Exam III

Choose 4 questions below.

Topology

1. Prove that for every $X \subseteq \mathbb{R}$ we have

$$\mathbb{R} - X^{\circ} = \overline{\mathbb{R} - X},$$

where X° is the interior of X.

Solution. Notice that $a \in \mathbb{R} - X^{\circ} \iff \forall \delta > 0, (a - \delta, a + \delta) \cap (\mathbb{R} - X) \neq \emptyset \iff a \in \overline{\mathbb{R} - X}$.

2. Let $K \subseteq \mathbb{R}$ be compact. Show that if all the points of K are isolated then K is finite. Hint: Remember that every cover of K has a finite subcover.

Solution. For each $x \in K$ there exists an open interval I_x such that $I_x \cap K = \{x\}$. On the other hand the collection of I_x form an open cover of K, $K = \bigcup_{x \in K} I_x$. Since K is compact, we may choose a finite subset $F \subseteq K$ such that $K = \bigcup_{x \in F} I_x$. But $I_x = \{x\}$, this implies K = F.

3. Show that $\frac{1}{10}$ is an element of the Cantor set. *Hint: Consider the base 3 expansion of* $\frac{1}{10}$.

Solution. $\frac{1}{10} = 3$. Since its expansion in base 3 does not contain 1, $\frac{1}{10}$ is in the Cantor set.

4. Prove that the set of endpoints of the intervals removed in the construction of the Cantor set K is dense (and countable) in K.

Solution. Let $X = \{x; x \text{ is a removed endpoint}\}$. Given any open interval (a, b) containing $c \in K$, after the *n*-th iteration, only intervals of length $\frac{1}{3^n}$ will remain, in particular, when $\frac{1}{3^n} < b - a$, the interval (a, b) will contain a removed endpoint.

Limits and Continuity

5. Show that $f: \mathbb{R} \to \mathbb{R}$ is continuous if and only if for all $X \subseteq \mathbb{R}$, $f(\overline{X}) \subseteq \overline{f(X)}$. Hint: For the converse, it's easier to show the contrapositive. Namely, suppose f is discontinuous at a and show that $f(\overline{X}) \not\subseteq \overline{f(X)}$.

Solution. Let $y \in f(\overline{X})$. Then y = f(x) for some $x \in \overline{X}$, hence, there exists a sequence $x_n \in X$ such that $x_n \to x$. Since f is continuous, $f(x_n) \to f(x) = y$, and it follows that $y \in \overline{f(X)}$.

Conversely, suppose f is discontinuous at a then there exist $\epsilon > 0$ and a sequence x_n such that $x_n \to a$ but $|f(x_n) - f(a)| \ge \epsilon$. Set $X = \{x_n ; n \in \mathbb{N}\}$. Then $a \in \overline{X}$ but $f(a) \notin \overline{f(X)}$, thus $f(\overline{X}) \not\subseteq \overline{f(X)}$.

- 6. Let $f:[0,1] \to \mathbb{R}$ be a continuous function satisfying f(0) = f(1). Show that there exists $c \in [0,\frac{1}{2}]$ such that $f(c) = f(c+\frac{1}{2})$. Hint: Consider the function $g(x) = f(x) f(x+\frac{1}{2})$ and use the Intermediate Value Theorem.
 - Solution. The function function $g: [0, \frac{1}{2}] \to \mathbb{R}$ defined by $g(x) = f(x) f(x + \frac{1}{2})$, satisfies $g(0) = f(0) f(\frac{1}{2}) = -(f(\frac{1}{2}) f(0)) = -g(1)$. By the Intermediate Value Theorem, there exists $c \in [0, \frac{1}{2}]$ such that g(c) = 0.
- 7. Recall that a function $f: \mathbb{R} \to \mathbb{R}$ is periodic if there exists a real number p > 0 such that for every $x \in \mathbb{R}$

$$f(x+p) = f(x).$$

Show that every continuous periodic function is bounded and achieves its maximum and minimum values, i.e. $\exists a,b \in \mathbb{R}, \ \forall x \in \mathbb{R} : f(a) \leq f(x) \leq f(b)$. Hint: Extreme Value Theorem.

Solution. Notice that the function $g:[0,p]\to\mathbb{R}$ defined by g(x)=f(x) is continuous and defined on the compact [0,p]. By the Extreme Value Theorem, there exist $a,b\in[0,p]$ such that $g(a)\leq g(x)\leq g(b)$. Now, given any $y\in\mathbb{R}$, since f is periodic, one can find $x\in[0,p]$, such that f(y)=f(x)=g(x). Hence, $f(a)\leq f(y)\leq f(b)$ for every $y\in\mathbb{R}$.

- 8. Show that the function $f:(0,1]\to (1,+\infty)$ given by $f(x)=\frac{1}{x}$ is not uniformly continuous. Hint: Use the definition or analyze $\lim_{x\to 0} f(x)$.
 - Solution. Recall that if $f: X \to \mathbb{R}$ is uniformly continuous and $a \in X'$ then $\lim_{x \to a} f(x)$ exists. But since 0 is an accumulation point of (0,1] and $\lim_{x \to 0} \frac{1}{x}$ does not exists, f can't be uniformly continuous.

Extra

Show there is no continuous function $f:[0,1] \to \mathbb{R}$ with the following property: f achieves each one of its values f(x), $x \in [0,1]$, exactly twice. *Hint: Argue by contradiction. Use the Extreme Value Theorem.*

Solution. Suppose not, namely, f achieves each one of its values twice. f is obviously not constant. By the Extreme Value Theorem, f achieves its maximum and minimum. Since each extreme value occurs exactly twice, at least one of them is reached at an interior point, say the maximum.

Let's suppose a and b are maximum, with M = f(a) = f(b) and $a \neq 0, 1$. Then there exists $\delta > 0$ such that on the intervals $[a - \delta, a)$, $(a, a + \delta]$ and $[b - \delta, b)$ (if b = 0, take $[b, b + \delta)$) we have f(x) < M. If we set $m := \max\{f(a - \delta, a), f(a, a + \delta), f(b - \delta, b)\}$, then by the Intermediate value theorem there are points $c \in [a - \delta, a), d \in (a, a + \delta], e \in [b - \delta, b)$ such that m = f(c) = f(d) = f(e), a contradiction