X—+00
[n,n+ 1] and let n — +c0.]

Let f : [a,b] — R be continuous, differentiable on (a, b), satisfying
f(a) = f(b). Given k € R, show that 3¢ € (a, b) such that f'(c) = kf(c).
[Hint: Apply Rolle’s theorem to g(x) = f(x)e %*.]

Let f : I — R be differentiable on an interval / C R. A root of f is a
number ¢ € I such that f(c¢) = 0. Show that between two consecutives roots
of f’, there is at most one root of f.

Let f : [0,+00) — R be twice differentiable. Show that if f”” is bounded
and xl_i)er f(x) exists, then xl_i)r)rrlw f'(x)=0.

Show that the composition of C¥ functions is still a C* function.
Given a, b € R with a < b, consider ¢ : R — R given by

1
eGatb | ifx € (a,b),
x =
¢(x) {0, ifx ¢ (a,b).

Show that ¢ € C* and ¢ has exactly one maximum point.
Let f : I — R be twice differentiable at a € 1°. Show that

7(@) = lim fla+h)+f(a—h)-2f(a)

— hz

Given a example where the limit above exists but f’(a) doesn’t.
Show that the function f(x) = |x|***! is of class C>" but f2"*D(x) doesn’t
exist in every a € R.



Chapter 7
Integrals

7.1 Integrable functions

Let [a,b] C R be a closed interval. A partition of [a, b] is a finite subset
P ={xy,x1,...,x,} C [a, b], such that xy) = a and x,, = b.
By convention, the elements of a partition are written in increasing order:

P={a=x0<x1<xp<...<Xx,=b}.

Let P, Q be partitions of [a, b]. We say that the partition Q is a refinement of the
partition P if P C Q. More precisely, Q is obtained from P by adding a finite
number of points.
Let f : [a,b] — R be a bounded function. Set m = inf f and M = sup f,
then:
m< f(x) <M, Vx € [a,b].

If P = {xo,x1,...,x,} is a partition of [a, b], we denote
m; = inf{f(x);x;-1 <x < x;}and M; := sup{f(x);xi-1 <x < x;},
and define the oscillation of f at [x;_1,x;] by
w; = M; — m;.

If f is continuous, the values m;, M;, w; are achieved by Weierstrass Extreme
Value Theorem.
We define the lower sum of f with respect to P by

S(F3P) = my(x1 = x0) -+ my (e = Xn1) = D mi(xi = xio1),
i=1

and likewise, the upper sum of f with respect to P by

123
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S(fiP)=Mi(x1 —x0) + -+ M, (xp —xp_1) = ZMi(xi - Xi—1).
izl

s(f,P) S(f,P)

Fig. 7.1: Representation of s(f; P) and S(f; P)

By definition, we have
m(b—a) < s(f;P) < S(f;P) < M(b—a) and S(f;P)—s(f;P) = Zwi(xi—xi_l).
i=1

When f > 0, the number s( f; P) represents an approximation of the area under
the graph of f using rectangles that are below the graph, whereas S(f; P)
represents an approximation using rectangles above the graph of f.

Let # = {P; P is a partition of [a,b]} and f : [a,b] — R be a bounded
function. The lower integral and upper integral are defined respectively by:

b D
‘[ f(x)dx := sup s(f; P) and J f(x)dx := inf S(f;P),
Ja PeP a pep

Theorem 7.1. Let P,Q € P. Then
PCO=s(fiP) <s(f:0)andS(f;0) < S(f;P)

Proof. 1t’s enough to prove the result when Q = P U {a}. Suppose P = {x¢ <
x| <...<xptand xx_; < a < xi for some k < n. Define

m':= inf  f(x)and m” := %nf f(x).

X€[xp-1,a] x€la,xi]
Notice that my is less than or equal to m’, m’’. We have:
s(f30) = s(fsP) =m’(a = xg-1) +m” (xx — a) = my (X — xk-1)

= (m" —mp)(xx —a) + (m" —mp)(a —xx_1) (7.1)
>0
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A similar argument shows that S(f; Q) < S(f; P). O

The figure below illustrates theorem for a partition P and a refinement
Q 2 P,when f(x) = % The sum of the highlighted rectangles represent s( f; P)
and s(f; Q) respectively. It’s easy to see that s(f; Q) > s(f; P).

= -

Fig. 7.2: Representation of s(f; P) and s(f; Q)

Corollary 7.2. For any partitions P,Q € P we have

s(f:P) < S(f:0)
Proof. Apply Theorem|[7.1[to P and P U Q (Q and P U Q). O
Lemma 7.3. Let X,Y C R be sets satisfing

x<y,VxeX,VyeY,

then sup X < infY. Moreover, the equality sup X = infY holds if and only if
given € > 0, therearex € X,y € Y such thaty — x < &.

Proof. By definition, every y € Y is an upper bound for X hence sup X < y, for
every y € Y. On the other hand, sup X is a lower bound for Y, thus sup X < infY.
Suppose sup X = inf Y and & > O is given. Then sup X — % is not an upper bound,
so Jx € X such that sup X — £ < x < sup X. Similarly, we can find y € Y such
that infY < y < infY + Z. Therefore, y —x < infY + £ —supX + £ = &.
Conversely, suppose sup X < inf Y. If we set e =infY —sup X, theny —x > &.

O

Theorem 7.4. Let f : [a,b] — R be a bounded function, say m < f(x) < M,
then:

b D
m(b—a)sj f(x)dxsj f(x)dx < M(b —a)

Proof. The proof of the middle inequality follows directly from lemma[7.3] The
other two inequalities are obvious. |
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A bounded function f : [a, b] — R is (Riemann) integrable if

Lb F(x)dx = F Fx)dx,

and we denote this common value by f: f(x)dx, or simply, by f: f.
Example 7.5. The constant function f : [a,b] — R given by f(x) = C is
clearly integrable since s(f; P) = S(f; P) = C(b — a) for any partition P.

Example 7.6. The Dirichlet function f : [0,1] — R given by f(x) = 1 if
x € Q, and 0 otherwise, is not integrable since s(f; P) =0and s(f;P) =b—a
for any partition P.

Theorem 7.7. (Cauchy criterion)Let f : [a,b] — R be a bounded function.
The following are equivalent:

(1) f is integrable,

(2) Forevery & > 0, there are partitions P and Q of [a, b] such that S(f; Q) —
s(f;P) <eg,

(3) For every € > 0, there is a partition R = {xog < x; < ... < x,} of |a, b]

such that S(f;R) — s(f;R) = i wi(xp —xk_1) < &.
k=1

Proof. The fact that (1) = (2) and (3) = (1) follows directly from lemma[7.3]
Suppose (2) is true and set R = P U Q, then

s(fiP) <s(fiR) <S(fiR) < S(f:0),
S S(fsR)—s(f;R) <eg,and (2) = (3).

O

Recall given a function f : [a,b] — R, the oscillation of f in I is w([)
sup f — irIlf f. We define the oscillation of f around a point ¢ by w(f,c¢) :
I

li —d,c+90).
513100)(0 ,C+0)

Theorem 7.8. Let f : [a, b] — R be a bounded function. Then f is continuous
at ¢ € a, b] if and only if w(f,c) = 0.

Proof. Suppose f continuous at c. Then given € > 0 we can find 6 > 0 such that
for every x € [a,b], [x —c| <0 = |f(x) - f(c)| < § = flc) -5 < f(x) <
f(c)+%,thusw(c—0,c+6) < &.Conversely, suppose w(f, c) = 0.Givene > 0,
there exists 6 > O such that for x,y € [a,b], x,y € (c =, c+8) = |f(x) —
f(»)| < &,inparticular fory = ¢ wehave x € (c—6,c+6) = |f(x)—f(c)| < &,
the conclusion follows. |
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7.2 Properties of Integrals

Let f : [a, b] — Rbeabounded function. For simplicity, we adopt the following

conventions:
a a b
J f=0and J f= —J f
a b a

Theorem 7.9. Let a < ¢ < b. Then f : [a,b] — R is integrable if and only if
Niae) and fj.,,, are integrable. In the affirmative case, we have

REIRS

A = {5(fj,..s P); P is a partition of [a, c]},
B = {s(fj.,:P); P is apartition of [c, b]},
C = {s(f; P); P is a partition of [a, b] and ¢ € P}.

Proof. Consider the sets

Notice that by Theorem Llj f =sup C. It follows that

[

b
J f=sup(A+B)=supA+supB=
Ja

J—bfiff+fbf
L L{L LD

We conclude that f_jf = Jff if and only if J_Zf = f;f and I_be = I: f
= - o

and similarly,

Example 7.10. (Step functions) Given a set X C R, consider the function
X 4 : R — R defined by

1,ifxeA

b% =

AW) {o, ifx ¢ A

X 4 is called the characteristic functionof A C R. Let P = {xg < x| < ... < X,}

be a partition of [a, b], and ¢y, ca,...,c, € R. A function f : [a,b] — Ris
n

called a step function, if it has the form f(x) = 3 c;X;,, where ¢; € R, and

j=1
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I; are intervals with endpoints x;_; and x;. Since f is constant on /;, theorem
guarantees that f is integrable. Notice that if f is not constant then it is an
example of integrable function that is discontinuous.

P T ST RV
1 2 3 4

Fig. 7.3: The step function f(x) = X2+ 2)((2,3] + 3/\/(3’4]

Theorem 7.11. Let f,g : [a,b] — R be integrable. Then

(1) f + g isintegrable and f:(f+g) = Lff+ f: g

(2) f - g isintegrable,

(3) If 3k > 0 such that 0 < k < |g(x)| for every x € [a,b], then f/g is
integrable,

W Iff<gthen [, f<]["g
(5) |f| is integrable and“ﬁ f‘ < Jf |f]-

Proof. Notice that for P, Q partitions of [a, b] we have:

b
S(f:P)+5(8:0) < s(f:PUQ)+5(g: PUQ) < s(f +g: PUQ) < f (F+9).

Lbf+ ng < Lb(f+g)-

and hence:

Similarly, we can show that f_: f+ f_: g2 f_f( f + g). We conclude from the
inequalities

_Lbf+ng < Lb(f+g) < Jj(f+g) < ij+ Jjg,

that (1) is true.
To prove (2), choose K > 0 big enough such that max{|f(x)|, |g(x)|} < K.
Let P = {x;;i =0,...,n} beapartition of [a, b], and w}, ), w; the oscillations
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of f,g and fg respectively, on the interval [x;,x;_1]. For x,y € [x;,x;—1] we
have:

lf gy = f)g@)| = [[F () = f()]g(y) + [g(y) = g(0)]f ()]

<wK+w!K = (w;+w])K

It follows that:
n n
Z wi(x; —xi-1) < Z(a’; +w!)K(x; —xi-1),
k=1 k=1

and (2) is a direct consequence of Theorem [7.7]3).
Item (3) follows from (2), if we can show that 1 is integrable. Let P = {x;;i =
0,...,n} be a partition of [a, b], and x,y € [x;, x;_1]. By hypothesis:

‘ 11 ’ _ lg() —g)]
gx) g~ k?
Once more, the result follows from Theorem [7.7)3).
Item (4) is trivial, since in this case s(f; P) < s(g; P) for every partition,

hence LI: f< ff g Finally, to see why (5) is true, consider the inequality:

Q= 1fDI < 1f(x) = f()]

Which tell us that the oscillation of | f| is always bounded by the oscillation of
| f], hence by Theorem[7.7)(3) again, | f| is integrable. The last part follows from

the inequality —| f(x)| < f(x) < |f(x)]. O
Corollary 7.12. Let f : [a,b] — R integrable and bounded, say | f(x)| < K.

Then
b
[

Theorem 7.13. Let f : [a, b] — R be continuous. Then f is integrable.

<K(b-a).

Proof. By Theorem [5.68] f is uniformly continuous. Let & > 0 be given, and
take 6 > O suchthat [x—y| < 6 = [f(x) - f(¥)| < 3Z;. Now, choose a partition

P=A{x;;i=0,...,n}suchthatx; —x;_; < foreveryi=1,...,n. If w; is the
oscillation of f at [x;—1,x;] then w; < 7% and it follows that
n e n
Z wi(x; = x;-1) < h—a Z(Xi —Xj-1) = &.
k=1 k=1
This completes the proof by Theorem[7.7(3). m]

Theorem 7.14. Let f : [a, b] — R be monotone. Then f is integrable.
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Proof. The argument is similar to the above theorem, namely it uses Theorem

[7.7(3). Without loss of generality, suppose f increasing. Let £ > 0 be given,

;:lhoose a partition P = {x;;i = 0,...,n} such that x; — x;_| < W. We
ave:

Zwl(xl —Xi-1) < f(b) f(a) Zwl =

O

Example 7.15. Let R* be the set of a positive real numbers. The natural
logarithm function is the function In : R* — R given by

1
lnx:J —dx.
1 X

Notice that the function % is positive if x > 0, thus Inx is always increasing

and hence differentiable and integrable on a closed interval, with (Inx)’ = i A
quick computation shows that Inx has all of its derivatives, so it is smooth, i.e.
Inx € C*™.

Since In x is always increasing, it’s injective. We denote its inverse, called the
exponential function, by exp(x), it’s easy to see that exp(x) = e*, where e is
the Euler number defined in Example [3.28

Recall that given an interval / € R with end-points @ and b, the length of 1,
denoted by |7|, is given by |I| = b — a.
A set X C R has measure zero if given £ > 0, it’s possible to find a countable
open cover of X C |J I,, by open intervals I,,, such that Y, |I,,| < &.
n=1 n=1

Example 7.16. Any countable set X C R has measure zero. Indeed, given any
& > 0, take an open interval of length 5% around the n-th number x,, € X, then

Z |I,| < €. In particular, the set of Rational numbers Q has measure zero.
n=1

Example 7.17. The Cantor set K has measure zero since after the n-th iteration,
K is contained in the union of 2" intervals of length 37". Hence, given any
e > 0, if we take n sufficiently large, K can be covered by open sets whose
length add to a number less than €.

Theorem 7.18. (Lebesgue’s criterion)Let f : [a, b] — R be bounded function.
The set of discontinuities D of f has measure zero if and only if f is integrable

Proof. Suppose D has measure zero and w := sup f — inf f is the oscillation

of fin [a, b]. Let &€ > 0 be given, and suppose D C |J I,,, where I,, are open

n=1

o0
intervals such that } |I,| < 55%. For each x € [a,b] — D, take an interval
n=1
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Jx 3 x, such that the oscillation of f in J is less than m, this is possible
because f is continuous at x.

Now, [a, b] C (U In) U ( U J X), and by Borel-Lebesgue Theorem, there
n=1 x¢D

is a finite subcover, say I,,, U ... I, UJy U...Jy, of [a,b]. Form a partition

P of [a,b] whose elements are a, b, and each endpoint of Inp and J, o for

p=1,...k, g=1,...,1. We write [y,;_1,y,] for an interval associated to P

which is contained in /,,,, for some p, and [y:-1,y:], otherwise. Let w; denote

the oscillation of f in the j-th interval of P. We have:

S P) = s(f;P) = D wi(yj = yj-1) + ) @i (vt = yic1)

< QL0050+ Y s O )

&
@+m(b—a):8

By Theorem[7.7)(3), f is integrable.
Conversely, suppose f is integrable. Set

< w

Dn:{xe [a,D]; w(f,x) > %},

thus D = {J,, D, so it suffices to show that D, has measure zero. By Theorem
[7.7713), given n € N, & > 0 we can find a partition {x;} of [a, b] such that

1
Zwi(xi —Xxi-1) <€&-—.
- n

In the sum above if we consider only the intervals containing points of D, we
obtain % Dili—xi1) < Yjwilx;—xi-1) < e %, thus 3, (x; —x;—1) < &. The
chosen intervals may not cover D, entirely, since they can miss some points of
the partition {x;}, but if they do, it would be a finite amount of them and we
could add to the already chosen intervals arbitrarily small ones. |

Example 7.19. The Cantor function f : [0, 1] — R given by

1, ifx e K
Flo = {o, ifx ¢ K,
is integrable. Indeed, f is continuous in [0, 1] — K, but it’s discontinuous at

every point a of K, since we can find a sequence x, € [0,1] — K such that
x, — a. By Theorem[7.18] f is integrable.

Example 7.20. If a < b then [a, b] doesn’t have measure zero. Indeed, Let 7,
be a open cover of [a, b], by Borel-Lebesgue Theorem, we can extract a finite
subcover. After relabeling if necessary, we may assume [a,b] C Iy U... U [,,.
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n
Since the /; are intervals, we have (J I; C [c, d], for some c,d € R. It follows
J=1
that X1, ) < Xur;, which implies that

d d n
b-a :J Xlap] < j Xug, = Z |11
C C ]:1

n
Thus, ), |I;| > b — a, in particular it can’t be arbitrarily small.
J=1

Recall that a point ¢ € [a, b] is a critical point for the function f : [a,b] — R

if f'(¢) =0. When y = f(c), for some critical point ¢ € [a, b], we say y is a
critical value of f.

Example 7.21. (Riemann’s Example) For x € R, let (x) denotes the fractional
part of x,i.e. (x) = x — | x] (see Example[1.24)). For each x € [0, +c0), consider

the series:
o (nx)
P(x) = —_—
(x) Zl o

Since (x) < 1 for every x € [0, +0c0) and }; # = %2, the function P(x) is well
n=1

defined and |P(x)| < %2. Notice that P(x) is periodic since P(x+1) = P(x). This
function is example of a function that is continuous at every irrational number
but discontinuous at every rational. It follows from Theorem that P(x) is
integrable. The graph of P(x) on [0, 1] is shown in Figure Exercise
you will show that it’s impossible to have a function whose set of discontinuities
is the irrationals.

Theorem 7.22. (Sard) Let f : [a,b] — R be a continuously differentiable
function. Then the set of critical values of f has measure zero.

Proof. Let X be the set of critical values of f. Fix § > 0 and define
Xs :={x € [a,b]l;|f (x)| < 6}

It follows that X C f(Xs).
Since X5 is open and bounded, by Theorem[d.10] it can be written as a disjoint
countable union of open intervals, say Xs = |J Is%. Notice that
k

X ¢ f(Xs) = FLse)
k

Since f is continuous and /s is an interval, f(Isy) is again an interval, which we
may assume open, if not, we remove the endpoints and consider an arbitrarily
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Fig. 7.4: The function P(x) = <l:l)26>
n=1

small open interval around them. By the mean value theorem, we must have

I fUsi)l = 1f" (xsi) skl < 15kl
Therefore, Z | f(Usk)| < 52 |Isk| < 6(b—a).Given any £ > 0, we may take

0 = 3= and 1t follows that {f(l(;k)} is a cover of X such that Z fsk) < e.
O

7.3 The Fundamental Theorem of Calculus

Let f : [a,b] — R be an integrable function. For x € [a, b] we define:
F(x) = fo(t) dt.

If f(x) is bounded, say |f(x)| < K then for x, y € [a, b]:

|F(x) = F(y)| < < Klx -yl

Lx f(r)dt

Hence, F (x) is Lipschitz, in particular uniformly continuous even if f(x) is only
integrable and bounded.
We say that F(x) is the antiderivative of f(x).

Example 7.23. Consider the step function f(x) = X >} defined on the interval
[0,2] and its antiderivative F(x). We can easily see that f(x) is discontinuous
but F(x) is continuous.
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. P T R
0.5 1.0 15 2.0

(@ f(x) = X112 (b) F(x) =[] f(t)dt

Fig. 7.5: A function with its antiderivative

Theorem 7.24. Let f : [a,b] — R be an integrable function. If f(x) is
continuous at ¢ € [a,b] then F(x) = f: f(¢) dt is differentiable at ¢ and

F'(c) = f(c).

Proof. Givene > 0,wecanfindéd > Osuchthat|t—c| <6 = |f(1)—f(c)| < &.
For0 < h < 6:

c+h c+h
HeB=PO — pof =4[ o= senad < & [T ro-s@na s pon=
A similar argument is true when —6 < k& < 0, hence F’(c) = f(c). |

Corollary 7.25. Let f : [a, b] — R be a continuous function. Then its indefinite
integral F(x) is differentiable and F'(x) = f(x).

A differentiable function F'(x) is called a primitive of f(x) if F'(x) = f(x).
Corollary [7.25] is the statement that every continuous function defined on a
closed interval has a primitive. Moreover, given any two primitives F(x) and
G(x) of f(x) we have (F — G)'(x) = 0, hence F(x) and G(x) differ by a
constant. We conclude:

Corollary 7.26. Let f : [a,b] — R be a continuous function. Then any
primitive of f(x) has the form F(x) = Lj f(t)dt + C, where C € R.

Example 7.27. The function defined by

2xsin%—cos%, ifx#0

flx) = {o, ifx =0,

is discontinuous at x = 0, yet has a primitive given by

x?sind, ifx #0

Fx) = {0, if x = 0.
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Therefore, it’s possible for a function to have a primitive even if it’s discontin-
uous. Notice that the function in example [7.23] doesn’t have a primitive in any
interval containing 1.

(a) f(x) =2xsin % - cos % (b) F(x) = x2sin 4

X

Fig. 7.6: A discontinuous function with its primitive

Theorem 7.28. (Fundamental Theorem of Calculus) Let [ : [a,b] — R be a
differentiable function. If f’(x) is integrable then

b
j Py di = f(b) - fa)

Proof. Let {x;} be a partition of [a, b]. By the Mean Value Theorem, there
exists ¢; € [x;_1,x;] such that

S i) = f(xio) = f'(ei) (xi = xi-1)
Define m; = inf ]f’(x) and M; = sup f’(x). Then m; < f'(¢c;) < M;,

[xi-1.xi [xi-1,xi]
moreover

Fb) = fla) =" fxr) = Fxi) = " f/(ei)(xi = xio),
i=1 i=1

it follows that
s(f'sP) < f(b) = f(a) < S(f'; P).

Since f’ is integrable, the numbers s(f’; P) and S(f’; P) have to be arbitrarily
close. The result follows. |

Corollary 7.29. (Change of Variables) Let f : [a,b] — R be a continuous
function, g : [c,d] — R differentiable with g’ integrable, and g([c,d]) C
[a, b]. Then
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g(d) d
J' ﬂmw=jf@mmme

g(c)

Proof. Since f is continuous, it has a primitive, say F(x). Using Theorem 7.2§]
with the function F'(g(¢)) we obtain

d d
J'f@mm%»m:f F(g(1)) di = F(g(d)) - F(g(c))

c

On the other hand,

g(d)
J () dv = F(g(d)) - Fg(c).

g(c)
O

Corollary 7.30. (Integration by parts) Let f, g : [a, b] — R be functions with
integrable derivative,then

b b
f ﬂmguwu=ﬂmmwm—J £ (0)g (),

where f(x)g(x)15 = f(b)g(b) - f(a)g(a).

Proof. Immediate consequence of the product rule (fg)’ = f'g + fg’ and
theorem [Z.28l O

Corollary 7.31. (Mean Value Theorem - Integral version) Let f : [a,b] — R
be a continuous function. Then there exists ¢ € (a, b) such that

b
| rwa=rom-a
a
Proof. Let F(x) be a primitive for f(x). Then by the Mean Value Theorem

b
J'fuwu=ﬁuo—Fw>=F@xb—m=f@xb—@.

O

Corollary 7.32. (Taylor’s Formula with Integral Remainder) Let [ : [a,a +
h] — R be function having the derivative of order n + 1 integrable. Then

£
Flath) = £(@)+f (@)h+. .+ (“) “ (1- f<"+1>(a+m)dt B

Proof. Define g : [0,1] — R by g(x) = f(a +th). It suffices to show that
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g(1) =g(0) +g'(0) +.. ("H)(t) dt

g(") (0) J (1-
If n = 0, this is just theorem [7.28] If n = 1, using integration by parts we have

1 1
g(1) =¢g(0) + L g’ (t)dt =g(0)+g'(0) + . (1-1)g"(t)dt

If n = 2, using a similar argument we have

¢(1) = g(0)+g’ <0)+J' Q=0 ey dr = g0y’ 0+ .[ =0y

The proof follows once we Iterate this procedure. |

Gven a partition P = {x;} of [a, b], we define the norm of P, denoted by |P|, as

|P| := max |x; —x;—]
1<i<n

Theorem 7.33. Let f : [a, b] — R be a bounded function. Given & > 0, there
exists 0 > 0, such that

2
|P| <6 = S(f;P) < J f(x)dx+e

Proof. 1t suffices to consider the case where f(x) > 0, otherwise we could
consider f(x) —inf f(x) > 0. Let & > 0 be given, then there is a partition
0 = {xo,...,x,}, such that

)
S(1:0) < | fears

Let M; = sup f(x) and M := sup f(x). Take any § > 0, satisfying
x€[xi-1,xi]
0 < 5377 Let P ={yo,...,yn} be any partition satisfying |P| < &, we will use

the index ‘1" in [y;-1,y:], whenever [y;—1,y:] € [x;-1,x;], and use the index
‘y’ for the remaining intervals. We have
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S(fsP)= ) Mi(yi=yi)+ Y Mi(y; = yj-1)
i J
< ZMi(xi —)Ci_]) + Moédn
<S(f:0)+5

2
< J‘ f(x)dx + €.

O
The argument above can easily be adapted to prove the equivalent result for
__[f f(x)dx.
Corollary 7.34. Let f : [a,b] — R be integrable. Then

b
(Lﬂﬂw=@gﬂﬁm=@%ﬂﬁm

A tagged partition, denoted by P, is a partition P = {x;} together with a
collection of points {z;}, such that x;_; < f; < x;. Given a function f : [a, b] —
R and a tagged partition P* of [a, b], we define the Riemann sum of f(x) by

R(fi P = Y () (xi = xim1)

i=1
It follows directly from the definition that
s(f;P) < R(f;P7) < S(f3P).

Thus, the following corollary is immediate.

Corollary 7.35. (Integral as a Riemann sum) Let f : [a, b] — R be integrable.
Then

b
| rwde= tim &erip)

7.4 Improper Integrals

So far we have avoided functions defined on intervals that are not closed. In this
section we will discuss the definition of integrals for such functions.
First, we discuss the case where the function is bounded.
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Theorem 7.36. Let f : (a,b] — R be bounded. If f(x) is integrable in [c, b]
for every c € (a, b), then can extend f(x) to a function on [a, b] such that

b b
J f(x)dx = lim j f(x)dx
a c—a* ).
Proof. Take any v € R and define f(a) = v. Let K € R such that |f(x)| < M

for x € [a, b]. By hypothesis, given £ > 0, for every ¢ € (a, b) we can find a
partition {x;} of [c, b] such that

S(f:P)=s(fiP) <3

Choose ¢ such that M(c — a) < 7. We form a partition of [a, b], say Q, by
adding the point a to P. We have

S(f;0)—s(f;Q) <2M(c —a) +S(f;P) = s(f;P) <&,
Thus, f(x) is integrable. Moreover, (the negative of) its antiderivative
b
F(x) = I f(x)dx

is Lipschitz as discussed in the beginning of section[7.3] so

b
F(a) = lim F(c) = lim I f(x)dx

Remark. 377

The exact same result is valid if we consider an interval of the form [a, b)
instead. Motivated by theorem [7.36, if f : (a,b] — R is continuous but
unbounded, we define

Lb f(x)dx = cli)rzl+ Lb f(x) dx.

It’s possible that the limit above doesn’t exist, in that case we say the integral
diverges or it’s divergent. Otherwise, we say the integral converges or it’s con-
vergent. A equivalent definition can be given when is defined on [a, b), namely

L’j f(x)dx = hI})l f; f(x)dx. Lastly, if f : (a, b) — R is continuous, then
cC—b™

Lb f(x)dx = LC f(x)dx + Lb f(x) dx.
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Example 7.37. Fix a € R and consider the function f : (0, 1] — R defined by
f(x) = 5

@ f(x) =4 ) f(x) = =

Fig. 7.7: A function with singularity at zero.

Suppose a # 1, then by definition:

1 1 1-a 1 :
1 1 1 —, ifa<1
J — dx = lim — dx = lim ol ] = 1‘“’.1 ¢
0 x4 c—0* J. x4 c—0t 1 —ale +00, ifa>1.

When a = 1, we obtain

1 1 ) 1 1 ' 1

I —dx = lim —dx = lim lnx] = 4o00.
0o X c—0* ) c—0t c

Example 7.38. In some case we don’t even have to use the limit definition,

just algebraic manipulations and/or integration by parts suffice. For example,
consider the unbounded function f : (0, 7] — R defined by f(x) = In(sinx).

Fig. 7.8: f(x) = In(sinx)

First notice that
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5 2
J i In(sinx) dx = J In(cos x) dx,
0 0

hence

7 3 7 1 7
ZJ In(sin x) dx = J In(sinx cosx) dx = j In (5) dx + J. In(2 sinx cos x) dx
0 0 0 0

n 7
= ——1n2+J In(sin 2x) dx
2 0

On the other hand,

/Y T P

s T 1 s 1 s
J i In(sin2x) dx = 1 J In(sinx) dx = = J i In(sin x) dx+= J In(sin x) dx = J i In(sin x) dx
0 2 Jo 2 Jo 2 )z 0

Therefore,

s

2 n
J In(sinx) dx = —= In2,
0 2

and the integral is convergent.
The following proposition is immediate from the definitions.

Proposition 7.39. (Comparison Principle) Let f,g : (a,b] — R be nonnega-
tive functions. If there exists k > 0 such that

0< f(x) < kg(x),

and moreover, f: g(x) dx converges, then LI: f(x) dx also converges.

Example 7.40. We claim that the integral
1 2
J il dx
0 V1 —x2

converges. Indeed, notice that for 0 < x < 1 we have

x? < 1
Vi-x2 T V1-x2’
dx converges, which is straightforward:

SO it

1

1
suffices to prove that Io

V1-x2
1 c P
dx = lim dx = lim arcsinc = —
0 V1 =2x2 =17 Jo 1 =52 c—1- 2

Given a function f : (a,b] — R, we say f: f(x) dx is absolutely convergent

o (b o .
if | |f(x)] dx converges. Similar to the case of series, absolute convergence
impciies convergence and we have
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Proposition 7.41. (Comparison Principle— absolute convergence) Let f,g :
(a, b] — R be given. If there exists k > O such that

|f ()] < kg(x),

and moreover, f: g(x) dx converges, then f: | f (x)| dx converges, in particular
L}z f(x) dx also converges.

Now, we extend the definition of integral to functions defined on unbounded
intervals. Let f : [a,+00) — R be continuous. We define

L*'“’ f(x)dx = n1_1>IPoo Ln f(x)dx,

as before, if the limit exists we say the integral converges, otherwise, we say it
diverges. Similar definitions can be given when f(x) is defined on (—o0, b] or
(_OO= +OO) .

Example 7.42. Let’s revisit example Suppose f : [1,+00) — R is given
by f(x) = x% for a fixed a € R. If a # 1 we have

+00 1 n 1
J — dx = lim — dx
1

x4 n—+co J; x4

[
=
=

=
=

When a = 1, we have

+00 n
—dx = lim —dx= lim Inn = +oco
1 X n—+o J1 X n—+oco

As before, the comparison principle is also valid in this case. For the sake of
completeness we write below.

Proposition 7.43. (Comparison Principle) Let f, g : [a,+00) — R be given. If
there exists k > O such that

lf ()] < kg(x),

and moreover, I;oo g(x) dx converges, then I;OO | f(x)| dx converges, in partic-

ular f;w f(x) dx also converges.

Example 7.44. Despite the periodic behavior of sin x?, the integral
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[ee)
J sinx? dx

is actually convergent.

Fig. 7.9: f(x) = sinx?

Indeed, since sin x2

on [1, +c0). We have

is integrable on [0, 1], it suffices to analyze the integral

2
[e) n n .
. . . ) sin x
sinx?>dx = lim sinx?>dx = lim — dx.
1 n—+oo Jq n—+oo Jq 2\/_;

Integrating by parts the last integral we have

2 . 2
™ sinx cos x 11 " cosx
d — dx,
1 1

X = — -
2vx 24x 11 4x>

taking the limit we obtain

n
I SIY e =
e ), 2E 2 4

2,
sinx cosl 1 (*cosx
_ X,

1

3
X2

< x‘%, and by example(7.42(we know that floo L dx converges.
x2

Hence, [;” sinx? dx converges. The actual value of the integral is /3.

but ’(cos x)x‘%

Example 7.45. Consider the integral

J‘+OO 1 3 1 1 +J‘+OO 1
o (I+x)vx Jo (T+x0)vx S (1+x)Vk
We have
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1 1 ) 1 1
Jo <1+x>vz:clinol+L (I+0VE

1
= lim 2arctan Vx
c—0t c

T
2
Similarly,
+00 1 n 1
J i j L
1 (l+x)\/J_c n—+oo Jy (1+x)\/)7
n
= lim 2arctan \/)_c]
n—+oo 1
non
=T — — = —
2 2
Thus,

7 Integrals

Theorem 7.46. (Integral test) Let a € Z and f : [a,+>0) — R a decreasing

function. Define for every natural n > a

ap = f(l’l)

The series Y, a, converges if and only if J:J f(x) dx converges.

Proof. Since f is decreasing, it follows from theorem [7.14]that f integrable on

every closed interval. For x € [n, +c0) we have

f(x) < f(n).
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Similarly, in (—oo, n] we have

f(n) < f(x).
Hence, for every n > a, we obtain
n+l n+l
|7 rwas [ o ac=son,
andforn >a+1
o =[" rmas| fwas
We conclude that
n+l n
J f(x)dxﬁf(n)sj_lf(x)dx.

By summing over all n from a to a fixed integer m > n, we obtain

a

fm” Fdes S fn) < fla) + [ rwa

The conclusion follows by letting m — +co. |

+00
Example 7.47. Fix p € R and consider the series ), m The corresponding
n=2

integral is

0 1
d
L x(inxr
We can easily compute the integral above using substitution (change of vari-
ables):

+00 1 1 +00
J dx = (lnx)l_p]2 , forp #1

+00
Using the integral test, it follows that }; convergesif p > 1, and diverges
n=2

1
n(lnn)pP

ifp<l.
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Exercises

S

10.

11.

12.

13.

. Let f : [a, b] — Rbeacontinuous function. Prove thatif f is notidentically

zero then Llj |f(x)|dx > 0.

Give an example of an integrable function that is discontinuous at an infinite
set.

(Cauchy-Schwarz inequality) Let f, g : [a, b] — R be integrable functions.

Show that
2 b b
< (J f()c)2 dx) (J g(x)2 dx)

Let f : [a, b] — R be a nonnegative integrable function. Consider the set

b
j Fg00) dx

X :={¢: [a,b] — R; ¢ is astep function and ¢(x) < f(x) Vx}

Show that [ f(x) dx = sup [* ¢(x) dx. Show that the result is still valid if
= peX

we replace the condition ‘step function’ by continuous or integrable function.
Suppose f : R — R is differentiable satisfying

f(0)=0and f'(x) = |f(x)?

Show that f(x) is identically zero.

. Let f(x) = fx Int g7t Find the value of ¢ € R such that

1 1+t

fx)+f (%) = ¢(Inx)>.

Give an example of a non integrable function that has a primitive.
Suppose f: [0,2] - Rand g : [-1,1] — R are integrable. Show that

2 b/g
J (x—l)f(x—1)2dx:O=J g(sinx) cosx dx
0 0

Show that fgo % dx converges but fgo |¥| dx doesn’t.

Let @ ¢ N and consider the function f(x) = (1 +x)?. Show that the Taylor
series of f(x) around zero converges if x € (-1, 1).

Show that there can’t be a function f : R — R that is continuous only at the
rational numbers. Hint: Use Baire Category Theorem (Chapter 4,Exe. 34)
Show that if an interval has measure zero then it’s either empty of consists
of a single point.

Show that every set with empty interior has measure zero.
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14.

15.

16.

17.
18.

19.

20.

(a) f(x) = sox (b) f (x) =|ax
Fig. 7.11: Problem 7

Let f : [a,b] — R be a Lipschitz function. Show that if X C [a, b] has
measure zero then f(X) also has measure zero.

Let K be the Cantor set. Give an example of a continuous monotone function
f:10,1] — [0, 1] such that f(K) doesn’t have measure zero.

Let g : [a,b] — R be a nonnegative integrable function such that

f: g(x) dx = 0. Show that for every integrable f(x), we have f: f(x)g(x) dx =
0.
If X has measure zero does it follow that X also has measure zero?

Find two disjoints sets such that R = X U Y, X has measure zero and Y is a
meager set (countable union of closed sets with empty interior).

Show that . - .
Cos X sin x
dx = —d.
L T+x L (1+x)2 §

Let 1 < s < co. We define the Riemann’s Zeta function by

(=) 4
n=1

Show that 1]
® |t
l(x)=x L pr dt.

(The floor function | x| is defined in Example
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2

4+

Fig. 7.12: The Zeta function £ (x) = X%, -

n=1 nx



Chapter 8
Sequences and series of functions

8.1 Pointwise and uniform convergence

Let X C R be subset of real numbers. A sequence of function f,, : X — R
converges pointwise to a function f : X — R, denoted by f,, — f, if for every
x € X, the sequence of real numbers f;, (x) converges to f(x), i.e.

Jim £ () = ().

Notice that the limit is with respect to n, and x is fixed, hence the term pointwise.

Example 8.1. The sequence f, : (0,1) — R, given by f,(x) = [sinx|™¥
converges pointwise to the constant function f : (0, 1) — R defined by f = 0.

'
— |sin()| ¥
2
— Isin(x)| X
3
— Isin(x)| ¥
4
— Isin(q)| ¥
s
— |sin()| ¥
s
— Isin(q)| %
7
— Isin(x)| %

8
Isin(x)|

Fig. 8.1: f,(x) = |sinx|~% for 1 < n < 8.

Indeed, if we fix x € (0, 1), then lim |sinx|~% = 0.
n—+oo

Example 8.2. Consider the sequence f,, : R — R, given by f,(x) = %

149
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x
-2 -1 [ 1 2

Fig. 8.2: f(x) = 2l for 1 <n < 8.

For a fixed x € R, we clearly have lim |z—| = 0, thus f;, converges pointwise
n—+oo

to the constant function f(x) = 0.

Example 8.3. Let f,, : [0, 7] — R, given by f, (x) = 28X,

— sin(x)

— %sin(Zx)
— %sin(:;x)
f— isin(4x)

.
Lsin(5x)

x 1o

v Lsin(6x)
1y
Lsin(7x)

.
Ssin(8x)

Fig. 8.3: f(x) = S”‘% forl1 <n<8.

For any x € [0, ],

1 sinnx 1
-—— < < -.
n n n
By the Squeeze Theorem we have
[y SIDPX _ 0.

n—+0  n

and we conclude that f,, converges pointwise to 0.

Example 8.4. Suppose f;, : R\ {0} — Ris given by f,,(x) =In (|Z—|)
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— log(Ix1)
— log( 22t

log( 2
1x]

1
3
1xi

— log
— log|

— log

. — log

\ | / %

Fig. 8.4: f,(x) = In (%) forl <n<9.

(
(5
5
— Iog(
&
&
(5

We claim f,, doesn’t converge pointwise, indeed, we have for any x # 0,

lim ln(| l) —00
n—+oo n

We now introduce a stronger notion of convergence, that was not discussed
in chapter[3]

A sequence of functions f;, : X — R converges uniformly to a function
f X — R, if given & > 0 there exists ng > 0 such that

n>no = |fu(x) - f(x)] <e&.

In other words, the graph of f;, is arbitrarily close to the graph of f in the sense

that for n > ng, we have f,(x) € (f(x) — ¢, f(x) + €). Notice that ng doesn’t
depend on x. In particular we have:

Proposition 8.5. If f,, — f uniformly then f,, — f pointwise.

It follows directly from the definition that the convergence in Example [8.2]is
not uniform but the one in Example [8.3]is. Here’s another Example:

Example 8.6. The sequence f,, : R — R given by f,(x) = n2 5 converges
uniformly to zero (f = 0).



152 8 Sequences and series of functions

X

14362

X

14492
x

14642

Fig. 8.5: fu(x) = 5z for1 <n < 9.

Indeed, first notice that f,, has a global maximum(minimum) at x = }l(—% ,
with corresponding values %, —ﬁ. Let £ > 0 be given. Choose n > % then

Al <l <
—— < —<cs¢
1+n%x|2 ™ 2n

as required.
Example 8.7. The sequence f;, : [0, 1] — R given by f;,(x) = x"(1 —x") does

not converge uniformly to zero because f,, has a global maximum at x = @ ,

with f (f/g ) = %. Therefore, given any € < }‘, there is no number n € N such

that f,, < &. Notice that by the squeeze Theorem f;, does converge pointwise to
zZero.

— (1-x)x
— X(1-x)
— x*(1-x%)
— ¥ (1-x)
— x*(1-x%)
— x*(1-x)
— X (1-x7)
X (1-x°)

£ (1-x°)

Fig. 8.6: fu(x) =x"(1 —=x") for1 <n < 8.
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Example 8.8. Let f;, : (0, 1] — Rbe given by f,,(x) = sin(Inx™), we can easily
see that f,, doesn’t even converge pointwise, hence it can’t converge uniformly
to any function f;, : (0,1] — R.

sin(log(x))
sin(log(x?))
sin(log(x’))
sin(log(x"))
sin(log(x®))
sin(log(x®))
sin(log(x"))

Fig. 8.7: fu(x) =sin(Inx") for 1 <n < 7.

8.2 Series of functions

Let f,, : X — R be a sequence of functions. For each x € X, we may consider
the series of real numbers
(9]
Z fn (‘x) ’
n=1

If this series converges for every x € X, it defines a function f(x) : X — R
given by

F@) =" fal),
n=1
and we say the series ), f, converges to the function f.

n=1
Equivalently, define the partial sums

j=n
sn(x) = > fi(0).
j=1

Then the series ), f, converges to f if
n=1

lim s,(x) = f(x) for every x € X.
n—oo
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o0

We say ), f, converges uniformly to f if if the sequence of partial sums s,
n=1

converges uniformly to f.

Given that the definition of a series of functions relies on sequences, it is
natural to expect that a result for sequences has a corresponding counterpart for
series.

A sequence of functions f,, : X — R is a Cauchy sequence if given € > 0,
there exists ng > 0 such that

n,m > ng = |fu(x) = fin(x)| < & forevery x € X

Theorem 8.9. (Cauchy’s criterion) A sequence of functions f,, : X — R is
uniformly convergent if and only if it is a Cauchy sequence.

Proof. Suppose f,, converges to f uniformly. Given £ > 0, we can find ny such
that

€

n>mo = |fu®) - f(0)] < 5

In particular, if m, n > ngy then

() = SOl < 1a@) = FOI+1F ) = )] < 5+ 5 =,

thus f, is Cauchy.
Conversely, suppose f, Cauchy. Then, by Theorem [3.44] the sequence of
numbers f,(x) is convergent. Define f(x) = lim f;,(x), we claim that this
n—+oco

convergence is uniform. Given € > 0, there exists ng such that n,m > ny =
| frn(x) = fin(x)] < &. Fix n and let m — +oo we obtain

n>no = |fa(x) - f(x)] <e,
Hence, f, — f uniformly as desired. |

Corollary 8.10. (Weierstrass M-tesf*)) Suppose f, : X — R is a sequence of
functions satisfying

|/ ()] < an,

(o]
where a, is a sequence of non-negative real numbers (a, > 0). If 3 a,

n=1
S and 3 7o
n=1 n=1

converges, then both

converge uniformly.

Proof. For m,n € N and arbitrary x € X, we have

* The ‘M’ in the M-test stands for majorant. The test was originally called the WeierstraBsche Majo-
rantenkriterium, named after the German mathematician Karl Weierstrass.
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[fn () + o frem O < N fu )+ o+ [ frem () S an+ .o+ apem (8.1)

Since ), a, converges, its partial sums are Cauchy. Hence, by (8.1), the partial
n=1

sums of . f, and ), |f,| are Cauchy, by Theorem they both converge
n=1 n=1

uniformly.

Example 8.11. Let’s analyze the convergence of }, <23
n=1

k o0
Fig. 8.8: Partial sums sx = », “>3* for the series }, <3+
n=1 n=1

First, notice that

‘cos nx | 1
< —.
n? n?

We already know that the series ), # is convergent (Example ??). Hence, by
n=1

[
the Weierstrass M-test, >, 3= is uniformly convergent.
n=1

+00

Example 8.12. The series
n

arctan x"
n(n-1)

is convergent.
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-4 -2 0

arctan x"

+
Fig. 8.9: Partial sums s (k=2 to 30) for the series n(n=1)
n=2

Indeed, we observe that

T

arctan x”" <
T 2n(n-1)

nn-1)

. Therefore, by the Weier-

+00
The series ), Wn—l) is convergent (Example |3.61
n=2

+00

n ., .
strass M-test, %—E){) is uniformly convergent.
n=2

+00 x
Example 8.13. Consider the series , % forx e R.
n=2

@x>0 b)) x < -1

+00 x
Fig. 8.10: Partial sums s (k=1 to 30) for the series ), %

n=2
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We are tempted to use the M-Test, but in fact, for x > 0, % is bounded from

below
(Inn)~*

n

5 (In2)
n

+00 +oo x
Using the fact that the harmonic series ) % diverges, we obtain that ), %

n=2 n=2
is divergent for x > 0. In fact, this Example is the same as Example and
the series diverges for x > —1, and converges for x < —1.

Theorem 8.14. Let f, : X — R be a sequence of function converging uni-
formly to f : X — R. For a € X, if lim f,,(x) exists for every n € N, then
xX—a

lim [lim fn(x)] exists. Moreover,

n—o+oo Lx—a

lim [lim fn(x)] - lim [ lim fn(x)] .

n—+0o |:x—>a X—a Ln—+oo

Proof. Let x;,, = lim f,(x). Suppose € > 0 is given, then there exists ny € N
xX—a
such that c
mm > g = |fu() = ()] < 3

For any n,m > ny, it’s possible to find ¢ € X such that |x,,, — fiu(c)| < £ and
[xn = fnu(c)| < 5. It follows that

[Xn = Xm| < X0 = fu(O)] + [ fin(€) = x| + | fu(c) = fin(c)] < &.

Thus, x, is a Cauchy sequence, hence convergent, say lim x, = L. It remains
n—+oo

to be proved that L = lim f(x). Given & > 0, there exists ny € N such that
xX—a

n>np= |L - x| < gand () = F)] < g

Since x,, = lim f,(x), there exists § > 0 such that
XxX—a

0<|x—a|<6:>|fn(x)—xn|<§.

Fix n > ng, then for 0 < |x — a| < &, we obtain
Lf () = L] < [f(x) = fa) | + [ fn(x) = xn| + |xn — L] <&.
O

The following corollaries are immediate consequences of the Theorem above.



158 8 Sequences and series of functions

Corollary 8.15. If f,, — f uniformly in X and f,, are continuous at a € X,
then f is continuous at a. Hence, if f,, are continuous for every n € N then f is
continuous as well.

Corollary 8.16. Ifthe series ), f,, converge uniformly to f in X, and lim f,,(x)
xX—a

n=1

[ee)
exists for everyn € N, then Y, lim f,(x) converges and we have

n=1x—a
lim [Z fn<x>] = ) [lim fu(x)]
n=1 n=1

Example 8.17. Consider the sequence f;,(x) = x" on [0, 1]. It converges point-
wise to the discontinuous function

1, ifx=1

f(x):{o, ifx # 1

Fig. 8.11: The sequence f,(x) = x"

Since f is discontinuous, the convergence can’t be uniform by Corollary[8.15]

If f is continuous and f,, — f pointwise in X, the convergence is not
necessarily uniform, that is, the continuity of the limit function f is necessary
but not sufficient for uniform convergence of a sequence of continuous functions.
However, the compactness of X and monotonicity of f;, are sufficient for uniform
convergence, as the following Theorem shows.

Theorem 8.18. (Dini) Let X C R be compact, and f,, : X — R a sequence of
continuous functions such that, for each x € X, the sequence fi(x), f2(x),...is
monotone. If f, — [ pointwise and f is continuous, the convergence f, — f
is uniform.
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Proof. Given ¢ > 0, for each n € N, define X,, = {x € X; | f,(x) — f(x)| > &}.
Since both f,, and f are compact, the set X, is closed, hence compact. Moreover,
since f;, is monotone we have | f,,+1(x)— f(x)| < | fu(x)=f(x)], thus X;;4+1 C X,.

+00
Let E = () X,, if x € E then |f,(x) — f(x)| = & for every n € N, this is
n=1
impossible since f, — f pointwise. It follows that E = 0, hence X,,, = 0 for
some ng € N, and

n>ny = |fu(x) - f(x)| <e&.

O

Corollary 8.19. Let f,, : X — R be a sequence of nonnegative (or nonpositive)

functions, where X is a compact set. Then Y, f, converges uniformly to a
n=1

function f : X — R if and only if f is continuous.

k
Proof. Indeed, the partial sums s; = ), f, form a monotone sequence. |
n=1
Notice that the sequence f;, from Example|8.17|is monotone and converges
pointwise to the zero function on the non-compact interval [0, 1), but the con-
vergence is not uniform (since lin? x"" = 1). Theorem cannot be applied
x—1"

in this case.
The next result tells us when it is valid to interchange the limit and the integral
for a sequence of functions.

Theorem 8.20. Let f,, : [a,b] — R be a sequence of integrable functions. If
fn — f uniformly then f : [a, b] — R is integrable and

b b b
[rwac= [ tim foac= im0 as

Corollary 8.21. Ler f,, : [a,b] — R be a sequence of functions. If Y, fu

n=1
converges uniformly to a function f : [a,b] — R then f is integrable and

Example 8.22. Let |x| < 1. Consider the series

1 2

=1l4+x+x+...+x"

+...
1-—x

Using the M-Test, we can easily see that the convergence above is uniform. If
we integrate term by term we obtain
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[se] xn
—In(1—-x) = Z —,
n
n=1

In particular, we obtain the following elegant expression for In 2 by substituting
x= %:

! + ! + ! +

g .

1
In2 = 24" 64

§+

0.0 05 10 15 20

Fig. 8.12: The function —1In(1 — x) (dashed) and some of its partial sum s¢
(1 <k <30)

Now, we discuss the case of derivatives. In this case, uniform convergence
alone is not sufficient to interchange the limit and the derivative; a stronger
assumption is required.

Theorem 8.23. Let f,, : [a,b] — R be a sequence of differentiable functions.
Suppose there exists ¢ € [a, b] such that f,(c) converges, and additionally,
fn — g uniformly for some g : [a,b] — R. Then there exists a differentiable
function f : [a,b] — R such that f,, — f uniformly and ' = g. In other

words,
(lim f,)" = lim f;.

Proof. We apply the Mean Value Theorem to the function f;, — f;;, on the interval
[c,x] to obtain d € (¢, x), such that

Jn (%) = fin(x) = fu(€) = fn(c) + (x =) [fo(d) = fru(D]. (82

Since f, converges uniformly, the sequence f, satisfies Cauchy’s criterion.
Hence, f,, — f uniformly, for some f : [a, b] — R. We may now rewrite (8.2)
using an arbitrary point xg € [a, b] instead of c. For x # x(, we have



8.2 Series of functions 161

Jn(x) = fu(x0) _ Jm(X) = fin(x0)

X — X0 X — X0

= fu(d) = fu(d).

Define
fn(x) - fn(XO)

X — X0

gn(x) = X # Xg.

It follows that g,, is a Cauchy sequence, and thus converges uniformly on [a, b] \
{x0} to %ﬁ(}(m) Using Theorem [8.14| we conclude that

f/ (o) = lim |
x—Xxo Ln n—+oo | x—xg

lim g(v)| = 1im [hm qn<x>] = g(x0).

Since xg € [a, b] was arbitrary, we conclude that f’ = g. |

Corollary 8.24. Let f,, : [a, b] — R be a sequence of differentiable functions.

+00
Suppose there exists ¢ € [a, b] such that the series Y, f,(c) converges, and
n=1
+00

additionally, the series ), f, converges uniformly to some g : [a,b] — R.
n=1

+00
Then there exists a differentiable function f : [a,b] — R such that ), f, = f
n=1
uniformly and ' = g
Example 8.25. Consider the series
in ()

n

g
2}

S
—_

The series clearly converges when x = 0. Moreover, the series formed by its

.. X cos() . * sin( %)
derivatives ), — y*= converges uniformly by the M —zest. Therefore, >, —==
n=1 n=1

also converges uniformly on any closed interval containing zero.
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Fig. 8.13: Partial sums sy (1 < k <

8.3 Power Series

In this section, we discuss series of functions of the form

+00

Zan(x—xo)" = a0+a1(x—x0)+a2(x—x0)2+...,
n=0

which are commonly referred to as power series.
For simplicity, we will suppose xo = 0. This assumption does not affect the
results that follow.

+00
Example 8.26. Recall that by Example |3.59, the numerical series ), a” con-
n=0

verges if and only if |a| < 1. Therefore, the power series

+00
Zx”:1+x+x2+...,

n=0

converges uniformly in the open interval (-1, 1), and diverges for x > 1. In fact,

+00
as previously discussed in Example [6.45] > x" = ﬁ
n=0

Example 8.27. As we saw in Example[6.44] the exponential function is analytic
and admits a power series representation:
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Notice that this is the same function discussed in Example

+00
Theorem 8.28. If a power series Y, a"x™ is convergent then exactly one of the

n=0
Jollowing holds:
a. The series converges only at x = 0;
b. The series converges for all x € R;
c¢. The series converges for all x € (—r, r) and diverges for x ¢ [—r,r], where

1
yr = ——
lim sup /|a,|

satisfies 0 < r < +oo. At the endpoints x = xr, the series may converge or
diverge.

Proof. We analyze the sequence /|a,|. Suppose this sequence is unbounded.
Then observe that

+00 +00 n
Dlanc" = 3" (anlixl)
n=0 n=0

It follows that if x # 0, the sequence 4f/|a,||x| does not converge to zero.
+00

Therefore, in this case, the series ), a"x" converges only at x = 0.

n=0
Now, suppose
lim +/|a,| =0.
n—+o0o
+OO . .
Applying the root test to the series ), |a,x"|, we conclude that it is absolutely
n=0

convergent for all x € R, since
lim v|a,x*| = |x| lim +/|a,|=0.
n—+oo n—+oo
The only possibility left is
. , 1
lim sup V|ay,| = —,
,

for some r > 0. Notice that
B e . _ x|
lim +/|a,x"| = |x| lim Af|a,|=—.
n—+oo n—+oo r

Therefore, by applying the root test again we obtain that the series converges for
|x| < r and diverges for |x| > r. O
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The number » > 0 described above is called the radius of convergence of

+00

the series ), a"x". By convention, if the series converges only at zero, we set
n=0

r = 0; and if it converges for all x € R, we set r = +oo0.

+00

Corollary 8.29. The series Y, a"x" converges uniformly in every closed inter-
n=0

val contained in (—r,r), where r is the radius of convergence of the series.

Proof. This is an immediate consequence of the M-test. |

+00
Notice that the Corollary does not say however, that ), a"x" converges
n=0
uniformly in the whole interval (—r, r).

For Example, the series Y, x™ can’t converge uniformly in (-1, 1), since this
would imply convergence on the endpoints +1. On the other hand, if the series
does converge at the endpoints +r, then the convergence is indeed uniform, as
the follows Theorem shows.

Theorem 8.30. (Abel) Let 0 < r < +oo0 be the radius of convergence of the
+00 +00 +00
series Y, a"x". If Y, a"r" converges, then ), a”"x" is uniformly convergent on
n=0 n=0 n=0
+00

[0, r]. A similar result holds if 3, a" (—r)" converges. In particular, if the series
n=
converges at +r, then it converges uniformly on [—r,r].

Proof. By the Cauchy Criterion, given any & > 0, there exists ng € N such that

n+l rn+1 n+m

n>ng=la +a"™r 4+ "M <& forallm € N

k
Define y,, = a™r™™ and let s = ), v, be its partial sum. Then for all
m=1
x € [0,r]:

n m
|an+1xn+1 + .. +an+mxn+m| — ()_C) Vi ()_C) + + Vim (f) '
r r r
X\ X X
() (2= () ot s (2]
r r
x\" ( x x\2 x\m
=G (GG ) ()
r r r r
x\" (X
<(;) =)
r r
<e¢
+00
Therefore, the series ), a”x" converges uniformly on [0, r]. |

n=0
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Example 8.31. According to the Fundamental Theorem of Calculus, the func-
tion arctan : R — (=7, ) can be expressed as

arctan(x) = JX !

dt.
o 1+ 12
On the other hand, observe that for every ¢ € (-1, 1), the function # admits
the power series expansion

+00

1
T 2,0

n=0

where the convergence is uniform on every closed interval contained in (-1, 1).
By integrating the series term by term, we obtain

2n+1

+00 x +00
arctan(x) = Z L (=) dt = Z(—l)";n .t
n=0 n=0

Applying Abel’s Theorem, we conclude that this series converges uniformly
on the closed interval [—1, 1]. In particular, evaluating at x = 1 yields the
classical identity

T_, 1+1 1+
4 35 7 7
+00

Theorem 8.32. Let r be the radius of convergence of the power series ), a,x".

n=0
Then for any [a, b] C (-r,r):
[
anxn dx = _n(bn+1 _ an+1)
a4 n=0 =" +1
Proof. This follows directly from Corollary |
+00

Theorem 8.33. Let r be the radius of convergence of the power series Y, ap,x".
n=0
Define the function f : (-r,r) — R by

+00

fx) = Z ax".

n=0
Then f is differentiable with its derivative given by

+00

f(x) = Z apnx" 1.

n=1
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Moreover, the radius of convergence of the power series defining f’ is also r.

+00
Proof. Let 7 be the radius of convergence of Y, a,nx""!. Observe that 7 is
n=1
+00

also the radius of convergence of }, a,nx". We analyze the convergence of this
n=1
latter series. Suppose p > 0 satisfies 0 < p < r. Choose ¢ > 0, such that
O<p<c<r.

It follows that for » sufficiently large,

N 1
Vlan| < —.
c
On the other hand, for n sufficiently large, we clearly have

1
n < —.
0

Combining these two estimates yields
g 1
P

and hence, 0 < p < 7. We conclude that ) < p < r = 0 < p < 7, this can only

+00
occur if r = 7. By applying Corollary [8.24, we have f'(x) = ¥ a,nx"~!. O

n=1

+00
Corollary 8.34. Let r be the radius of convergence of the power series ), a,x".
n=0

+00
Define the function f : (-r,r) = R by f(x) = 3, ayx™. Then f is of class C*
n=0

(it has all of its derivatives), and moreover,

_ /0

" n!

In other words, f is analytic with power series expression given by its Taylor
series around zero.

Corollary 8.35. Let X C R be a set with the property that 0 € X’. Suppose
+00

+00
> apx™ and Y, bpx"™ are two convergent power series on (—r,r), such that
n=0 n=0

+00 +00
> apx" = ) byx" on X. Then a,, = b, forn € N,
n=0 n=0
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+00 +oo
Proof. By hypothesis, the functions f := ) a,x" and g := }, b,x" satisfies
n=0 n=0

f"(0) = g"(0).

Hence, a,, = fnn(!o) = g"n(!O) = b,,. ]

Example 8.36. (Binomial Series) For @ € R and n € N U {0}, define

(a/):a/(a/—l)...(oz—n+1)

. 0 ifn+0,

and (g) = 1. We analyze the convergence of the power series
+00 o
Z( )x”.
n=0 n

Observe that
()
n+l
a
()
Therefore, by using the ratio test we conclude that the radius of convergence of
this series is 1, i.e., the series converges for |x| < 1, and diverges if |x| > 1.

lim =

n—+0o0

’n—a B
n+1l

+00
For x € (-1,1), define f(x) = X (&)x". A quick computation shows that f

satisfies

(1+x)f"(x) = af(x).
Now, define g(x) = L&) then

(1+x)®>

£ +0)7 = fa(l+x)°7"

(1+4x)2@

g'(x) = 0.

Hence, g is constant, but since g(0) = 1, we obtain

+00

Z (:)x" =(1+x)“.

n=0



168 8 Sequences and series of functions

x
-1.0 -05 0.0 05 1.0

Fig. 8.14: The sequence f;,(x) = (1 +x)‘% for (1 < n < 20)

Example 8.37. (The Basel Problem) The following problem was first proposed
in 1650 by Italian Mathematician Pietro Mengoli:
+00
“What is the precise value of the series ), #?”
n=1

We already know that this series converges, namely, due the p-series test.
However, it took several decades before a closed-form expression for the sum
was discovered.

In 1734, the Swiss mathematician Leonhard Euler showed that the series
converges to %2. Euler’s proof relied on techniques involving infinite products.
Here, we present an alternative solution due to B. Choe, published in 1987.

Recall that

o1
arcsin(x) = J

0 V1I-¢2
Using Example with @ = —%, we obtain for any x € [—1, 1]:

+o0 2n+1

. _ 2n-1D! x

arcsin(x) = Z @n)!! 2n+1’
n=0

where the double factorial is defined by n!! = n(n - 2)(n—4)(n-6) .. ..
Now, set x = sin ¢. Substituting into the series, we find

e i (2n — D! (sinr)?+!
_n:0 @2n)!! 2n+1

for any ¢ € [0, 27]. Integrating both sides from 0 to 7, we have
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2

+00

T _ (zn_l)!! 1 d . 2i’l+1

T2 anh 2n+1‘[0 (sint)™"" dt
n=0

_i(%—l)!! 1 2!
4 2m!t 2n+1 (2n+ 1)

-y !
=) —.
i (2n+1)

On the other hand, observe that

= ol Sl 3381
N TR R e Mt P et

It follows that

Exercises

1. Let f; : [0, +c0) — R be a sequence of functions defined by

xn

xm+ 1

fu(x) =

169

Show that f;, — f pointwise, but not uniformly, for some function f. Find

an explicit expression for the limiting function f.

x
15 20

Fig. 8.15: The sequence f,(x) = = for (1 < n < 20)

x"+1
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10.

11.

12.

13.

14.

8 Sequences and series of functions

+00
Find the radius of convergence of the series Y, x"(1 —x™).
n=1

+00 +o00
Show that ) |f,| < 00 = Y, f < .
n=1 n=1
Consider the series

+00

1
Z 1+n2x’

For what values of x does this series converge uniformly?
Let f, : [0,1] — R be a sequence defined by f,(x) = s‘“ﬁ Show that

fn — 0 uniformly, but f,; does not converge anywhere in [0, 1].

Consider the sequence f,,(x) = x + % on the interval [0, 1]. Show that
fn converges uniformly to some function g, and moreover, show that f,
converges pointwise but its limit is not g’.

Prove that if f, — f uniformly in a dense subset D C X, then f,, — f
uniformly in X.

+0o
Find the radius of convergence of the series ), n » x".

n=1
Let a,, denotes the Fibonacci sequence given by ag = a; = 1 and

Apyl = ap tap-1.

+00
Find the radius of convergence of the power series ), a,x".

n=0
Show that if f, — f uniformly on X C R, and each f,, is uniformly
continuous then f is uniformly continuous in X.
Proye that a sequence of polynomials p,, cannot converge uniformly to % on
the interval (0, 1).
Give an example of a sequence of function f, : [a, b] — R that converges
uniformly on (a, b), but does not converge at the endpoints.

+00 |

Given & > 0, show that the series }, *2* converges uniformly on [&, 27 —
n=1

eJ.

+oo

Show that the series . 77 does not converge uniformly on the entire real
n=0

line (—o0, o).
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