Final Exam - Fall 2025

1. Show that if there are r > 0 and $k, n_0 \in \mathbb{N}$ such that

$$n > n_0 \Rightarrow r \le x_n \le n^k$$

for some sequence x_n , then $\lim \sqrt[n]{x_n} = 1$. Conclude that $\lim \sqrt[n]{\ln n} = 1$.

2. Determine if the series

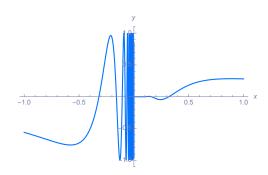
$$\sum_{n=1}^{+\infty} \left(\frac{\ln n}{n}\right)^n$$

converges.

- 3. Show that every uncountable set $X \subseteq \mathbb{R}$ has an accumulation point.
- 4. Consider the function $f: \mathbb{R} \{0\} \to \mathbb{R}$ defined by

$$f(x) = \frac{\sin\frac{1}{x}}{1 + 2^{\frac{1}{x}}}.$$

Determine the adherent values of f at 0 and conclude that $\liminf_{x\to 0} f = -1$, $\limsup_{x\to 0} f = 1$. The graph of f is depicted below.



- 5. Let $X \subseteq \mathbb{R}$ be a set with the following property: Every function $f: X \to \mathbb{R}$ with domain X is uniformly continuous. Show that X is closed (but not necessarily compact, since every function defined over \mathbb{N} is uniformly continuous and yet \mathbb{N} is not compact).
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{x^2}{1+x^4}$. Compute $f^{(2025)}(0)$.
- 7. Show that the function $f:[a,b]\to\mathbb{R}$ defined by

$$f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Q} \cap [a, b] \\ x + 1, & \text{if } x \in (\mathbb{R} - \mathbb{Q}) \cap [a, b] \end{cases}$$

is not integrable and compute its lower and upper integral.

8. Show that the integral

$$\int_0^{+\infty} x \sin x^4 \, dx$$

is convergent despite the fact that $f(x) = x \sin x^4$ is unbounded on $[0, +\infty]$.